
1

The basics of rigidity

Lectures I and II
Session on Granular Matter

Institut Henri Poincaré
 R. Connelly

Cornell University
Department of Mathematics



2

What determines rigidity?



3

What determines rigidity?

• The physics of the materials.



4

What determines rigidity?

• The physics of the materials.
• The external forces on the structure.



5

What determines rigidity?

• The physics of the materials.
• The external forces on the structure.
• The combinatorics/topology of the structure.



6

What determines rigidity?

• The physics of the materials.
• The external forces on the structure.
• The combinatorics/topology of the structure.
• THE GEOMETRY OF THE STRUCTURE.
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What model?
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What model?

My favorite is a tensegrity.

Strut

Bar

Cable
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The constraints

Struts can increase in length
or stay the same length, but
NOT decrease in length.

Bars must stay the same
length.

Cables can decrease in length
or stay the same length, but
NOT increase in length.
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An example: Packings of circles
Place a vertex at the center of each circle.

Place a strut between the centers of every pair of touching circles, 
and from the center of a circle to the point on the boundary of the
container that holds the circles.

The boundary vertices are pinned.                                                   
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What sort of rigidity/stablility?

Two configurations p and q are congruent if every
distance between vertices of p is the same for the
corresponding distance for corresponding vertices
of q.

A tensegrity structure with configuration p is rigid if
every other configuration q  sufficiently close to p
satisfying the member (i.e. cable, bar, strut)
constraints is congruent to p.



13

Examples of rigid structures

Tensegrities in
the plane, but
rigid in space.

Bar frameworks
in space.

The edges of a convex triangulated
polyhedral surface.

Bar frameworks
in the plane.
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Examples of rigid structures

A square grid of bars with some diagonal bracing.
(Bolker, Crapo 1979)
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Examples of rigid structures

A bar framework in the plane with the boundary vertices pinned.
Internal bars are deleted with a certain probability p.
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Examples of rigid structures

A cable framework in the plane with the boundary vertices pinned.
Internal bars are deleted with a certain probability p.
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Examples of flexible structures
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Examples of flexible structures
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What sort of rigidity/stablility?

There are two equivalent concepts of rigidity
that are a natural beginning first step.

• Infinitesimal rigidity, which thinks in terms
of infinitesimal displacements, i.e. velocity
vectors, and

• Static rigidity, which thinks in terms of
forces and loads on the structure.
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Infinitesimal Flexes (or Motions)

An infinitesimal flex p¢ of a (tensegrity)
structure is a vector pi¢ assigned to each
vertex pi of the tensegrity such that:

(pi - pj)(pi¢ - pj¢) ≤ 0, when {i, j} is a cable.
(pi - pj)(pi¢ - pj¢) = 0, when {i, j} is a bar.
(pi - pj)(pi¢ - pj¢) ≥ 0, when {i, j} is a strut.
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Trivialities
An infinitesimal flex p¢= (p1¢, p2¢, … pn¢) is trivial if

it is the derivative at t=0 of smooth family of
congruence of the ambient space.

In 3-space this means that there are vectors r and T
such that, for all i = 1, 2, …, n

pi¢ = r ¥ pi + T.
Taking the cross product with r is an infinitesimal

rotation, and adding T is an infinitesimal
translation.  It is easy to check that such a p¢ is
always an infinitesimal flex.
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Infinitesimal rigidity

A tensegrity framework is infinitesimally rigid
if every infinitesimal flex is trivial.

• This depends on the ambient dimension.
• There is always a minimum number of

constraints that must be satisfied.
• An alternative is to pin some of the vertices,

so that the only trivial infinitesimal flex is
the 0 infinitesimal flex.
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Examples of infinitesimally rigid
structures in the plane.

A strut framework in the
plane with the boundary
vertices pinned.

A bar framework in the plane with
the boundary vertices pinned.
Internal bars are deleted with a
certain probability p.

A cable framework in the
plane with the boundary
vertices pinned.
Internal bars are deleted
with a certain probability p.
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Examples of infinitesimally rigid
structures in space

Each face is triangulated
with no vertices inside a
face.  
(A. D. Alexandrov 1958)

Each face has cables so that it is
infinitesimally rigid in its plane.
(Connelly, Whiteley, Roth 1980's)

Each face is triangulated
with no new vertices.  
(A. D. Alexandrov 1958)

Each face is a triangle
(Max Dehn 1916)

Convex polyhedral surfaces
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Infinitesimally flexible structures
in the plane

Engineering
language.

Mathematical
language.

A rigid bar framework
with an infinitesimal flex.

An infinitesimal mechanism
that is NOT a finite mechanism.

The vectors of the infinitesimal flex are in red and attached to the corresponding
vertex.

If the vector is not shown, it is assumed that it is the 0 vector, and effectively that
vertex is pinned.

If one end of a bar is pinned, then the vector of the infinitesimal flex at the other end
must be perpendicular to the bar.

For a bar, in general the projection of the vector at the ends of the bar onto the line of
the bar (shown in green above) must be the same length and direction.

A flexible bar framework
with an infinitesimal flex.

An infinitesimal mechanism
that is a "finite" mechanism.

p'
p' 2

2

1

1 pp

1
1p

p'
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Infinitesimally flexible structures
in space

Any triangulated polyhedral surface that has a vertex
in the relative interior of a face will have an
infinitesimal flex as indicated above.

An infinitesimal mechanism
that is a "finite" mechanism.

A flexible bar framework
with an infinitesimal flex.

An infinitesimal mechanism
that is NOT a finite mechanism.

A rigid bar framework
with an infinitesimal flex.

Mathematical
language.

Engineering
language.
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Calculating infinitesimal rigidity
for bar frameworks

When {i, j} is a bar, we have
(pi - pj)(pi¢ - pj¢) = 0.

Think of p¢ as the unknown and solve:
R(p)p¢ = 0,

where

t(  )  is the transpose taking a column vector to a row vector.

t(p - p)t

nd x 1

i

jp'

p'

e x nd

p' ={i,j}

ji

... ...0 ij ji(p - p)R(p)  =
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Counting
Suppose that the bar graph G has e bars and n

vertices in dimension d, and that the configuration
p= (p1, p2, … pn) does not lie in a (d-1)-
dimensional hyperplane.  Then the space of trivial
infinitesimal flexes is d(d+1)/2 dimensional.

So if G(p) is infinitesimally rigid in Ed, the rank of
the rigidity matrix R(p) must be nd-d(d+1)/2, and
the number of rows

e ≥ nd-d(d+1)/2.
For the plane d=2, e ≥ 2n-3.
For space d=3, e ≥ 3n-6.
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Counting for tensegrities

If G(p) is a tensegrity framework with n vertices and
e members that is infinitesimally rigid in Ed, then
some constraints are given by inequalities instead
of equality constraints.  So we need at least one
more member.  That is

e ≥ nd-d(d+1)/2 + 1.
For the plane d=2, e ≥ 2n-2.
For space d=3, e ≥ 3n-5.
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Counting for pinned frameworks

When the framework has some pinned
vertices, the trivial infinitesimal flexes are
just p¢ = 0.  So for bar frameworks n non-
pinned vertices and e members,

e ≥ nd.
For tensegrity frameworks,

e ≥ nd + 1.
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The rigidity map
For a graph G, the rigidity map f: End -> Ee is the function that

assigns to each configuration p of n vertices in d-space, the
squared lengths of edges of G, f(p)=(. . ., |pi - pj|2, . . .),
where e is the number of edges of G.

The rigidity matrix R(p) = df is the differential of f.
Basic general theorem:  If a (bar) framework is

infinitesimally rigid in Ed, then it is rigid in Ed.
Proof:  Apply the inverse function theorem to f.  //
We have seen examples where the converse of this theorem is

false.
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An application to mechanisms
Suppose that an infinitesimally rigid bar framework in the

plane has e bars, n vertices, and e = 2n -3.  If you remove
one bar, then it becomes a mechanism, by applying the
inverse function theorem.

n = 7, 2n - 3 = 11 = e, 
and replacing a bar by a cable
creates a flexible framework.
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Forces
A force F=(F1, F2, …, Fn) is a row vector Fi assigned

to each vertex i of a configuration p=(p1, p2, …
pn).

F is called an equilibrium force if as a vector in End,
it is orthogonal to the linear subspace of trivial
infinitesimal flexes.

In physics this means that F has no linear or angular
momentum.  In E3 it satisfies the following
equations:

Si Fi = 0,
Si Fi x pi = 0.
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Example of equilibrium forces

For 3 forces at applied at 3 points, the
angular momentum condition implies
that the line extending the 3 vectors
must go through a point.

The linear momentum condition implies
is just that the vector sum is 0.

Note that in dimension 3 the equilibrium condition is
6 linear equations.  In dimension 2 it is 3 linear
equations.
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Stresses

A stress defined for a tensegrity framework is a scalar
wij=wji assigned to each member {i,j} (=cable, bar,
strut).  We write w=(…,wij,…) as a single row
vector.  We say w is proper when

wij ≥ 0 for {i,j} a cable,
wij ≤ 0 for {i,j} a strut.

The stress for a bar can be either sign.  (These should
be properly called stress coefficients.  A stress is
normally a force, but for brevity we stay with
calling these simply stresses.)
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Resolution of forces

Suppose a force F=(F1, F2, …, Fn) is assigned to a
configuration p=(p1, p2, … pn) in Ed. (F is often
called a load as well.)  For a given tensegrity
graph G, we say that a (proper) stress
w=(…,wij,…) resolves F, if the following
equilibrium equation holds at every vertex i.

Fi + Sj wij (pj-pi) = 0.
Note that if F is resolved by the stress w, then F is

necessarily an equilibrium force.
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An example of a resolution

j iiji

A force diagram demonstrating
the equilibrium condition at one
vertex. 
 
Each segment, except the force
F , represents  w  (p - p ).
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Static rigidity

A tensegrity framework G(p) is called statically
rigid if every equilibrium force F can be resolved
by a proper stress w.

In terms of the rigidity matrix this says that for every
equilibrium force F there is a proper stress w, such
that

F + wR(p) = 0.
Theorem: A tensegrity framework G(p) is statically

rigid if and only if it is infinitesimally rigid.
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Comments

• When the configuration p=(p1, p2, … pn) in Ed

does not lie in a hyperplane, a bar framework is
statically and infinitesimally rigid if and only if
the rank of the rigidity matrix R(p) is nd-d(d+1)/2.

• If a statically rigid tensegrity framework has at
least one cable or strut, it requires at least nd-
d(d+1)/2+1 members altogether.  Thus there must
be at least 2n-2 members in the plane and 3n-5
members in 3-space.
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More Comments

• If a stress w resolves the 0 force, i.e. wR(p)
= 0, it is called a self stress or an
equilibrium stress.

• When there is exactly one solution to the
equilibrium equations F + wR(p) = 0, the
framework is called statically determinant,
otherwise it is called statically
indeterminant.
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Convex surfaces with all faces
triangles

Consider a bar framework G(p) composed of all the
vertices and edges of a convex polytope P with all
faces triangles. Let n be the number of vertices, e
the number of edges (i.e. bars), and f the number
of faces of P.  Then

n - e + f = 2  (Euler’s formula)
2e = 3f (All faces triangles).

This implies that e = 3n - 6.
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Convex surfaces with all faces
triangles

Recall that a bar framework G(p) is infinitesimally
rigid in E3 if and only if the rank of the rigidity
matrix R(p) is 3n-6, the number of rows of R(p) in
this case.  This means that this G(p) is
infinitesimally rigid in E3 if and only if the only
self stress for G(p) is 0.  This is the case:

Theorem (M. Dehn 1916): The bar framework G(p)
composed of all the vertices and edges of a convex
polytope P with all faces triangles is statically
rigid in E3.
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Static rigidity for Tensegrities

When G(p) does not consist just of bars, the
determination of static and infinitesimal rigidity is
a linear programming feasibility problem:

Solve:
(pi - pj)(pi¢ - pj¢) ≤ 0, when {i, j} is a cable.
(pi - pj)(pi¢ - pj¢) = 0,    when {i, j} is a bar.
(pi - pj)(pi¢ - pj¢) ≥ 0,  when {i, j} is a strut.

For p¢= (p1¢, p2¢, … pn¢) non-trivial.
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Static rigidity for Tensegrities

There is a useful insight to understand tensegrity
frameworks in terms bar frameworks:

Theorem (B. Roth-W. Whiteley 1981):  A tensegrity
framework G(p) is infinitesimally rigid in Ed if
and only if G0(p) is infinitesimally rigid, where G0
replaces every member with a bar, and G(p) has a
proper self stress w, where wij is not 0 for all
cables and struts {i,j}.
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Proof of the Roth-Whiteley Thm.
Suppose that a tensegrity framework G(p) is statically

rigid (in Ed), and {i,j} is a cable.  Let
F(i,j)=(0…, pj-pi, 0…,0, pi-pj, 0…)

be the equilibrium force obtained by applying pj-pi at
pi, and pi-pj at pj.  Then there is a proper stress w(i,j)
resolving F(i,j). But adding 1 to the stress wij in
F(i,j) creates a self stress for G(p) that is non-zero
for the member {i,j}.  Doing this for all the cables,
similarly for the struts, and adding these self stresses
all together creates a self stress for G(p) that is non-
zero for all the cables and struts.
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Proof of the Roth-Whiteley Thm.
Suppose that w=(…,wij,…) is a proper self stress that is

non-zero for all cables and struts, and that the
underlying bar framework G0(p) is infinitesimally
rigid in Ed.  Let p¢= (p1¢, p2¢, … pn¢) be an
infinitesimal flex of G(p).  Then wR(p) = 0, by the
equilibrium condition.  Furthermore,

wR(p)p¢= Si<jwij(pi -pj)(pi¢-pj¢) < 0
unless (pi -pj)(pi¢-pj¢)=0 for each {i,j} a cable or strut.
So p¢ is an infinitesimal flex of G0(p), the
underlying bar framework, and so must be trivial.
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More Comments

• If a framework is such that it is statically rigid and
statically determinant then it is called isostatic.

• Any convex triangulated polyhedral surface in 3-
space is isostatic as a bar framework.

• If any tensegrity framework has a strut or a cable,
then it must NOT be isostatic by the Roth-
Whiteley theorem.

• For example, if G has a cable or strut, and F is any
equilibrium force, F can be resolved with a proper
stress that is 0 on some cable or strut.
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An application

Assigning a stress of -1 on all the
members is an equilibrium self
stress.
There is no need for equilibrium
at the pinned vertices.

The grey vertices are pinned.

Replacing all the struts by bars
results in a statically rigid bar
framework.  

As a strut tensegrity framework,
this is statically rigid.  
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A Handy Tool
Suppose you have an infinitesimally rigid bar framework in

the plane with two distinct vertices p1 and p2.  Attach
another vertex p3 with two bars to p1 and p2 so that p3 is
not on the line connecting p1 and p2. Then the new bar
framework is infinitesimally rigid.

Also statically rigidStatically rigid
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Another application
The Kagome lattice
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Another application

The associated strut framework is infinitesimally rigid because . . .
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Another application

The bar framework can be constructed from the outside in ...
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Another application

This bar framework is infinitesimally rigid in the plane.
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Another application

When the purple members are inserted, the strut
framework has a stress where all stresses are -1.


