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Abstract We study the impact of metric constraints on the realizability of planar
graphs. Let G be a subgraph of a planar graph H (where H is the “host” of G). The
graphG is free in H if for every choice of positive lengths for the edges ofG, the host H
has a planar straight-line embedding that realizes these lengths; and G is extrinsically
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filip.moric@epfl.ch

Yoshio Okamoto
okamotoy@uec.ac.jp

Tibor Szabó
szabo@math.fu-berlin.de

1 Massachusetts Institute of Technology, Cambridge, MA, USA
2 Cornell University, Ithaca, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-015-9704-z&domain=pdf


260 Discrete Comput Geom (2015) 54:259–289

free in H if all constraints on the edge lengths of G depend on G only, irrespective of
additional edges of the host H . We characterize the planar graphs G that are free in
every host H , G ⊆ H , and all the planar graphs G that are extrinsically free in every
host H , G ⊆ H . The case of cycles G = Ck provides a new version of the celebrated
carpenter’s rule problem. Even though cycles Ck , k ≥ 4, are not extrinsically free in
all triangulations, it turns out that “nondegenerate” edge lengths are always realizable,
where the edge lengths are considered degenerate if the cycle can be flattened (into a
line) in two different ways. Separating triangles, and separating cycles in general, play
an important role in our arguments. We show that every star is free in a 4-connected
triangulation (which has no separating triangle).

Keywords Geometric graph · Graph embedding · Bar-and-joint framework

1 Introduction

Representing graphs in Euclidean space such that some or all of the edges have given
lengths has a rich history. For example, the rigidity theory of bar-and-joint frame-
works, motivated by applications in mechanics, studies edge lengths that guarantee a
unique (or locally unique) representation of a graph. Our primary interest lies in sim-
ple combinatorial conditions that guarantee realizations for all possible edge lengths.
We highlight two well-known results similar to ours: (1) Jackson and Jordán [4,12]
gave a combinatorial characterization of graphs that are generically globally rigid (i.e.,
admit unique realizations for arbitrary generic edge lengths). (2) Connelly et al. [5]
showed that a cycle Ck , k ≥ 3, embedded in the plane can be continuously unfolded
into a convex polygon (i.e., the configuration space of the planar embeddings of Ck is
connected), solving the so-called carpenter’s rule problem.

We consider straight-line embeddings of planar graphs where some of the edges can
have arbitrary lengths. A straight-line embedding (for short, embedding) of a planar
graph is a realization in the plane where the vertices are mapped to distinct points,
and the edges are mapped to line segments between the corresponding vertices such
that any two edges can intersect only at a common endpoint. By Fáry’s theorem [9],
every planar graph admits a straight-line embedding with some edge lengths. How-
ever, it is NP-hard to decide whether a planar graph can be embedded with prescribed
edge lengths [8], even for planar 3-connected graphs with unit edge lengths [3], but
it is decidable in linear time for triangulations [7] and near-triangulations [3]. Find-
ing a straight-line embedding of a graph with prescribed edge lengths involves a fine
interplay between topological, metric, combinatorial, and algebraic constraints. Deter-
mining the impact of each of these constraints is a challenging task. In this paper,
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we characterize the subgraphs for which the metric constraints on the straight-line
embedding remain independent from any topological, combinatorial, and algebraic
constraints. Such subgraphs admit arbitrary positive edge lengths in an appropriate
embedding of the host graph. This motivates the following definition.

Definition 1 Let G = (V, E) be a subgraph of a planar graph H (the host of G). We
say that

• G is free in H when, for every length assignment ! : E → R+, there is a straight-
line embedding of H in which every edge e ∈ E has length !(e);

• G is extrinsically free in H when, for every length assignment ! : E → R+, if G
has a straight-line embedding with edge lengths !(e), e ∈ E , then H also has a
straight-line embedding in which every edge e ∈ E has length !(e).

Intuitively, if G is free in H , then there is no restriction on the edge lengths of G;
and if G is extrinsically free in H , then all constraints on the edge lengths depend
on G alone, rather than the edges in H \ G. Clearly, if G is free in H , then it is also
extrinsically free in H . However, an extrinsically free subgraph G of H need not be
free in H . For example, K3 is not free in any host since the edge lengths have to satisfy
the triangle inequality, but it is an extrinsically free subgraph in K4. It is easily verified
that every subgraph with exactly two edges is free in every host (every pair of lengths
can be attained by a suitable affine transformation); but a triangle K3 is not free in any
host (due to the triangle inequality).

Results We characterize the graphs G that are free as a subgraph of every host H ,
G ⊆ H .

Theorem 1 A planar graph G = (V, E) is free in every planar host H, G ⊆ H, if
and only if G consists of isolated vertices and

• a matching, or
• a forest with at most 3 edges, or
• the disjoint union of two paths, each with 2 edges.

Separating 3- and 4-cycles in triangulations play an important role in our argument.
A star is a graph G = (V, E), where V = {v, u1, . . . , uk} and E = {vu1, . . . , vuk}.
We present the following result for stars in 4-connected triangulations.

Theorem 2 Every star is free in a 4-connected triangulation.

If a graphG is free in H , then it is extrinsically free, as well.We completely classify
graphs G that are extrinsically free in every host H .

Theorem 3 Let G = (V, E) be a planar graph. Then G is extrinsically free in every
host H, G ⊆ H, if and only if G consists of isolated vertices and

• a forest as listed in Theorem 1 (a matching, a forest with at most 3 edges, the
disjoint union of two paths, each with 2 edges), or

• a triangulation, or
• a triangle and one additional edge (either disjoint from or incident to the triangle).
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When G = Ck is a cycle with prescribed edge lengths, the realizability of a host H ,
Ck ⊂ H , leads to a variant of the celebrated carpenter’s rule problem. Even though
cycles on four or more vertices are not extrinsically free, all nonrealizable length
assignments are degenerate in the sense that the cycle Ck , k ≥ 4, decomposes into
four paths of lengths (a, b, a, b) for some a, b ∈ R+. Intuitively, a length assignment
on a cycleCk is degenerate ifCk has two noncongruent embeddings in the line (that is,
in 1-dimensions) with prescribed edge lengths. We show that every host H , Ck ⊂ H ,
is realizable with prescribed edge lengths on Ck , that is, H admits a straight-line
embedding inwhich every edge ofCk has its prescribed length, if the length assignment
of Ck is nondegenerate.

Theorem 4 Let H be a planar graph that contains a cycle C = (V, E). Let ! :
E → R+ be a length assignment such that C has a straight-line embedding with edge
lengths !(e), e ∈ E. If ! is nondegenerate, then H admits a straight-line embedding
in which every edge e ∈ E has length !(e).

Organization. Our negative results (i.e., a planar graph G is not always free) are
confirmed by finding specific hosts H , G ⊆ H , and length assignments that cannot
be realized (Sect. 2). We give a constructive proof that every matching is free in
all planar graphs (Sect. 3). In fact, we prove a slightly stronger statement: the edge
lengths of a matching G can be chosen arbitrarily in every plane graph H with a fixed
combinatorial embedding (that is, the edge lengths and the outer face can be chosen
arbitrarily). The key tools are edge contractions and vertex splits, reminiscent of the
technique of Fáry [9]. Separating triangles pose technical difficulties:we should realize
the host H even if one edge of a separating triangle has to be very short, and an edge
in its interior has to be very long. Similar problems occur when two opposite sides
of a separating 4-cycle are short. We use grid embeddings and affine transformations
to construct embeddings recursively for all separating 3- and 4-cycles (Sect. 3.2). All
other subgraphs listed in Theorem 1 have at most 4 edges. We show directly that they
are free in every planar host (Sect. 4). We extend our methods to stars in 4-connected
triangulations (Sect. 5) and extrinsically free graphs (Sect. 6). In Sect. 7 we show
that for cycles with prescribed edge lengths any host H is realizable if the length
assignment is nondegenerate. We conclude with open problems in Sect. 8.

Related Problems. As noted above, the embeddability problem for planar graphs
with given edge lengths is NP-hard [3,8], but efficiently decidable for near-
triangulations [3,7]. Patrignani [16] also showed that it is NP-hard to decide whether
a straight-line embedding of a subgraph G (i.e., a partial embedding) can be extended
to an embedding of a host H , G ⊂ H . For curvilinear embeddings, this problem is
known as planarity testing for partially embedded graphs (Pep), which is decidable in
polynomial time [2]. Recently, Jelínek et al. [13] gave a combinatorial characterization
for Pep via a list of forbidden substructures. Sauer [17,18] considers similar problems
in the context of structural Ramsey theory of metric embeddings: For an edge labeled
graph G and a setR ⊂ R+ that contains the labels, he derived conditions that ensure
the existence of a metric space M on V (G) that realizes the edge labels as distances
between the endpoints.
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Definitions. A triangulation is an edge-maximal planar graph with n ≥ 3 vertices
and 3n − 6 edges. Every triangulation has well-defined faces where all faces are
triangles, since every triangulation is a 3-connected polyhedral graph for n ≥ 4.
A near-triangulation is a 3-connected planar graph in which all faces are triangles
with at most one exception (which is typically the outer face). A 3-cycle t in a near-
triangulation T is called a separating triangle if the vertices of t form a 3-cut in T . A
triangulation T has no separating triangles if and only if T is 4-connected.

Tools from Graph Drawing. To show that a graph G = (V, E) is free in every host
H , G ⊆ H , we design algorithms that, for every length assignment ! : E → R+,
construct a desired embedding of H . Our algorithms rely on several classic building
blocks developed in the graph drawing community.

By Tutte’s barycenter embedding method [20], every 3-connected planar graph
admits a straight-line embedding in which the outer face is mapped to an arbi-
trarily prescribed convex polygon with the right number of vertices. Hong and
Nagamochi [11] extended this result and proved that every 3-connected planar graph
admits a straight-line embedding in which the outer face is mapped to an arbitrarily
prescribed star-shaped polygon with the right number of vertices.

A grid embedding of a planar graph is an embedding in which the vertices are
mapped to points in some small h×w section of the integer latticeZ2. For an n-vertex
planar graph, the dimensions of the bounding box are h, w ∈ O(n) [6,19], which is
the best possible [10]. The angular resolution of a straight-line embedding of a graph
is the minimum angle subtended by any two adjacent edges. It is easy to see that the
angular resolution of a grid embedding, where h, w ∈ O(n), is"(n−2). Bymodifying
an incremental algorithm by de Fraysseix et al. [6], Kurowski [14] constructed grid
embeddings of n-vertex planar graphs on a 3n × 3

2n section of the integer lattice with
angular resolution at least

√
2
/
3
√
5n ∈ "(1/n). Kurowski’s algorithm embeds an

n-vertex triangulation T with a given face (a, b, c) such that a = (0, 0), b = (3n, 0),
and c = ()3n/2*, )3n/2*). It has the following additional property used in our argu-
ment.When vertex c is deleted from the triangulation T , we are left with a 2-connected
graph with an outer face (a = u1, u2, . . . , uk = b). In Kurowski’s embedding, as well
as in [6], the path (a = u1, u2, . . . , uk = b) is x-monotone and the slope of every
edge in this path is in the range (−1, 1).

2 Subgraphs with Constrained Edge Lengths

It is clear that a triangle is not free, since the edge lengths have to satisfy the triangle
inequality in every embedding (they cannot be prescribed arbitrarily). This simple
observation extends to all cycles.

Observation 1 No cycle is free in any planar graph.

Proof Let C be a cycle with k ≥ 3 edges in a planar graph H . If the first k − 1 edges
of C have unit length, then the length of the k-th edge is less than k − 1 by repeated
applications of the triangle inequality. +,
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Fig. 1 Triangulations containing a bold subgraph G with edges ab, bc, e1, and e2. In every embedding,
one of e1 and e2 lies in the interior of triangle abc, and so min{!(e1), !(e2)} < !(ab)+ !(bc). Left G has
four edges, two of which are adjacent. Middle G is a star. Right G is a path

Observation 2 Let T be a triangulation with a separating triangle abc that separates
edges e1 and e2. Then the subgraph G with edge set E = {ab, bc, e1, e2} is not free
in T . (See Fig. 1.)

Proof Since abc separates e1 and e2, in every embedding of T , one of e1 and e2 lies
in the interior of abc. If ab and bc have unit length, then all edges of abc are shorter
than 2 in every embedding (by the triangle inequality), and hence the length of e1 or
e2 has to be less than 2. +,

Based on Observations 1 and 2, we can show that most planar graphs G are not
free in some appropriate triangulations T , G ⊆ T .

Theorem 5 Let G = (V, E) be a forest with at least 4 edges, at least two of which
are adjacent, such that G is not the disjoint union of two paths P2. Then there is a
triangulation T that contains G as a subgraph and G is not free in T .

Proof We shall augment G to a triangulation T such that Observation 2 is applicable.
Specifically, we find four edges, ab, bc, e1, e2 ∈ E , such that either e1 and e2 are in
distinct connected components of G or the (unique) path from e1 to e2 passes through
a vertex in {a, b, c}. If we find four such edges, then G can be triangulated such that
abc is a triangle (by adding edge ac), and it separates edges e1 and e2. See Fig. 1 for
examples. We distinguish several cases based on the maximum degree #(G) of G.

Case 1: #(G) ≥ 4. Let b be a vertex of degree at least 4 in G, with incident edges ab,
bc, e1, and e2. Then e1 and e2 are in the same component of G, and the unique path
between them contains b.

Case 2: #(G) = 3. Let b be a vertex of degree 3, and let e1 be an edge not incident to
b. If e1 and b are in the same connected component of G, then let ba be the first edge
of the (unique) path from b to e1; otherwise let ba be an arbitrary edge incident to b.
Denote the other two edges incident to b by bc and e2. This ensures that if e1 and e2
are in the same component of G, the unique path between them contains b.

Case 3: #(G) = 2. If G contains a path with four edges, then let the edges of the
path be (e1, ab, bc, e2). Now the (unique) path between e1 and e2 clearly contains a,
b, and c, so we are done in this case. If a maximal path in G has three edges, then let
these edges be (ab, bc, e1), and pick e2 arbitrarily from another component. Finally,
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Fig. 2 A separating
quadrilateral Q = (b, c, d, e)

a

b

d

e
f

c

if the maximal path in G has two edges, then let these edges be (ab, bc), and pick e1
and e2 from two distinct components (this is possible since G is not the edge-disjoint
union of two paths P2). +,

Remark.Not only separating triangles impose constraints on the edge lengths:Consider
the 4-connected triangulation T in Fig. 2, with a bold path (a, b, c, d, e, f ). Note that
Q = (b, c, d, e) is a separating quadrilateral: In every embedding of T , either a or
f lies in the interior of the polygon Q. In every embedding of T , the diameter of Q is
less than !(bc)+ !(cd)+ !(de). Hence, min{!(ab), !(e f )} < !(bc)+ !(cd)+ !(de),
which is a nontrivial constraint for the edge lengths in G.

3 Every Matching is Free

In this section, we show that every matching M = (V, E) in every planar graph H is
free. Given an arbitrary length assignment for a matching M of H , we embed H with
the specified edge lengths on M . Our algorithm is based on a simple approach, which
works well when M is “well-separated” (defined below). In this case, we contract the
edges in M to obtain a triangulation Ĥ , embed Ĥ on a grid cZ2 for a sufficiently large
c > 0, and then expand the edges of M to the prescribed lengths. If c > 0 is large
enough, then the last step is only a small “perturbation” of Ĥ , and we obtain a valid
embedding of H with prescribed edge lengths. If, however, some edges inM appear in
separating 3- or 4-cycles, then a significantly more involved machinery is necessary.

3.1 Edge Contraction and Vertex Splitting Operations

A near-triangulation is a 3-connected planar graph in which all faces are triangles
with at most one exception (which is typically considered to be the outer face). Let M
be a matching in a planar graph H with a length assignment ! : M → R+. We may
assume, by augmenting H if necessary, that H is a near-triangulation. Let D be an
embedding of H where all the bounded faces are triangles. We shall construct a new
embedding of H with the same vertices on the outer face where every edge e ∈ M
has length !(e).

Edge contraction is an operation for a graphG = (V, E) and an edge e = v1v2 ∈ E :
Delete v1 and v2 and all incident edges, add a new vertex v̂e, and for every vertex
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Fig. 3 Left An edge e = v1v2 of a near-triangulation incident to the shaded triangles v1v2w1 and v1v2w2.
Middle e is contracted to a vertex v̂e . The triangular faces incident to v̂e form a star-shaped polygon. Right
We position edge e such that it contains v̂e , and lies in the shaded double wedge, and in the kernel of the
star-shaped polygon centered at v̂e . For simplicity, we consider only part of the double wedge, lying in a
rectangle Re of diameter 2ε

u ∈ V \ {v1, v2} adjacent to v1 or v2, add a new edge uv̂e. Suppose G is a near-
triangulation and v1v2 does not belong to a separating triangle. Then v1v2 is incident
to at most two triangle faces, say v1v2w1 and v1v2w2, and so there are at most two
vertices adjacent to both v1 and v2. The cyclic sequence of neighbors of v̂e is composed
of the sequence of neighbors of v1 from w1 to w2 and that of v2 from w2 to w1 (in
counterclockwise order). The inverse of an edge contraction is a vertex split operation
that replaces a vertex v̂e by an edge e = v1v2. See Fig. 3.

Suppose that we are given an embedding of a triangulation, and we would like to
split an interior vertex v̂e into an edge e = v1v2 such that (1) all other vertices remain
at the same location; and (2) the common neighbors of v1 and v2 arew1 andw2 (which
are neighbors of v̂e). Note that the bounded triangles incident to v̂e form a star-shaped
polygon, whose kernel contains v̂e in the interior. We position e = v1v2 in the kernel
of this star-shaped polygon such that the line segment e contains the point v̂e, and
verticesw1 andw2 are on opposite sides of the supporting line of e. Therefore, emust
lie in the double wedge between the supporting lines of v̂ew1 and v̂ew2 (Fig. 3, right).
In Sect. 3.2, we position e = v1v2 such that its midpoint is v̂e, and in Sect. 4, we place
either v1 or v2 at v̂e and place the other vertex in the appropriate wedge incident to v̂e.

3.2 A Matching with Given Edge Lengths

We now recursively prove that every matching in every planar graph is free. In one
step of the recursion, we construct an embedding of a subgraph in the interior of a
separating triangle (resp., a separating 4-cycle), where the length of one edge is given
(resp., the lengths of two edges are given). The work done for a separating triangle or
4-cycle is summarized in the following lemma.

Lemma 6 Let H = (V, E) be a near-triangulation and let M ⊂ E be a matching
with a length assignment ! : M → R+.

(a) Suppose that a 3-cycle (v1, v2, v3), where v1v2 ∈ M, is a face of H. There is an
L > 0 such that for every triangle abc with side length |ab| = !(v1v2), |bc| > L,
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and |ca| > L, there is an embedding of H with prescribed edge lengths where
the outer face is abc and v1, v2 and v3 are mapped to a, b and c, respectively.

(b) Suppose that a 4-cycle (v1, v2, v3, v4), where v1v2 ∈ M and v3v4 ∈ M, is a face
of H. There is an L > 0 such that for every convex quadrilateral abcd with side
lengths |ab| = !(v1v2), |cd| = !(v3v4), |ac| > L, there is an embedding of H
with prescribed edge lengths where the outer face is abcd and v1, v2, v3, and v4
are mapped to a, b, c, and d, respectively.

Proof We proceed by induction on the size of the matching M . We may assume, by
applying an appropriate scaling, that min{!(e) : e ∈ M} = 1.

(a) Consider an embedding D of H where v1v2 ∈ M is an edge of the outer face, and
let M ′ = M \ {v1v2}. Let C1, . . . ,Ck be the maximal separating triangles that include
some edge from M ′, and the chordless separating 4-cycles that include two edges from
M ′ (more precisely, we consider all such separating triangles and separating chordless
4-cycles and among them we choose those that are not contained in the interior of
any other such separating triangle or chordless 4-cycle). Let H0 be the subgraph of H
obtained by deleting all vertices and incident edges lying in the interiors of the cycles
C1, . . . ,Ck . Let M0 ⊆ M ′ denote the subset of edges of M ′ contained in H0. Let

λ0 = max{!(e) : e ∈ M0}. (1)

For i = 1, . . . , k, let Hi denote the subgraph of H that consists of the cycle Ci and
all vertices and edges that lie in Ci in the embedding D; and let Mi ⊂ M ′ be the
subset of edges of M ′ in Hi . Applying induction for Hi and Mi , there is an Li > 0
such that Hi can be embedded with the prescribed lengths for the edges of Mi in
every triangle (resp., convex quadrilateral) with two edges of lengths at least Li . Let
L ′ = max{Li : i = 1, . . . , k}.

By construction, M0 is a well-separated matching in H0 (recall that v1v2 is not in
M0). Successively contract every edge e = uv ∈ M0 to a vertex v̂e. We obtain a planar
graph Ĥ0 = (V̂0, Ê0) on at most n (and at least 3) vertices.

Let D̂0 be a grid embedding of Ĥ0 constructed by the algorithm of Kurowski [14],
where the outer face is a trianglewith vertices (0, 0), (3n−7, 0), and () 3n−7

2 *, ) 3n−7
2 *);

the only horizontal edge is the base of the outer triangle; and the angular resolution
of D̂0 is & ≥

√
2
/
3
√
5n ∈ "(1/n). The minimum edge length is 1, since all vertices

have integer coordinates. There is an ε ∈ "(1/n) such that if we move each vertex
of D̂0 by at most ε, then the directions of the edges change by an angle less than &/2,
and thus we retain an embedding. We could split each vertex v̂e, e ∈ M , into an edge e
that lies in the ε-disk centered at v̂e, and in the double wedge determined by the edges
between v̂e and the common neighbors of the endpoints of e (Fig. 3, right). However,
we shall split the vertices v̂e, e ∈ M , only after applying the affine transformation α

that maps the outer triangle of D̂0 to a triangle abc such that α(v1) = a, α(v2) = b
and α(v3) = c. (The affine transformation α would distort the prescribed edge lengths
if we split the vertices now.)

In the grid embedding D̂0, the central angle of such a double wedge is at least
& ∈ "(1/n), i.e., the angular resolution of D̂0. The boundary of the double wedge
intersects the boundary of the ε-disk in four vertices of a rectangle that we denote
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by Re. Note that the center of Re is v̂e, and its diameter is 2ε ∈ "(1/n). Hence, the
aspect ratio of each Re, e ∈ M0, is at least tan(&/2) ∈ "(1/n), and so the width of
Re is "(1/n2).

We show that if L = max{10n(L ′ +2λ0+|ab|), ξn3λ0}, for some constant ξ > 0,
then the affine transformation α defined above satisfies the following two conditions—
the first condition allows splitting the vertices v̂e, e ∈ M , into edges of desired lengths,
and the second one ensures that the existing edges remain sufficiently long after the
vertex splits:

(i) every rectangle Re, e ∈ M0, is mapped to a parallelogram α(Re) of diameter at
least λ0 (defined in (1));

(ii) every nonhorizontal edge in D̂0 is mapped to a segment of length at least L ′+2λ0.

For (i), note that α maps a grid triangle of diameter 3n − 7 < 3n into triangle abc
of diameter more than L . Hence, it stretches every vector parallel to the preimage of
the diameter of abc by a factor of at least L/(3n). Since the width of a rectangle Re,
e ∈ M0, is "(1/n2), the diameter of α(Re) is at least "(L/n3). If L ∈ "(n3λ0) is
sufficiently large, then the diameter of every α(Re) is at least λ0.

For (ii), we may assume w.l.o.g. that the triangle abc is positioned such that a =
(0, 0) is the origin, b = (|ab|, 0) is on the positive x-axis, and c is above the x-
axis (i.e., it has a positive y-coordinate). Then, the affine transformation α is a linear
transformation with an upper triangular matrix:

α
([ x

y

])
=

[ A B
0 C

] [ x
y

]
=

[ Ax + By
Cy

]
,

where A,C > 0, and by symmetry we may assume B ≥ 0. We show that if L ≥
10n(L ′ + 2λ0 + |ab|), then α maps every nonhorizontal edge of D̂0 to a segment of
length at least L ′ + 2λ0.

A nonhorizontal edge in the grid embedding D̂0, directed upward, is an integer
vector (x, y) with x ∈ [−3n + 7, 3n − 7] and y ∈ [1, 3n−7

2 ]. It is enough to show
that (Ax + By)2 + (Cy)2 > (L ′ + 2λ0)2 for x ∈ [−3n, 3n] and y ∈ [1, 3

2n]. Since α

maps the right corner of the outer grid triangle (3n − 7, 0) to b = (|ab|, 0), we have
A = |ab|/(3n− 7). Since |ac| > L , where a = (0, 0) and c = α

(
() 3n−7

2 *, ) 3n−7
2 *)

)
,

we have

(
A · 3n−7

2 + B · 3n−7
2

)2 +
(
C · 3n−7

2

)2 = |ac|2 > L2 ≥ 100n2(L ′ + 2λ0 + |ab|)2.
(2)

We distinguish two cases based on which term is dominant in the left-hand side of (2):

Case 1: (C · 3n−7
2 )2 ≥ 50n2(L ′ + 2λ0 + |ab|)2. In this case, we have C2 >

(L ′ + 2λ0)2, and so (Cy)2 > (L ′ + 2λ0)2 since y ≥ 1.

Case 2: (A · 3n−7
2 + B · 3n−7

2 )2 > 50n2(L ′ + 2λ0 + |ab|)2. In this case, we have
A · 3n−7

2 + B · 3n−7
2 > 7n(L ′ + 2λ0 + |ab|). Combined with A = |ab|/(3n − 7),

this gives B > 4(L ′ + 2λ0 + |ab|). It follows that (Ax + By)2 > (L ′ + 2λ0)2, as
claimed, since |Ax | ≤ |ab| and y ≥ 1.
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We can now reverse the edge contraction operations, that is, split each vertex v̂e,
e ∈ M0, into an edge e of length !(e)within the parallelogram α(Re). By (i), we obtain
an embedding of H0. Each cycle Ci , i = 1, . . . , k, is a triangle (resp., quadrilateral)
where the edges of M0 have prescribed lengths, and any other edge has length at least
L ′ = max{Li : i = 1, . . . , k} by (ii). By induction, we can insert an embedding of Hi
with prescribed lengths on the matching Mi into the embedding of the cycle Ci , for
i = 1, . . . , k. We obtain the required embedding of H .

(b) The proof for the case when the outer face of H is a 4-cycle follows the same
strategy as for (a), with some additional twists.

Suppose we are given a convex quadrilateral abcd as described in the statement of
the lemma. Denote by q the intersection of its diagonals. We show that (|aq| and |bq|
are both at least L/3) or (|cq| and |dq| are both at least L/3) if L > 9max(|ab|, |cd|).
Indeed, we have |ac| > |bc| − |ab| > 8

9 L from the triangle inequality for abc.
Since |ac| = |aq| + |cq|, we have |aq| > 4

9 L or |cq| > 4
9 L . If |aq| > 4

9 L , then
|bq| > |aq| − |ab| > 1

3 L from the triangle inequality for abq; otherwise |dq| >
|cq| − |cd| > 1

3 L . We may assume without loss of generality that |aq| > L/3 and
|bq| > L/3. In the remainder of the proof, we embed H such that almost all vertices
lie in the triangle abq , and the vertices v1, v2, v3, and v4 are mapped to a, b, c, and d,
respectively.

Similarly to (a), we define H0 as the graph obtained by deleting all vertices and
incident edges lying in the interior of maximal separating triangles or chordless
4-cycles, containing an edge from M \{v1v2}. Define L ′ as before, by using the induc-
tive hypothesis in the separating cycles. Contract successively all remaining edges of
M \ {v1v2} that are in H0 (including edge v3v4) to obtain a graph Ĥ0. Denote by v̂3
the vertex of Ĥ0 corresponding to v3v4 ∈ M , and consider an embedding of Ĥ0 with
the outer face v1v2v̂3.

We again use the embedding D̂0 of Kurowski [14] such that v1, v2, and v̂3 are
mapped to (0, 0), (3n−7, 0), and () 3n−7

2 *, ) 3n−7
2 *), respectively. We first split vertex

v̂3 into two vertices v3 and v4, exploiting the fact that v̂3 is a boundary vertex in D̂0
and some special properties of the embedding in [14] (described below), and then split
all other contracted vertices of Ĥ0 similarly to (a).

Denote the neighbors of v̂3 in D̂0 in counterclockwise order by v1 = u0, u1, . . . ,
uk = v2 (Fig. 4, left). The grid embedding in [14] has the following property (men-
tioned in Section 1): the path u0, . . . , uk is x-monotone and the slope of every edge is
in the range (−1, 1). Let p = () 3n−7

2 *, 2) 3n−7
2 *), and note that the slope of every line

between p and u1, . . . , uk is outside of the range (−2, 2). Similarly, if we place the
points v3 (resp., v4) on the ray emitted by p in direction (1, 2) (resp., (−1, 2)), then
the slope of every line between v3 (resp., v4) and u1, . . . , uk is outside of (−2, 2).

We can now split vertex v̂3 as follows. Refer to Fig. 4. Let α be the affine trans-
formation that maps the triangle v1v2 p to abq such that α(v1) = a, α(v2) = b, and
α(p) = q. Since the diagonals ac and bd intersect at q, the segments v1α−1(c) and
v2α

−1(d) intersect at p. We split vertex v̂3 into v3 = α−1(c) and v4 = α−1(d). By
the above observation, the edges incident to v3 and v4 remain above the x-monotone
path u0, . . . , uk . (Note, however, that the angles between edges incident with v3 or v4
may be arbitrarily small.)
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1 = u0 uk = 2

3

p

3

4

u1

3

p

3

4

u1
1 = u0 uk = 2

Fig. 4 Left The embedding D̂0 into a triangle v1v2v̂3, and the x-monotone path v1 = u0, u1, . . . , uk
formed by the neighbors of V̂3. A point p lies above v̂3, and the rays emitted by p in directions (1, 2) and
(−1, 2). Right Vertex v̂3 is split into v3 and v4 on the two rays emitted by p

With a very similar computation as for (a), we conclude that for a large enough
L ∈ "(L ′ +λ0)we can guarantee the same two properties we needed in (a), that is, α
maps every small rectangle Re to a parallelogram α(Re)whose diameter is at least λ0,
and every nonhorizontal edge to a segment of length at least L ′ + 2λ0. Hence, every
remaining contracted vertex ve in D̂0 can be split within the parallelogram α(Re) as
in (a). To finish the construction, it remains to apply the inductive hypothesis to fill in
the missing parts in the maximal separating triangles or 4-cycles. +,

We are now ready to prove the main result of this section.

Theorem 7 Every matching in a planar graph is free.

Proof Let H = (V, E) be a planar graph, and let M ⊆ E be a matching with a
length assignment ! : M → R+. We may assume, by augmenting H with new edges
if necessary, that H is a triangulation. Consider an embedding of H such that an edge
e ∈ M is on the outer face. Now Lemma 6 completes the proof. +,

4 Graphs with Three or Four Edges

By Theorems 5 and 7, a graph G with at least five edges is free in every host H if and
only if G is a matching. For graphs with four edges, the situation is also clear except
for the case of the disjoint union of two paths of two edges each. In this section, we
show that every forest with three edges, as well as the disjoint union of two paths of
length two, is always free.

We show (Lemma 9) that it is enough to consider hosts H in which G is a spanning
subgraph, that is, V (G) = V (H). For a planar graph G = (V, E), the triangulation
of G is an edge-maximal planar graph T , G ⊂ T , on the vertex set V . (The following
lemma holds for every graph G, including matchings. However, it would not simplify
the argument in that case.)
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Lemma 8 If G is a subgraph of a triangulation H with 0 < |V (G)| < |V (H)|, then
there is an edge in H between a vertex in V (H) and a vertex in V (H) − V (G) that
does not belong to any separating triangle of H.

Proof Let V = V (G) denote the vertex set of G andU = V (H)\V . Let E(U, V ) be
the set of edges in H betweenU and V . Since H is connected, E(U, V ) is nonempty.
Consider an arbitrary embedding of H (with arbitrary edge lengths). For every edge
uv ∈ E(U, V ), let k(uv) denote the maximum number of vertices of H that lie in the
interior of a triangle (u, v, w) of H , where w ∈ V (H). Let uv ∈ E(U, V ) be an edge
that minimizes k(uv). If k(uv) = 0, then uv does not belong to any separating triangle,
as claimed. For the sake of contradiction, suppose k(uv) > 0, and let (u, v, w) be a
triangle in H that contains exactly k(uv) vertices of H . Since H is a triangulation,
there is a path between u and v via the interior of (u, v, w). Since u ∈ U and v ∈ V ,
one edge of this path must be in E(U, V ), say u′v′ ∈ E(U, V ). Note that any triangle
(u′, v′, w′) of H lies inside the triangle (u, v, w), and hence contains strictly fewer
vertices than (u, v, w). Hence k(u′v′) < k(u, v) contradicting the choice of edge uv.

+,

Lemma 9 If a planar graph G is (extrinsically) free in every triangulation of G, then
G is (extrinsically) free in every planar host H, G ⊆ H.

Proof Let G = (V, E) be a planar graph with a length assignment ! : E → R+. It
is enough to prove that G is (extrinsically) free in every triangulation H , G ⊂ H . We
proceed by induction on n′ = |V (H)| − |V (G)|, the number of extra vertices in the
host H . If n′ = 0, then H is a triangulation of G, and G is free in H by assumption.
Consider a triangulation H , G ⊂ H , and assume that the claim holds for all smaller
triangulations H ′, G ⊆ H ′.

By Lemma 8, there is an edge e = uv in H between v ∈ V (G) and u ∈ V (H) −
V (G) that does not belong to any separating triangle. Contract e into a vertex v̂e to
obtain a triangulation H ′,G ⊂ H ′. By induction, H ′ admits a straight-line embedding
in which the edges of G have prescribed lengths. Since e is not part of a separating
triangle of H ′, we can split vertex v̂e into u and v such that v is located at point v̂e, and
u lies in a sufficiently small neighborhood of v̂e (refer to Fig. 3). Thus, we obtained a
straight-line embedding of H in which edges of G have prescribed lengths. +,

The next theorem finishes the characterization of free graphs.

Theorem 10 Let G be a subgraph of a planar graph H, such that G is

(1) the star with three edges, or
(2) the path with three edges, or
(3) the disjoint union of a path with two edges and a path with one edge, or
(4) the disjoint union of two paths with two edges each.

Then G is free in H.

Proof By Lemma 9, it is enough to prove the theorem in the case whenG is a spanning
subgraph of H . We can also assume that H is a triangulation.
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Fig. 5 a Embedding of a star with three leaves. b Embedding of a path of three edges. c Graph H ′ and
regions that are used for splitting v̂e . dGraph H ′ and its spanning subgraph G whose edges have prescribed
lengths

(1) If G is the star with three edges, then H is K4. Embed the center of the star at the
origin. Place the three leaves on three rotationally symmetric rays emitted by the
origin, at prescribed lengths from the origin (Fig. 5a). The remaining three edges
are embedded as straight line segments on the convex hull of the three leaves.

(2) Let G be the path (v1, v2, v3, v4) with !(v1v2) ≥ !(v3v4). Embed v2 at the
origin, place v1 and v3 on the positive x- and y-axis, respectively, at prescribed
distance fromv2.Note that# = conv(v1, v2, v3) is a right trianglewhosediameter
(hypotenuse) is larger than the other two sides (Fig. 5a). Thus we can embed v4
at a point in the interior of # at distance !(v3v4) from v3. Since the four vertices
have a triangular convex hull, H = K4 embeds as a straight-line graph.

(3) Suppose that G = (V, E) is the disjoint union of path (v1, v2, v3) and (v4, v5).
Since H has five vertices, there exists at most one separating triangle in H . Thus,
the path ofG with two edges contains an edge, say e = v1v2, that does not belong
to any separating triangle. Contract edge e to a vertex v̂e, obtaining a triangulation
H ′ = K4 on four vertices, and a perfect matchingG ′ ⊂ H ′. Let us embed the two
edges of G ′ with prescribed lengths such that one lies on the x-axis, the other lies
on the orthogonal bisector of the first edge at distance !(e) from the x-axis. This
defines a straight-line embedding of H ′, as well. We obtain a desired embedding
of H by splitting vertex v̂e into edge e such that v2 is embedded at point v̂e
and v1 is mapped to a point in the kernel of the appropriate star-shaped polygon
(c.f. Fig. 3). By the choice of our embedding of H ′, the diameter of this kernel
is more than !(e), and we can split v̂e without introducing any edge crossing
(Fig. 5c)

(4) Assume that G is the disjoint union of two paths P1 and P2, each with two edges.
Since G is a spanning subgraph of H , neither path can span a separating triangle.
Moreover, since there exist at most two separating triangles in H , one of the paths,
say P1, contains an edge e that is not part of a separating triangle. Contract edge
e to v̂e, obtaining a triangulation H ′ and a subgraph G ′. Similarly to the case (3),
embed H ′ respecting the lengths of all the edges ofG ′ such that all edges between
the two components of G ′ have length at least !(e). By the choice of our drawing
of H ′, the kernel of the appropriate star-shaped polygon has diameter at least
!(e). Therefore, we can split e into two vertices such that the middle vertex of
P1 remains at v̂e, and the endpoint of P1 is embedded at distance !(e) from v̂e
(Fig. 5d). +,
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5 Stars are Free in 4-Connected Triangulations

In this section, we prove Theorem 2.

Theorem 2 Every star is free in a 4-connected triangulation.

Proof Let T = (V, E) be a 4-connected triangulation. Let S ⊂ E be a star centered
at v0 ∈ V with k ≥ 3 edges S = {v0v1, . . . , v0vk} labeled cyclically around v0. Let
! : S → R+ be a length assignment. We embed T such that every edge e ∈ S has
length !(e). Refer to Fig. 6 (upper-left).

Since T is a triangulation, every two consecutive neighbors of v0 are adjacent. Non-
consecutive neighbors of v0 are nonadjacent; otherwise they would create a separating
triangle. In other words, the vertices {v1, . . . , vk} induce a cycle C = (v1, . . . , vk) in
T . Consider an embedding D of T in which v0 is an interior vertex.

Note that the outer face is a triangle, since T is a triangulation. If two neighbors of
v0 are incident on the outer triangle, they must be consecutive neighbors of v0, since
T is 4-connected. Therefore, if v0 has 3 neighbors on the outer face, then T = K4,
and it obviously has an embedding with prescribed edge lengths. We can distinguish
two cases:

Case 1: at most one neighbor of v0 is incident to the outer face in D. Refer to
Fig. 6. Then every edge of C is an interior edge of D. The two triangles adjacent to
every edge vivi+1 form a quadrilateral incident to v0 and some other vertex, which
is nonadjacent to v0 (otherwise there would be a separating triangle in T ). Consider
all 4-cycles incident to v0 and to a vertex nonadjacent to v0. Such a cycle is called
maximal if it is not contained in any other such 4-cycle. Let C1,C2, . . . ,Cm be a
collection of maximal 4-cycles, each incident to v0 and to some nonadjacent vertex,
in counterclockwise order around v0. Denote by ui , i = 1, . . . ,m, the vertex in Ci
that is not adjacent to v0. It is clear that every triangle incident to v0 is contained in
one of the cycles Ci , every cycle Ci passes through exactly two edges of the star H ,
and the number of cycles is at least m ≥ 2. For i = 1, . . . ,m, the consecutive cycles
Ci and Ci+1 (with m + 1 = 1) share exactly one edge, by their maximality, which is
denoted by v0vκ(i).

We construct a triangulation T̂ = (V̂ , Ê) in two steps: First delete all vertices and
incident edges in the interiors of the cycles C1, . . . ,Cm (Fig. 6, upper-right) and then
successively contract the remaining edges v0vκ(1), . . . , v0vκ(m) of H (Fig. 6, lower-
left). The vertices v0, v1, . . . , vk merge into a single vertex v̂0 in T̂ , and the cycles Ci
collapse into distinct edges incident to v̂0.

Consider an embedding D̂ of T̂ in which v̂0 is an interior vertex. The triangles
incident to v̂0 form a star-shaped polygon P , whose vertices include u1, . . . , um , and
vertex v̂0 lies in the interior of the kernel of P . There is an ε > 0 such that the ε-
neighborhood of v̂0 also lies in the kernel of P . We may assume (by scaling) that
ε = max{!(e) : e ∈ M}.

Embed the star center v0 at v̂0, and for j = 1, . . . ,m, embed vertex vκ( j) at the point
on the segment v0u j at distance !(v0vκ( j)) from the center (Fig. 6, lower-right). Hence
each cycle C j = (v0, vκ( j−1), u j , vκ( j)) is embedded in (weakly) convex position,
where edges v0vκ( j) and vκ( j)u j are collinear.
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Fig. 6 Upper-left A star centered at v0 in a 4-connected triangulation. The maximal 4-cycles C1, . . . ,C4
incident to v0 and to some nonadjacent vertex are defined by vertices u1, . . . , u4. Upper-right The graph
obtained after deleting all vertices and incident edges in the interior of the cycles C1, . . . ,C4. Lower-left
The remaining edges of the star are contracted to v̂0. The cyclesC1, . . .C4 collapse to bold edges. The faces
incident to v̂0 form a star-shaped polygon, whose kernel contains an ε-neighborhood of v̂0. Lower-Right
v0 is embedded at v̂0, and vertices vκ( j) of cycles C j are embedded on the segment v̂0u j for j = 1, . . . , 4
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Fig. 7 Left Vertices vi , i = 2, . . . , 6, are successively embedded in the triangles v0vi−1u1. Right Triangle
v0v1v2 is embedded such that v0v1 and v0v2 are almost collinear; then vi , i = 3, . . . , k, are successively
embedded in the triangles v0vi−1c

For j = 1, . . . ,m, the vertices vκ( j)+1, . . . , vκ( j+1)−1 should lie in the interior
of the triangle # j = v0u jvκ( j+1). Embed successively vκ( j)+1, . . . , vκ( j+1)−1 at the
prescribed distance from the center v0 in the sequence of nested triangles v0u jvi−1
(Fig. 7, left). As a result, the path (vκ( j), . . . , vκ( j+1)) partitions the triangle # j into
two star-shaped polygons, with star centers v0 and u j , respectively. All remaining
vertices in the interior of C j can be embedded in the latter star-shaped polygon by the
Hong–Nagamochi theorem [11].
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Case 2: exactly two neighbors of v0 are on the outer triangle. Without loss of
generality the outer face of D is the triangle v1v2c. Refer to Fig. 7 (right). Embed
triangle v0v1v2 such that v0v1 and v0v2 have prescribed edge lengths, and v1v2
has length !(v0v1) + !(v0v2) − ε for a small ε > 0. Embed vertex c at distance
2max{!(v0vi ) : 1 ≤ i ≤ k} from v0 such that the line v0c is orthogonal to v1v2.

Embed successively v3, . . . , vk in the sequence of nested triangles v0vi−1c. Then
the path (v2, v3 . . . , vm, v1)partitions the trianglev1v2c into two star-shapedpolygons,
with star centers v0 and c, respectively. All remaining vertices in the interior of T can
be embedded in the latter star-shaped polygon by the Hong–Nagamochi theorem [11].

+,

6 Extrinsically Free Subgraphs

In this section, we prove Theorem 3. A forest G = (V, E) has a straight-line embed-
ding with every length assignment ! : E → R+, that is, it has no intrinsic constraints
on the edge lengths. Theorems 5 and 7 classify all forests G that are extrinsically free
in every host H . It remains to classify all planar graphs G that contain cycles, except
for the cases thatG itself is a cycle with k ≥ 4 vertices. Our positive results are limited
to two types of graphs.

Lemma 11 A subgraph G of a planar graph H is extrinsically free if G is

(1) a triangulation, or
(2) a triangle and one additional edge (either disjoint fromor incident to the triangle).

Proof Wemay assume that H is a triangulation, by augmenting H with dummy edges
if necessary.

(1) Let G = (V, E) be a triangulation with a length assignment ! : E → R+ such
that G has an embedding D0 with edge length !(e), e ∈ E , and let D1 be an
arbitrary embedding of H . Since every triangulation has a unique combinatorial
embedding, D0 is combinatorially equivalent to the restriction of D1 to G. Par-
tition the vertices into the vertex sets of the connected components of H \ G,
each lying in a face of G. By Tutte’s barycenter method [20], we can embed each
vertex class within the corresponding triangular face of G0.

(2) Let abc and e be a triangle and an edge in G. Consider an embedding of H
such that ab is an edge of the outer face and e lies outside of abc. An argument
analogous to Lemma 6(1) shows that H has an embedding such that the edges of
the triangle abc are mapped to a given triangle and in the exterior of that triangle
edge e has prescribed length. (Recall that in Lemma 6(1), the outer face was
mapped to a given triangle such that disjoint edges in the interior of the triangle
had prescribed lengths.) +,

In the remainder of this section,we show that no other planar graphG is extrinsically
free in all hosts H if G contains a cycle. We start by observing that it is enough to
consider graphs with at most two components.

Observation 3 Let G = (V, E) be extrinsically free in every host H, G ⊂ H. If G
contains a cycle, then G has at most two connected components.
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Fig. 8 Left Embedding D0 of G, where path P1 separates P2 from P3. Right Embedding D1 of G where
path P1 lies on the x-axis, and P2 ∪ P3 lies in an ε-neighborhood of the parallelogram ab1cd1

Proof Suppose to the contrary thatG has at least three connected components, denoted
by G1, G2, and G3. Assume, without loss of generality, that G1 contains a cycle C .
Augment G to a triangulation in which C is a separating cycle, separating G2 and G3.
Let ! : E → R+ be a length assignment that assigns a total length of 1 to the edges of
C , and length at least 1 to every edge of G2 and G3, respectively. In every embedding
of H , one of G2 and G3 lies in the interior of the simple polygon C ; however, every
edge in G2 and G3 is longer than the diameter of C . Hence H cannot be embedded
with the prescribed edge lengths, and so G is not extrinsically free. +,

The following technical lemma is the key tool for treating the remaining cases
except for when G is a cycle.

Lemma 12 Let G = (V, E) be a planar graph such that two vertices a, c ∈ V are
connected by three independent paths P1, P2, and P3; the paths P2 and P3 have some
interior vertices; and the interior vertices of P2 and P3 are in distinct components of
G − P1. Then G is not extrinsically free in some host H, G ⊂ H.

Proof We may assume that H is a triangulation, by augmenting H with dummy
edges if necessary. Furthermore, we may also assume that P1, P2, and P3 are three
independent paths with the above properties that have the minimum total number
of vertices in G. We start with a brief overview of the proof: We shall describe an
embedding D1 of G; then define H = (V, E ∪ {uv}) by augmenting G with a single
new edge uv (to be determined), and finally show that no embedding of G with the
same edge lengths as in D1 can be augmented to an embedding of H .

Refer to Fig. 8 (left). Denote by ac1 the edge of P1 incident to a, with pos-
sibly c1 = c. Denote by ab1 and cb2 the edges of P2 incident to its endpoints
(possibly b1 = b2); and by ad1 and cd2 the edges of P3 incident to its endpoints
(possibly d1 = d2).

Consider an embedding D0 of G such that P1 lies inside the cycle P2 ∪ P3. The
vertices ofG that are incident to none of the three paths P1, P2, P3 can be partitioned as
follows: Let V−

b and V−
d denote the vertices lying in the interior of cycles P1 ∪ P2 and

P1 ∪ P3, respectively. The vertices in the exterior of cycle P2 ∪ P3 can be partitioned
into two sets, since G contains no path between interior vertices of P2 and P3: Let V+

b
and V+

d denote the vertices lying in the exterior of cycle P2 ∪ P3 and joined with P2
or P3, respectively, by a path in G − P1.
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We now construct a straight-line embedding D1 combinatorially equivalent to D0
as follows (refer to Fig. 8, right): Let 0 < ε < 1/(2|E |) be a small constant. Embed
path P1 on the positive x-axis with a = (0, 0), c = (3, 0), and if c1 0= c, then
c1 = (0, 3 − ε). Let b1 = (1, 1), and if b1 0= b2, then embed the vertices of P2
between b1 and b2 on a horizontal segment between b1 = (1, 1) and b2 = (1+ ε, 1).
Similarly, let d1 = (2,−1), and if d1 0= d2, then embed the vertices of P3 between
d1 and d2 on a horizontal segment between d1 = (2,−1) and d2 = (2+ ε,−1). The
vertices in V−

b (resp., V−
d ) can be embedded by Tutte’s barycenter method [20], since

the cycle P1 ∪ P2 (resp., P1 ∪ P3) is embedded as a (weakly) convex polygon, and
the path P2 (resp., P3) has no shortcut edges by the choice of P1, P2, and P3. The
vertices of V+

b (resp., V+
d ) can be embedded by the Hong–Nagamochi theorem in

an ε-neighborhood of b1 (resp., d1), since the region above P2 (resp., below P3) is
star-shaped. This completes the description of D1.

Let H = (V, E∪{uv}), where u (resp., v) is a vertex of the outer face strictly above
(resp., below) the x-axis in the embedding D1. Note that vertices u and v are in an
ε-neighborhood of b1 and d1, respectively, and so cannot be connected by a straight
edge in D1.

Let D2 be an embedding of G in which every edge has the same length as in D1.
Assume, without loss of generality, that a = (0, 0) and ac1 lies on the positive x-axis,
and b1 is above the x-axis. By the length constraints, path P1 lies in the ε-neighborhood
of edge ac1. Path P2 lies in the 2ε-neighborhood of its position in D1. Vertex d1 must
be below the x-axis, otherwise b2c and ad1 would cross. Hence path P3 is also in the
2ε-neighborhood of its location in D1. All interior vertices of P2 and all vertices in
V+
b are in the (ε|E |)-neighborhood of b1. Similarly, all interior vertices of P3 and all

vertices in V+
d are in the (ε|E |)-neighborhood of d1. Since ε|E | < 1

2 , the line segment
uv crosses ac1, and so H cannot be embedded with the prescribed edge lengths. This
confirms that G is not extrinsically free in H . +,

Lemma 13 Let G = (V, E) be extrinsically free in every host H, G ⊂ H. If G
contains a cycle C with k ≥ 4 vertices such that all vertices of C are incident to a
common face in some embedding of G, then C is a 2-connected component of G.

Proof Consider an embedding D0 of G in which all vertices of C are incident to
common face F . Assume without loss of generality that F is a bounded face that lies
insideC . We first show that C must be a chordless cycle. Indeed, ifC has an (exterior)
chord ac, then G would not be extrinsically free by applying Lemma 12 with the three
paths P1 = {ac}, and letting P2 and P3 be the two arcs of C between a and c.

Let a and c be two nonadjacent vertices of C (Fig. 9). If there is a path P between
a and c (via the interior or exterior of C), then again G would not be extrinsically free
by applying Lemma 12 for P and the two arcs of C between a and c. By Menger’s
theorem, G has a 2-cut that separates a and c. Such a 2-cut necessarily consists of two
vertices of C , say b and d. If {b, d} is a 2-cut, then both b and d are incident to both F
and the outer face of D0. Applying the same argument for every two nonconsecutive
vertices of C , we conclude that all vertices of C are incident to both F and the outer
face in D0. +,
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Fig. 9 Left The embedding D0 of G. Every vertex of C is incident to both F and the outer face. Right The
embedding D1 of G in which abcd is a square

It remains to consider planar graphsG that are cycles or contain some triangulations
as subgraphs. First, we deal with triangulations.

Lemma 14 Let G = (V, E) be a planar graph inwhich every 2-connected component
is a triangulation or a single edge. Suppose that G satisfies one of the following
conditions:

(i) amaximal 2-connected component of G is a triangulation with at least 4 vertices,
and G contains at least one additional edge;

(ii) a maximal 2-connected component of G is a triangle abc, and G contains two
cut edges incident to abc;

(iii) a maximal 2-connected component of G is a triangle abc, and G contains a path
of two edges incident to abc;

(iv) G is the disjoint union of a triangle and either a path P2 or another triangle.

Then there is a host H, G ⊆ H, such that G is not extrinsically free in H.

Proof In all four cases, we augment G to a triangulation H such that G contains at
least two edges of a separating triangle abc, and abc separates two other edges e1, e2
of G. Then we construct a valid length assignment in which the diameter of abc is
less than 2 and !(e1) = !(e2) = 2. This will show that G is not extrinsically free in
H .

(i) Let T be a maximal 2-connected component of G that is a triangulation with
at least 4 vertices. If G contains two components, then let G1 be the component
containing T , including a triangle abc, and let G2 = G −G1. If G is connected, then
G contains an edge ad incident to T at vertex a, and a is incident to a triangle abc in
T . Note that a is a cut vertex, since T is a maximal 2-connected subgraph. Therefore
G decomposes into two subgraphs that intersect in vertex a only: G1 contains T and
G2 contains ad.

In both cases, let H1 be a triangulation of G1 in which abc is a face, and let H2 be
an arbitrary triangulation of G2. Now let H be a triangulation of H1 ∪ H2 (identifying
vertex a if G is connected) such that G2 lies inside the triangle abc. Consider an
embedding D1 of H1 in which abc is the outer face and it is a regular triangle with
unit sides. Let G2 be an embedding of H2 such that a is a vertex of the outer face, and
|ad| = 2. The union of D1 and D2 gives an embedding of H (hence G), identifying
a if G is connected. However, H does not have an embedding in which every edge of
G has the same length as in D. Indeed, the edge lengths in T completely determine
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Fig. 10 Illustrations for cases (i), (ii), (iii), and (iv)

the embedding (we cannot interchange the interior and exterior of any face), and the
edge ad is longer than the diameter of the outer face abc.

(ii) Let e1 and e2 be cut edges of G incident to abc (Fig. 10). Decompose G into
three subgraphs, every two of which intersect in one vertex only: G1 contains e1,
G2 contains e2, and G3 is triangle abc. Let H1 and H2 be arbitrary triangulations
of G1 and G2, respectively. Let H be a triangulation of H1 ∪ H2 ∪ abc, identifying
the common vertices, such that abc separates H1 from H2. We show that G has an
embedding where abc is a regular triangle with unit sides and !(e1) = !(e2) = 2.
Consider an embedding D1 of H1 such that the vertex incident to abc is on the outer
face, which is a regular triangle, and !(e1) = 2. Let D2 be an embedding of H2 with
analogous properties. The union of D1, D2 and the unit triangle abc readily gives the
required embedding of G, after identifying the shared vertices.

(iii) We may assume without loss of generality that G contains a path (a, d, e)
incident to abc at vertex a. Note that a is a cut vertex (since abc is maximal
2-connected), and so G can be decomposed into two subgraphs that intersect in vertex
a only: G1 contains abc, and G2 contains the path (a, d, e). Let H1 be a triangulation
of G1 such that the outer face is abc, and let H2 be a triangulation of G2 such that ad
is an edge of the outer face. Now let H be a triangulation of H1 ∪ H2, with vertex a
identified, such that d is adjacent to b and c, and H2 lies in the triangle abd. Clearly,
abd is a separating triangle, separating edges ac and de.

We show thatG has an embeddingwhere !(ab) = !(ad) = 1 and !(ac) = !(de) =
2. Consider an embedding of H1 where a is a vertex of the outer face and abc is a
bounded face, and edges ab and ac have prescribed lengths (the length constraints can
be met by an affine transformation). Similarly, H2 has an embedding such that d is on
the outer face and ad and de have prescribed lengths. Identifying a in the embeddings
of H1 and H2, drawn on two sides of a line, gives an embedding of G = G1 ∪ G2
with the desired edge lengths.

(iv) Let G consist of a triangle abc and either a path (d, e, f ) or another triangle
de f . Clearly, G has an embedding with unit length edges. Let H be the triangulation
on the vertex set V = {a, b, d, c, e, f }, containing both triangles abc and de f , and the
edges {ae, be, ce, ad, bd}. See Fig. 10. Suppose that H can be embedded such that
G ⊂ H has unit length edges. Assume without loss of generality that edge ab is on
the x-axis, and c is above the x-axis. Note that triangle abc cannot contain de f , since
!(de) = !(e f ) = 1 is the diameter of abc. So the two adjacent triangles, abe and bce,
are outside of abc, and e has to be in the wedge between −→ac and

−→
bc above vertex c.

Vertex d is in the exterior of abc, at distance 1 from e, and so it is also above the x-axis.
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Fig. 11 Left A straight-line embedding of H6. Right A straight-line embedding ofC6 with prescribed edge
lengths

However, triangle abd requires d to be below the x-axis. We derived a contradiction,
which shows that H cannot be embedded with the prescribed edge lengths. +,

Finally, we prove that cycles on more than three vertices are not extrinsically free.
For an integer k ≥ 4, we define the graph Hn on the vertex set {v1, v2, . . . , vn} as
a union of a Hamilton cycle Cn = (v1, v2, . . . , vn), and two spanning stars centered
at v1 and vn , respectively. Note that Hn is planar: the two stars can be embedded in
the interior and the exterior of an arbitrary embedding of Cn . Fig. 11 (left) depicts a
straight-line embedding of H6.

We show that Cn is not extrinsically free in the host Hn . Consider the following
length assignment on the edges of Cn : let !(v1v2) = !(vn−1vn) = 1

4 , !(vi , vi+1) = 1
for i = 2, 3, . . . , n−2, and !(v1vn) = n−3. Fig. 11 shows a straight-line embedding
of Cn with the prescribed edge lengths.

Suppose that Hn admits a straight-line embedding that realizes the prescribed
lengths on the edges of the cycle Cn . We may assume, by applying a rigid trans-
formation if necessary, that v1 = (0, 0), vn = (n − 3, 0), vertex v2 lies on or above
the x-axis, and the vertices v1, v2, . . . , vn are ordered clockwise around Cn . Denote
the coordinates of vertex vi in this embedding by (xi , yi ).

Claim 1 Vertices v3, . . . , vn−2 lie strictly above the x-axis.

Proof For i = 2, . . . , n−1, the distance of vi from v1 and vn , respectively, is bounded
by

|v1vi | ≤
i−1∑

j=1

!(v jv j+1) = i − 7
4
,

|vivn| ≤
n−1∑

j=i

!(v jv j+1) = n − i − 3
4
.

That is, vi lies in the intersection Ri of the disk centered at v1 of radius i − 3
4 and a

disk centered at vn of radius n − i − 3
4 . See Fig. 12 (left). The orthogonal projection
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Fig. 12 Left The regions R3 and R4 for n = 6. Right Vertices v2 (resp., v5) is at distance 1/4 from v1
(resp., vn )

of Ri to the x-axis is the interval [i − 9
4 , i − 7

4 ], which is contained in segment v1vn .
Hence,

xi ∈
[
i − 9

4
, i − 7

4

]
, for i = 2, . . . , n − 1. (3)

For i = 3, . . . , n−2, the orthogonal projection of vi to the x-axis lies on v1vn . Recall
that v2 lies on or above the x-axis by assumption. Since v3 cannot be on the edge v1vn
in an embedding, it is strictly above the x-axis.

For i = 3, . . . , n − 3, the orthogonal projections of both vi and vi+1 to the x-axis
lie on v1vn ; hence the projection of the segment vivi+1 is contained in vivi+1. Since
vivi+1 cannot cross vivn , both endpoints are on the same side of the x-axis. Therefore,
v3, . . . , vn−2 all lie strictly above the x-axis. +,

Claim 2 Vertices v2 and vn−1 lie strictly above the x-axis.

Proof We argue about vertex v2 (the case of vn−1 is analogous). Vertex v2 is at an
intersection point of the circle C1 of radius !(v1v2) = 1

4 centered at v1 and the circle
C3 of radius !(v2v3) = 1 centered at v3. See Fig. 12 (right). The circles C1 and C3
intersect in two points, lying on opposite sides of the symmetry axis v1v3 of the two
circles. Vertex cannot be at the intersection points in C1 ∩ C3 below the line v1v3
because the line segment between that point at v3 crosses the segment v1vn . Hence,
v2 must be the point in C1 ∩ C3 that lies above the v1v3.

Suppose now that v2 ∈ C1 ∩ C3 is on or below the x-axis. Then the halfcircle
of C1 above the x-axis lies in the closed disk bounded by C3. In particular, point
p = (− 1

4 , 0) ∈ C1 must be on or in the interior of C3, which has radius 1. The only
point in the region R3 within distance 1 from p is q = ( 34 , 0). However, q lies on the
segment v1vn , and so v3 0= q. Therefore, v2 lies strictly above the x-axis. +,

Claim 3 The convex hull of Cn is a triangle #(v1, vn, vi ), where vi is a vertex with
maximal y-coordinate.

Proof By Claims 1-2, vertices v2, . . . , vn−1 are strictly above the x-axis. Let vi , 1 <

i < n, be a vertex with maximal y-coordinate. Suppose vertex v j , for some j 0= i , lies
outside of the triangle #(v1, vn, vi ). Refer to Fig. 13 (left). Without loss of generality,
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Fig. 13 Left If v j lies to the left of #(v1, vn , vi ), then v1vi crosses v j vn . Right If 2 < i < n − 1, then
v1vn−1 and v2vn are both internal diagonals of Cn

assume that v j lies to the left of the vertical line through vi . Then edge v1vi crosses
v jvn , contrary to the assumption that we have a plane embedding of Hn . +,

Claim 4 The convex hull of Cn is either #(v1, vn, v2) or #(v1, vn, vn−1).

Proof Suppose the vi is a vertex with maximal y-coordinate for some 2 < i < n − 1.
Refer to Fig. 13 (right). Then both v1vn−1 and v2vn are internal diagonals of the cycle
Cn ; hence they cross, contradicting our assumption that we have a plane embedding
of Hn . +,

By symmetry, we may assume that the convex hull of Cn is #(v1, vn, vn−1). We
say that a polygonal chain (p1, p2, . . . , pk) is monotone in the direction of a nonzero
vector u if the inner products 〈−−−−→pi pi+1,u〉 are positive for i = 1, . . . , k − 1.

Claim 5 The polygonal chain (v1, v2, . . . , vn−1) is monotone in both directions
−−→v1vn

and −−−−→v1vn−1.

Proof For i = 2, 3, . . . , n − 1, we have xi ∈ [i − 9
4 , i − 7

4 ] from (3). Combined
with the assumption that the convex hull ofCn is#(v1, vn, vn−1), this already implies
that (v1, v2, . . . , vn−1) is x-monotone. Note that yn−1 ∈ (0, 1

4 ] since |vn−1vn| =
!(vn−1vn) = 1

4 and yi ∈ (0, 1
4 ] since vn−1 has maximal y-coordinate. Using (3), the

slope of segment vivi+1, i = 2, . . . , n − 2, is bounded as

∣∣ yi+1 − yi
xi+1 − xi

∣∣ ≤ maxi yi
1/2

≤ 1/4
1/2

= 1
2
. (4)

Similarly, the slope of v1vn−1 is bounded by |(yn−1−y1)/(xn−1−x1)| = yn−1/xn−1 ≤
(1/4)/(n − 11/4) ≤ 1/5. Finally, the slope of segment v1v2 is bounded by that
of v1vn−1, since v2 lies in the triangle #(v1, vn, vn−1). Hence the inner products
〈−−−→vivi+1,

−−−−→v1vn−1〉 are positive for i = 1, . . . , n − 2. +,

Let γ = (v1, v2, . . . , vn−1) be the polygonal chain from v1 to vn−1 along the cycle
Cn . Refer to Fig. 14. Note that the slopes of the segments v1vi , i = 1, . . . , n − 1,
are monotonically increasing, since these edges connect v1 to all other vertices of
γ . However, γ is not necessarily a convex chain. Rearranging the edge vectors of γ

in monotonically increasing order by slope, we obtain a convex polygonal chain γ ′ =
(u1, u2, . . . , un−1) between v1 and vn−1.
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Fig. 14 Left The chain (v1, v2, . . . , vn−1) is monotone in both directions v1vn and v1vn−1, but it is not
necessarily convex. Right The edge vectors of (v1, v2, . . . , vn−1) can be rearranged into a convex chain
within #(v1, vn , vn−1)

Claim 6 The polygonal chain γ ′ = (u1, u2, . . . , un−1) defined above lies in the tri-
angle #(v1, vn, vn−1).

Proof It is clear that γ ′ is monotone in both directions −−→v1vn and −−−−→v1vn−1, since it
consists of the same edge vectors as γ . Hence γ ′ crosses neither v1vn nor v1vn−1. To
confirm that γ ′ lies in the triangle #(v1, vn, vn−1), we need to show that γ ′ does not
cross vn−1vn .

The slope of every edge of γ is positive by Claim 5, and bounded above by
2maxi yi = 2yn−1 due to (4). We distinguish two cases. If xn−1 ≤ xn , then vnvn−1
and γ ′ lie in two closed halfplanes on opposite sides of the vertical line through vn−1.
If xn < xn−1, then the slope of −−−−→vnvn−1 is yn−1/(xn − xn−1) > yn−1/!(vn−1, vn) =
4yn−1, that is, larger than the slope of any edge of γ ′. In both cases, γ ′ cannot cross
the segment vnvn−1. Therefore, γ ′ also lies in the triangle #(v1, vn, vn−1). +,

Now γ ′ is a convex polygonal chain from v1 to vn−1 within the triangle
#(v1, vn, vn−1). All edges of γ ′ have strictly positive slopes, so γ ′ is disjoint from
v1vn . By (a repeated application of) the triangle inequality, γ ′ is strictly shorter than
the polygonal chain (v1, vn, vn−1). However, by construction, these two chains have
the same length (namely, n − 11

4 ). We conclude that our initial assumption is false,
and Hn has no straight-line embedding in which every edge e ∈ E has length !(e).

7 Embedding a Cycle with Nondegenerate Lengths

We say that a length assignment ! : E → R+ for a cycle C = (V, E) is feasible if
C admits a straight-line embedding with edge length !(e) for all e ∈ E . Lenhart and
Whitesides [15] showed that ! is feasible forC if and only if no edge is supposed to be
longer than the semiperimeter s = 1

2
∑

e∈E !(e). Recall that three positive reals, a, b,
and c, satisfy the triangle inequality if and only if each of them is less than 1

2 (a+b+c).
ByLemma9, it is enough to proveTheorem4 in the casewhenC is aHamilton cycle

in H . Consider a Hamilton cycle C in a triangulation H . We construct a straight-line
embedding of H with given nondegenerate edge lengths using the following two-step
strategy: We first embed C on the boundary of a triangle T such that each edge of
H−C is either an internal diagonal ofC or a line segment along one of the sides of the
triangle T (Lemma 15). If any edge of H − C overlaps with edges C , then this is not
a proper embedding of H yet (Fig. 15). In a second step, we perturb the embedding
of C to accommodate all edges of H (see Sect. 7.1).
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Fig. 15 Left A planar graph H with a Hamilton cycle C (think lines). Right The graph H has a 3-cycle
(1,3,6) such that C admits a straight-line embedding with the same edge lengths as in the left and all edges
of C are along the edges of triangle (1,3,6)

Lemma 15 Let H be a triangulationwith aHamilton cycleC = (V, E) and a feasible
nondegenerate length assignment ! : E → R+. Then, there is a 3-cycle (vi , v j , vk) in
H such that the prescribed arc lengths of C between these vertices, i.e., the three sums
of lengths of edges corresponding to these three arcs, satisfy the triangle inequality.

Proof Consider an arbitrary embedding of H (with arbitrary lengths). The edges of
H are partitioned into three subsets: edges E of the cycle C , interior chords Eint,
and exterior chords Eext. Each chord viv j ∈ Eint ∪ Eext decomposes C into two
paths. If the length assignment ! is nondegenerate, then there is at most one chord
viv j ∈ Eint ∪ Eext that decomposes C into two paths of equal length. Assume, by
exchanging interior and exterior chords if necessary, that no edge in Eext decomposes
C into two paths of equal length.

Denote by δi j > 0 the absolute value of the difference between the sums of the
prescribed lengths on the two paths that an exterior chord viv j produces. Let viv j ∈
Eext be an exterior chord thatminimizes δi j . The chord viv j is adjacent to two triangles,
say viv jvk and viv jvk′ , where vk and vk′ are vertices of two different paths determined
by viv j . Assume, without loss of generality, that vk is part of the longer path (measured
by the prescribed length). The path length between vi and vk (resp., v j and vk) cannot
be less than δi j—otherwise δk j < δi j (resp., δik < δi j ). Therefore, the three arcs
between vi , v j , and vk satisfy the triangle inequality. +,

7.1 A Hamilton Path with Given Edge Lengths

Ourmain tool to “perturb” a straight-line drawing with collinear edges is the following
lemma.

Lemma 16 Let H be a planar graph with n ≥ 3 vertices and a fixed combinatorial
embedding; let P = (V, E) be a Hamilton path in H with both of its endpoints
incident to the outer face of H; and let ! : E → R+ be a length assignment with
L = ∑

e∈E !(e) and !min = mine∈E !(e).
For every sufficiently small ε > 0, H admits a straight-line embedding such that

the two endpoints of P are at points origin (0, 0) and (0, L − ε) on the x-axis, and
every edge e ∈ E has length !(e).
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Fig. 16 TopA path P = (p1, . . . p8) embedded on the boundary of a triangle (p1, p5, p8)with prescribed
edge lengths. The edges of H − P between different sides of the triangle are represented in solid thin lines,
the edges of H − P between vertices of the same side of the triangle are represented in dotted lines.Middle
When point p5 is shifted down to p5(δ), in any embedding of C with prescribed edge lengths, vertex pi
is located in a region Ri (δ) for i = 2, 3, 4, 6, 7. Bottom A straight-line embedding of H is obtained by
embedding the subgraphs induced by P1 = (p1, . . . , p5) and P2 = (p5, . . . , p8) by induction

Proof We proceed by induction on n = |V |, the number of vertices of H . The base
case is n = 3, where P consists of two edges, H is a triangle, and we can place the
two endpoints of P at (0, 0) and (L − ε, 0). Assume now that n > 3 and the claim
holds for all instances where H has fewer than n vertices.

We may assume, by adding dummy edges if necessary, that H is a triangulation.
Denote the vertices of the path P by (v1, v2, . . . , vn). By assumption, the endpoints v1
and vn are incident to the outer face (i.e., outer triangle). Denote by vk , 1 < k < n, the
third vertex of the outer triangle. Let P1 = (v1, . . . , vk) and P2 = (vk, . . . , vn) be two
subpaths of P , with total lengths L1 = ∑k−1

i=1 !(vivi+1) and L2 = ∑n−1
i=k !(vivi+1).

Wemay assumewithout loss of generality that L1 ≤ L2.Wemay assume, by applying
a reflection if necessary, that the triple (v1, vk, vn) is clockwise in the given embedding
of H . Let H1 (resp., H2) be the subgraph of H induced by the vertices of P1 (resp., P2),
and let E1,2 denote the set of edges of H between {v1, . . . , vk−1} and {vk+1, . . . , vn}.
In the remainder of the proof, we embed P1 and P2 by induction, after choosing
appropriate parameters ε1 and ε2.

We first choose “preliminary” points pi for each vertex vi as follows: Let
(p1, pk, pn) be a triangle with clockwise orientation, where p1 = (0, 0), pn = (L −
ε, 0), and the edges p1 pk and pk pn have lengths L1 and L2, respectively (see Fig. 16).
Place the points p2, . . . pk−1 on segment p1 pk , and the points pk+1, . . . , pn−1 on seg-
ment pk pn such that the distance between consecutive points is |pi pi+1| = !(vivi+1)

for i = 1, . . . , n − 1.
Note that segment p1 pk has a positive slope, say s; and pk pn has a negative slope,

s. The slope of every segment pi p j , for viv j ∈ E1,2, is in the open interval (s, s). Let
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[r , r ] be the smallest closed interval that contains the slopes of all segments pi p j for
viv j ∈ E1,2. Let t ∈ (r , s) and t ∈ (s, r) be two arbitrary reals that “separate” the
sets of slopes. We shall perturb the vertices p2, . . . , pn−1 such that the directions of
the edges of H2, E1,2, and H1 remain in pairwise disjoint intervals (2s, t), (t, t), and
(t, 2s), respectively.

Suppose that we move point pk to position pk(δ) = pk + (0,−δ). In any straight-
line embedding of P1 with v1 = p1 and vk = pk(δ), each vertex vi , i = 2, . . . , k − 1,
must lie in a region Ri (δ), which is the intersection of two disks centered at p1 and
pk(δ) of radii |p1 pi | and |pi pk |, respectively (Fig. 16). Similarly, in any straight-line
embedding of P2 with vk = pk(δ) and vn = pn , each vertex vi , i = k+ 1, . . . , n − 1,
must lie in a region Ri (δ), which is the intersection of two disks centered at pk(δ)
and pn of radii |pk pi | and |pi pn|, respectively. We also define one-point regions
R1(δ) = {p1}, Rk(δ) = {pk(δ)}, and Rn(δ) = {pn}. Choose a sufficiently small δ > 0
such that the slope of any line intersecting Ri (δ) and R j (δ) is in the interval

• (t, 2s) if 1 ≤ i < j ≤ k;
• (t, t) if viv j ∈ E1,2;
• (2s, t) if k ≤ i < j ≤ n.

Embed vertices v1, vk , and vn at points p1, pk(δ), and pn , respectively. If H1 (resp.,
H2) has three or more vertices, embed it by induction such that the endpoints of path
P1 are p1 and pk(δ) (resp., the endpoints of P2 are pk(δ) and pn). Each vertex vi is
embedded in a point in the region Ri for i = 1, . . . n. By the choice of δ, the slopes of
the edges of H1 and H2 are in the intervals (t, 2s) and (2s, t), respectively, while the
slopes of the edges in E1,2 are in a disjoint interval (t, t). Therefore, these edges are
pairwise noncrossing, and we obtain a proper embedding of graph H . +,

7.2 Proof of Theorem 4

By Lemma 9, it is enough to prove Theorem 4 in the case when C is a Hamilton cycle
in H .

Theorem 17 Let H be a planar graph that contains a cycle C = (V, E). Let ! :
E → R+ be a feasible nondegenerate length assignment. Then H admits a straight-
line embedding in which each e ∈ E has length !(e).

Proof We may assume that H is an edge-maximal planar graph, that is, H is a tri-
angulation. By Lemma 15, H contains a 3-cycle (va, vb, vc) such that the prescribed
arc lengths of C between these vertices, i.e., the three sums of lengths of edges corre-
sponding to these three arcs, satisfy the triangle inequality (see Fig. 17).

Let P1, P2, and P3 denote the paths along C between the vertex pairs (va, vb),
(vb, vc), and (vc, va), and let their prescribed edge lengths be L1, L2, and L3, respec-
tively. For j = 1, 2, 3, let Hj be the subgraphs of H induced by the vertices of the
path Pj . Denote by E1,2,3 the set of edges of H between an interior vertex of P1, P2,
or P3, and a vertex not on the same path. Consider a combinatorial embedding of H
(with arbitrary edge lengths) such that (va, vb, vc) is triangle in the exterior of C . In
this embedding, all edges in E1,2,3 are interior chords of C .
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Fig. 17 LeftAcycleC = (p1, . . . p8) embedded on the boundary of a triangle (p1, p3, p6)with prescribed
edge lengths. Right When the vertices of the triangle are translated by δ towards the center of the triangle,
we can embed the subgraphs induced by (p1, p2, p3), (p3, p4, p5, p6), and (p6, p7, p1) by straight-line
edges so that they do not cross any of the diagonals between different sides of the triangle

Similarly to the proof of Lemma 16, we start with a “preliminary” embedding,
where the vertices vi are embedded as follows: Let (pa, pb, pc) be a triangle with
edge lengths |pa pb| = L1, |pb pc| = L2, and |pc pa | = L3. Place all other points pi
on the boundary of the triangle such that the distance between consecutive points is
|pi pi+1| = !(vivi+1) for i = 1, . . . , n−1. Suppose, without loss of generality, that no
two points have the same x-coordinate. Note that the slope of every line segment pi p j ,
for viv j ∈ E1,2,3 is different from the slopes of the sides of the triangle that contains
pi and p j . Let η be the minimum difference between the slopes of two segments pi p j ,
with viv j ∈ E1,2,3.

Move points pa , pb, and pc toward the center of triangle (pa, pb, pc) by a vector
of length δ > 0 to positions pa(δ), pb(δ), and pc(δ). In any straight-line embedding
of C with va = pa(δ), vb = pb(δ) and vc = pc(δ), each vertex vi , i = 2, . . . , n, must
lie in a region Ri (δ), which is the intersection of two disks centered at two vertices
of the triangle (pa(δ), pb(δ), pc(δ)). Choose a sufficiently small δ > 0 such that the
slopes of a line intersecting Ri (δ) and R j (δ) with viv j ∈ H is within η/2 from the
slope of the segment pi p j .

Embed vertices vi , v j , and vk at points pi (δ), p j (δ), and pk(δ), respectively. If H1
(resp., H2 and H3) has three or more vertices, embed it using Lemma 16 such that the
endpoints of the path P1 are pi (δ) and pk(δ) (resp., p j (δ), pk(δ) and pk(δ), pi (δ)).
Each vertex vi is embedded in a point in the region Ri for i = 1, . . . n. By the choice
of δ, the slopes of the edges of H1, H2, and H3 are in three small pairwise disjoint
intervals, and these intervals are disjoint from the slopes of any edge viv j ∈ E1,2,3.
Therefore, the edges of H are pairwise noncrossing, andwe obtain a proper embedding
of H . +,

8 Conclusions

We have characterized the planar graphs G that are free subgraphs in every host H ,
G ⊆ H . In Sect. 3, we showed that every triangulation T has a straight-line embedding
in which a matching M ⊂ T has arbitrarily prescribed edge lengths, and the outer
face is fixed. Several related questions remain unanswered:
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1. Given a length assignment ! : M → [1, λ] for a matching M in an n-vertex planar
graph G, what is the minimum Euclidean diameter (resp., area) of an embedding
of G with prescribed edge lengths?

2. Is there a polynomial time algorithm for decidingwhether a subgraphG of a planar
graph H is free or extrinsically free in H?

3. Is there a polynomial time algorithm for deciding whether a planar graph H is real-
izable such that the edges of a cycle C = (V, E) have given (possibly degenerate)
lengths?

4. What are the planar graphs G that are free in every 4-connected triangulation H ,
G ⊆ H? We know that stars are, but we do not have a complete characterization.

Recently, Angelini et al. [1] proved that given any two homeomorphic embeddings of
a planar graph, one can continuously morph one embedding into the other in O(n)
successive linearmorphs (inwhich each vertexmoveswith constant speed). Combined
with our Theorem 1, this implies that if we are given two length assignments !1 : M →
R+ and !2 : M → R+ for a matching M in an n-vertex triangulation T , then one can
continuouslymorph an embeddingwith one length assignment into another embedding
with the other assignment in O(n) linear morphs. It remains an open problem whether
fewer linear morphs suffice between two embeddings that admit two different length
assignments of M .
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Budapest (2013)
19. Schnyder,W.: Embedding planar graphs in the grid. In: Proceedings of the 1st ACM-SIAMSymposium

on Discrete Algorithms, pp. 138–147. ACM, San Francisco (1990)
20. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 3–13(1), 743–767 (1963)

123


	Free Edge Lengths in Plane Graphs
	Abstract
	1 Introduction
	2 Subgraphs with Constrained Edge Lengths
	3 Every Matching is Free
	3.1 Edge Contraction and Vertex Splitting Operations
	3.2 A Matching with Given Edge Lengths

	4 Graphs with Three or Four Edges
	5 Stars are Free in 4-Connected Triangulations
	6 Extrinsically Free Subgraphs
	7 Embedding a Cycle with Nondegenerate Lengths
	7.1 A Hamilton Path with Given Edge Lengths
	7.2 Proof of Theorem 4

	8 Conclusions
	Acknowledgments
	References


