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Abstract

Recent results have confirmed that the global rigidity of bar and
joint frameworks on a graph G is a generic property in Euclidean
spaces of all dimensions, although it is not known if there is a deter-
ministic algorithm, that runs in polynomial time and space, to decide
if a graph is generically globally rigid, although there is an algorithm
[10] running in polynomial time and space that will decide with no
false positives and only has false negatives with low probability. When
there is a framework that is infinitesimally rigid with a stress matrix
of maximal rank, we describe it as a certificate which guarantees that
the graph is generically globally rigid, although this framework, itself,
may not be globally rigid. We present a set of examples which clarify
a number of aspects of global rigidity.

There is a technique which transfers rigidity for one dimension
higher: coning. Here we confirm that the cone on a graph is generically
globally rigid in Rd+1 if and only if the graph is generically globally
rigid in Rd. As a corollary we see that a graph is generically globally
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rigid in the d-dimensional sphere Sd if and only if it is generically
globally rigid in Rd.

1 Introduction

Over the last 20 years, there has been a continuing development of methods
and results in Global Rigidity [12, 6, 7, 13, 10]. Early work of Hendrickson
provided clear necessary conditions for generic frameworks [12]: when the
graph is not a simplex, it must be generically redundantly rigid (having a
self-stress in each member) and the graph must be (d+ 1)-vertex connected,
in dimension d. The work of Connelly provided methods related to global
minima of energy functions as well as some initial analysis of an example in
[6].

Recent work has focused on specific techniques for global rigidity of
generic frameworks. Connelly’s work with stress matrices provided a suf-
ficient condition for global rigidity of generic frameworks [7]. The paper
also showed that the inductive technique of edge splitting preserves generic
global rigidity in all dimensions. This in turn became a crucial technique in
the work of Berg and Jordan [3] and Jackson and Jordon [13] which provided
a proof that the necessary conditions of Hendrickson were also sufficent, in
the plane. Later, they also provided an independent proof for this technique,
in the plane. As a final piece of the puzzle, Gortler, Healy and Thurston [10]
showed that, for generic configurations, Connelly’s sufficient condition was
also necessary, in all dimensions. As a corollary, if a framework is globally
rigid for a generic configuration, then all generic configurations correspond
to globally rigid frameworks. This property is combinatorial.

Knowing that generic global rigidity is combinatorial has increased the
interest in global rigidity in general, and in finding additional combinato-
rial techniques for generating globally rigid frameworks [14, 15, 4, 8]. Some
of these papers provide some additional sufficient conditions in various di-
mensions, that cover classes of frameworks which are studied in some ap-
plications. Among the current applications of global rigidity are location of
sensors within a network [9, 1] and general issues of uniqueness of constraints
within CAD and computational geometry. At a recent workshop in Banff,
there was a proposal that in the study of molecular rigidity and flexibil-
ity, global rigidity was the mathematical concept matching the stability of
molecular structures, while infinitesimal rigidity matches fluctuation within
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a structure. These connections raise the overall interest in the study of global
rigidity.

Given the dificulties of characterizing graphs which are generically in-
finitesimally rigid as bar and joint frameworks in 3-space [19, 11, 22], it is
not a surprise that we have encountered difficulties with characterizing graphs
which are generically globally rigid as bar-and joint results in d-space. These
difficulties are further emphasized by Connelly’s proof [6] that the complete
bipartite graph K5,5 is not generically globally rigid in 3-space, although it
satisfies the two necessary conditions of Hendrickson [7].

With these difficulties in giving overall characterizations of graphs which
are generically globally rigid, there is added interest in new techniques which
generate generically globally rigid graphs in higher dimensions. In §3 we show
that particular properties of a specific framework G(p) provide a certificate
that the graph is globally rigid. Using this certificate, we use an algorithm,
described in [10], which can demonstrate that a specific graph is generically
globally rigid (§2). This is applied to a set of examples which demonstrate
some key connections among global rigidity, the rank of the stress matrix,
and affine transformations in §3 and §8.

Coning (Figure 1) is one process which is well-studied for both geometric
and generic rigidity [20]. This result is connected to the projective invariance
of infinitesimal rigidity. In §5 we show directly that a graph is generically
globally rigid in Rd if and only if the cone is generically globally rigid in Rd+1.
This proof is also connected to the invariance of the rank of the stress matrix
(though not of global rigidity itself) under projective transformations (§4).

In §6, we convert this result on cones into a geometrically equivalent
result for frameworks on Sd - the d-sphere. This shows that a framework is
generically globally rigid in Rd, if and only if the cone is generically globally
rigid in Sd.

In §7, we outline another method that shows the equivalence of generic
global rigidity in Sd, Rd, and Hd, hyperbolic space using a formula of Pogorelov
in [16].

In §8 we present some additional examples, which further clarify the con-
nections among the techniques and concepts in the paper. We also show
that another set of properties of a specific framework G(p) guarantees that
there is an open neighborood of p with all frameworks globally rigid and
that the graph G is generically globally rigid. In §9 we present some further
conjectures and problems for future work.

Given the overall difficulty with characterizing generic global rigidity of
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bar and joint frameworks in dimensions greater than 2, there is a general
interest in the a special class of frameworks which have good combinatorial
characterizations for generic rigidity: the body-bar frameworks. In a separate
paper with Tibor Jordan, we present a new result characterizing generic
body-bar frameworks in all dimensions, by the simple necessary condition of
generic redundant rigidity [8].

2 Prior Results

We recall the basic vocabulary and definitions, from the literature [6, 7, 11,
22, 23].

A bar and joint framework in Rd is a graph G and a configuration p
which assigns a point pi in Rd to each vertex i of the graph. For each edge
{i, j} ∈ E, pi 6= pj.

Given a framework G(p) in Rd, an infinitesimal motion p′ is a solution
to the system of linear equations (pi − pj) · (p′i − p′j) = 0. This system of
equations is brought together as RG(p)(p′)T = 0, with the |E|×d|V | rigidity
matrix RG(p). An infinitesimal motion is trivial if it is the derivative of an
analytic path of congruences, and non-trivial otherwise. A framework G(p) is
infinitesimally rigid if all infinitesimal motions are trivial, and infinitesimally
flexible otherwise.

A framework G(p) is globally rigid in Rd if all frameworks G(q) in Rd

which are G(p)-equivalent (have all bars the same length as G(p)) are con-
gruent to G(p).

A configuration is generic if the coordinates do not satisfy any non-zero
polynomial equation with integer coefficients (or equivalently algebraic co-
efficients). It is important to realize that the generic configurations are not
an open set of configurations in Rd|V |, but they do form a dense set of full
measure.

Hendrickson [12] proved two key necessary conditions for global rigidity
of a framework at a generic configuration.

Theorem 1 (Hendrickson [12]) If a framework G(p), other than a simplex,
is globally rigid for a generic configuration p in Rd then:

• The graph G is vertex (d+ 1)-connected;

• The framework G(p) is redundantly rigid, in the sense that removing
any one edge leaves a graph which is infinitesimally rigid.
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A graph G is generically globally rigid in Rd if G(p) is globally rigid at
all generic configurations p [6, 7]. It is now known that global rigidity is
a generic property in this sense for graphs in each dimension [7, 10]. The
critical technique used for proving global rigidity of frameworks uses stress
matrices. This technique is at the core of the proof that global rigidity is a
generic property, as well as some specific inductive techniques (below).

Clearly, the conditions of Theorem 1 are necessary for generic global
rigidity. They are also sufficient on the line, and in the plane [13]. However,
by a result of Connelly [6], K5,5 in 3-space is generically redundantly rigid
and 5-connected but is not generically globally rigid. See Example 3.1.

This stress matrix approach was started in [5] and builds on the fact that
any globally rigid framework, except for a simplex, is dependent with a self
stress ω. Recall that a self-stress is an assignment of scalars ωij to the edges
such that for each i ∈ V ∑

{ij∈E}

ωij(pi − pj) = 0. (1)

This can also be seen as a linear dependence of the rows of the rigidity matrix
[22].

Given a stress, there is an associated |V | × |V | symmetric matrix Ω, the
stress matrix such that for i 6= j, the i, j entry of Ω is −ωi,j, and the diagonal
entries for i, i are

∑
j 6=i ωi,j. Note that all row and column sums are now zero,

and Connelly has developed a number of properties of these stress matrices
[6, 7].

The key connection for global rigidity are the following pair of results:

Theorem 2 (Connelly [7]) If p is a generic configuration in Rd, such that
there is an equilibrium stress, where the rank of the associated stress matrix
Ω is |V | − d− 1, then G(p) is globally rigid in Rd.

Theorem 3 (Gortler, Healy, and Thurston [10]) Suppose that p is a generic
configuration in Rd, such that G(p) is globally rigid in Rd. Then either G(p)
is a simplex or there is an equilibrium stress where the rank of the associated
stress matrix Ω is |V | − d− 1.

These results, and their corollaries, provide us with the basic tools for the
analysis which follows.
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3 Computing Global Rigidity

The results §2 are stated for configurations p that are generic. Although the
notion of being generic means that there are a (countably) infinite number
of constraints to avoid, it turns out that there only are a finite number of
polynomial conditions on the coordinates of p that must be avoided for G(p)
to be globally rigid. But for infinitesimal rigidity and particularly for global
rigidity, a description of what these conditions are turn out to be difficult
and almost impossible to determine in a useful way. Implicit in [7] and
more explicitly in [10], the following results can be used to determine generic
rigidity and generic global rigidity.

Recall that a function f : Rd → R is lower semi-continuous at p ∈ Rd if,
for every ε > 0, there is a δ > 0 such that for all |q−p| < δ, f(q) ≥ f(p)− ε.
Loosely speaking, lower semi-continuity means that the function f can jump
up, but not down, near a given point p. The following is an easy consequence
of the basic properties of the rank of a matrix.

Lemma 4 The rank of a finite matrix is lower semi-continuous in its coor-
dinates.

We can now use non-generic configurations to determine rigidity and global
rigidity at generic configurations.

Theorem 5 If p is a configuration in Rd, such that G(p) is infinitesimally
rigid, and there is an equilibrium stress where the rank of the associated stress
matrix Ω is |V | − d− 1, then G is generically globally rigid in Rd.

Proof. Infinitesimal rigidity of a framework is determined when the rank of
the rigidity matrix R(p) is maximal for configurations p in Rd. By Lemma
4, for any configuration q sufficiently close to p, G(q) will also be infinites-
imally rigid in Rd. In other words, the rank of R(q) remains constant in a
neighborhood U of p. So a basis for the stresses ω for R(q) can be written
so that the coordinates of each basis element of ω are rational functions of q
defined on U . Thus there is a stress for G(q) whose stress matrix Ω′ has its
coefficients arbitrarily close to the stress matrix Ω for G(p), which had rank
|V | − d− 1. By Proposition 1.2 of [7], since the dimension of the affine span
of q is d dimensional, the rank of Ω′ is at most |V |−d− 1. Again by Lemma
4, for q the rank of Ω′ is |V | − d− 1 as well. We may choose q generic, and
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so by Theorem 2, G(q) is globally rigid. By Corollary 1.14 in [10], G(q) is
globally rigid at all generic configurations q. �

With this in mind we say a configuration p with a stress ω for a graph
G is a certificate for generic global rigidity if the rank of the rigidity matrix
R(p) is d|V | − d(d + 1)/2 and the corresponding stress matrix Ω has rank
|V | − d − 1. So Theorem 5 says that if a graph has a certificate for generic
global rigidity, it is generically globally rigid. Bear in mind, though, that if
p and ω form a certificate for generic global rigidity for the graph G, G(p)
itself may not be globally rigid. See the examples of §8.

The problem remains to find a combinatorial, or least a discrete, calcula-
tion to determine generic rigidity and generic global rigidity. The following
result and the resulting algorithm is one case of a result in [10], where it is
shown not just for the field Zp but also for the integers Z.

Corollary 6 (Gortler-Healy-Thurston [10]) Let a real prime number p be
given. If p is a configuration in Zn

p , such that G(p) is infinitesimally rigid

(i.e. the rigidity matrix has rank |V |d−
(

d+1
2

)
for |V | ≥ d+ 2), and there is

an equilibrium stress where the stress matrix Ω (mod p) has rank |V |−d−1,
then G is generically globally rigid in Rd.

Proof. Let p̃ be a configuration with integer entries, where each coordinate
is congruent to the corresponding entry of p (mod p). The rank of the rigidity
matrix R(p̃) is also maximal since the appropriate sub-determinant is non-
zero (mod p) and thus it is non-zero in R. Consider the rational stresses for
the framework G(p̃). They are solutions to a system of linear equations with
integer coefficients, and the rank of this linear system is the same as the rank
of the corresponding linear system in the field Zp, since the rank is again
determined by a sub-determinant. If some appropriate subset of the stresses
are fixed, then there is a unique solution for the remaining stresses (mod p).
By multiplying all the stresses by an appropriate integer, which is non-zero
(mod p), we get an integer solution for the stresses, and up to the non-zero
(mod p) scaling factor, this integer solution Ω̃ yields the same stress matrix
(mod p) as Ω, since both solutions are given by Cramer’s Rule, for example.
Thus the rank of Ω̃ is |V | − d− 1, the same as the rank of Ω. Finally, G(p̃)
satisfies the conditions of Theorem 2, and p̃ and the integral stress ω̃ are a
certificate for G being generically globally rigid in Rd. �

This leads to the following algorithm to determine generic global rigidity
in Rd for an abstract graph G.
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1.) Choose a prime number p. (This should be such that pd is sufficiently
larger than |V |.)

2.) Choose a random integer configuration p (mod p) in Zn
p .

3.) Solve the equilibrium equations (mod p) for the linear system of stresses
for G(p) (mod p). If the dimension of this system is not |E| − d|V | −
d(d + 1)/2 ≥ 1 dimensional, where |E| is the number of edges of G,
either go back to 1.) or declare that G is probably not even redundantly
rigid.

4.) Choose a random stress matrix Ω (mod p) from the system of stress for
G(p). If the rank of Ω = |V | − d − 1, stop and declare G generically
globally rigid in Rd. If not, then either go back to 2.) or declare that
G is probably not generically globally rigid in Rd.

The following are some examples, where this algorithm has been applied:

Example 3.1: The complete bipartite graph K5,5 in R3: The rank of Ω turns out to
be 2, which suggests that K5,5 is not globally rigid in R3 even though it
is redundantly rigid and vertex 4-connected. Indeed, an application of
the results in [2] shows that this is the case for a generic configuration.
So by Theorem 3, K5,5 is not globally rigid in R3. In [6], Theorem 3
was not available, and another method was used to show that it was
not generically globally rigid R3.

Example 3.2: The complete bipartite graph K5,5 in R3 with an edge removed and
replaced by an edge between two vertices in one of the partitions: The
rank of Ω turns out to be 6 = 10− 3− 1 = |V | − d− 1, and the graph
is infinitesimally rigid. Thus this graph is generically globally rigid in
R3.

Example 3.3: K5,5 in R3 with one edge split: This subdivides an edge, adding a new
vertex and connecting it to two other vertices. |V |=11, and the rank
of the stress matrix is 7 = 11 − 3 − 1. Thus this graph is generically
globally rigid in R3.

Example 3.4: The cone K5,5 ∗ {v} in R4. Here it seems that the rank of the stress
matrix remains 2, and thus it appears that {v} ∗ K5,5 in R4 is not
generically globally rigid, although it is infinitesimally rigid. Indeed, it
is not generically globally rigid, and this is described in §5.
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4 Projective transformations

One of the fundamental operations on the configuration of a framework,
which preserves its first-order rigidity, is a projective transformation. Here
we show that a projective transformation also preserves the rank of a stress
matrix that is associated to configuration p in Rd. In the process, we will
set up the tools that we will need in the next Section to study the effects of
coning .

For any configuration p in Rd, define the d-by-|V | configuration matrix
P = [p1, . . . ,p|V |], where each pi is regarded as a column vector. Similarly

define the (d+ 1)-by-|V | augmented configuration matrix P̂ = [p̂1, . . . , p̂|V |],
where each p̂i is pi with an additional bottom entry 1. It is easy to show
(see [7]) that the equilibrium condition (1) holds for the stress associated to
a stress matrix Ω if and only if P̂Ω = 0.

With this terminology, we see that a configuration with corresponding
augmented configuration matrix Q̂ is projectively equivalent to the config-
uration corresponding the augmented configuration matrix P̂ if and only
if there is an (d + 1)-by-(d + 1) matrix A such that AP̂ = Q, where the
columns of P̂ and Q correspond to the configurations in homogeneous co-
ordinates. The last coordinates of Q may not be 1, so Q may not be an
augmented configuration matrix. So let λ1, . . . , λ|V | be the last coordinates
of Q. We assume that none of these λi are zero. (Any 0 entry corresponds
to a vertex at infinity.) Let D be the |V |-by-|V | diagonal matrix with di-
agonal entries λ1, . . . , λ|V |. Then QD−1 = Q̂ is an augmented configuration
matrix corresponding to a configuration that is the projective image of the
configuration corresponding to P̂ . Thus we get the following:

Proposition 7 Suppose that the configuration q is a projective image of the
configuration p in Rd, and Ω is a stress matrix corresponding to a stress for
p. Then DΩD is a stress matrix for the configuration q, for an appropriate
invertible diagonal matrix D.

Proof. Following the discussion above, since P̂Ω = 0,

Q̂DΩD = AP̂D−1DΩD = AP̂ΩD = 0.

�

From this result, as well as the classical results for infinitesimal rigid-
ity, we have a key, but subtle, invariance. By this result, the rank of the
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Figure 1: Coning takes a framework in d-space to a framework in (d + 1)-
space, transfering redundant rigidity and taking (d+1)-connectivity to (d+2)-
connectivity.

stress matrix is invariant under projective transformation, as is the rank of
the rigidity matrix. So if G(p), ω is a certificate for generic global rigidity,
then so is G(p̂), ω̂. However, the global rigidity of a specific configuration is
not an invariant under affine transformations. See Example 8.3 for further
refinements of this invariance.

5 Coning

Coning is a well recognized as a method for preserving first-order rigidity,
and generic rigidity, between dimensions [20]. Recall that coning a graph
G adds a new vertex v, and adds edges from this vertex to all the original
vertices in G, creating the cone graph G ∗ {v}. Given a configuration p∗
for the cone graph in Rd+1, such that the cone vertex u is distinct from the
vertices of G and the line through u and pi, intersects a hyperplane H ∼= Rd,
then pH is the projection of p∗ from the cone vertex u into H. We call
p∗,pH a projection pair of configurations.

The following basic result confirmed a piece of the engineering folklore in
rigidity theory which was passed into our mathematical community by the
geometer and engineer Janos Baracs.

Theorem 8 First-order Rigidity Coning [20] Given a graph G, a cone
graph G ∗ {v}, and a projection pair of configurations, then G ∗ {v}(p,u) is
first-order rigid (resp, independent) in Rd+1 if and only if G(pH) is first-order
rigid (resp. independent) in Rd.
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We now prove the the following, which is the main result about coning.

Theorem 9 Given a graph G, a cone graph G ∗ {v}, and a projection pair
of configurations, then the maximum rank of a stress matrix of G(pH) in H
is equal to |V |−d−1 if and only if the maximum rank of the stress matrix of
G ∗ {v}(p,u) in Rd+1 is also |V | − d− 1, where |V | is the number of vertices
of G and d is the dimension of the affine span of the vertices V .

Proof. Without loss of generality we assume that pH is a configuration in
Rd = H, that the cone point u is in Rd+1 − Rd, and the affine span is Rd+1.
Using the notation of §4, let P̂H be the augmented configuration matrix for
pH , and suppose that Ω is a stress matrix for a stress for pH . Then P̂HΩ = 0.
Transform the configuration for p in Rd+1 so that the cone point u goes to
the point [1, 0, . . . , 0], a point at infinity in homogeneous coordinates (with
(d+ 2) coordinates) as in §4.

Let γ be the 1-by-|V | row vector whose top coordinates are the coordi-
nates of the vectors pi of p in the extra homogenous coordinate, and let O
be the 1-by-d column vector of zeros. Then, in this homogenous form, the
configuration matrix Q that includes the extra point at infinity is

Q =

[
γ 1

P̂H O

]
, (2)

where O is an (d + 1) column vector of 0’s, and the last column of Q cor-
responds to the image of the cone point u. So Q = AP̂ , and P̂ Ω̃ = 0,
where Ω̃ is the stress matrix for the configuration p, and A is a non-singular
(d+ 2)-by-(d+ 2) matrix.

It is clear from (2) that the rank(Q) = rank(P̂H)+1. If rank(P̂H) = d+1,
then the rows of rank(P̂H) are a basis for the kernel of Ω, and rank(Ω) = |V |−
(d+1), the maximum possible. Similarly, if rank(Q) = d+2, then the rows of
Q are a basis for the kernel of Ω̃, and rank(Ω̃) = |V |+1−(d+2) = |V |−(d+1),
the maximum possible. So if either the rank of Ω or Ω̃ is |V | − (d + 1), we
can choose P̂H or Q to have maximal rank, the other will, and both Ω and
Ω̃ will have rank |V | − (d+ 1). �

This confirms the following result which was conjectured in [4].

Corollary 10 Global Rigidity Coning A graph G is generically globally
rigid in Rd if and only if the cone graph G ∗ {v} is generically globally rigid
in Rd+1.
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Figure 2: Moving vertices radially in and out on the cone does not change
first-order rigidity or global rigidity.

Proof. Choose a configuration p for G ∗ {v} that is generic in Rd+1 and
infinitesimally rigid, either in Rd+1, or such that its projection in Rd is in-
finitesimally rigid in Rd. Theorem 8 implies that they are both infinitesimally
rigid. Then apply Theorem 9 and Theorem 5. �

6 Global Rigidity on the Sphere

For this section, we assume that the cone vertex is the origin 0, and that
the other points are distinct, with no edge on a line through the origin.
and we write the cone configuration as p∗, while p is the configuration of
all the other points. There is a connection between the behaviour of cone
frameworks G∗v(p∗) in Rd+1 and the behaviour of the associated framework
G(ps) on the sphere where all vertices of p have been projected from 0 onto
the unit sphere Sd centered at u. (Geometrically, we extend the line 0pi and
intersect this with the sphere (Figure 3).

We already know that this projection from Rd+1 to the sphere Sd takes
infinitesimally rigid frameworks to first-order rigid frameworks on the sphere
[17, 20]. We now show that this projection to the sphere also takes globally
rigid frameworks to globally rigid frameworks.

Of course, such configurations on the sphere are not generic, as frame-
works in Rd+1 and we will give a geometric argument for the key equivalence.
That is, if any cone with the cone vertex at 0 is globally rigid, then the cone
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(a) (b) (c)

Figure 3: Different frameworks on the sphere can share the same lines from
the center, the same projection, and have the same global rigidity.

with all cone lengths of size one is globally rigid (and vice versa) (see below).

Proposition 11 A cone framework with cone vertex at the origin G∗{v}(p∗)
is globally rigid in Rd+1 if and only if the spherical framework G(pS) is glob-
ally rigid in Sd.

Proof. We note that any congruence of the d-sphere is also a restriction of a
unique congruence of Rd+1, which fixes the origin (the center of the sphere).
Conversely, any congruence of Rd+1 which fixes the origin (the center of the
sphere) is automatically a congruence of the sphere, when restricted to points
on the sphere.

Assume G ∗ {v}(p∗) is not globally rigid, with a second non-congruent
realization G ∗ {v}(q∗), with the same cone vertex. Then qs and ps are
also non-congruent, and the radial bars 0pi, 0pj, and 0qi, 0qj have equal
lengths. The third sides of the triangle pipj, qiqj also have equal length bars
(ps)i(ps)j, (qs)i(qs)j. This then generates equal lengths for any bar on the
sphere. We conclude that G(ps) and G(qs) are bar equivalent and are not
congruent. Therefore G(ps) is not globally rigid on the sphere.

Conversely, assumeG(ps) is not globally rigid on the d-sphere, with a non-
congruent bar-equivalent G(qs). Moving vertices along rays to G ∗ {v}(p∗)
specifies new distances to the cone point (center of the sphere) that are
also bar equivalent G ∗ {v}(q∗). Any congruence of p∗ and q∗ will give a
corresponding congruence of ps and qs. We conclude that G∗{v}(p∗) is not
globally rigid. �

From this geometric result, we have a generic result. We have the techni-
cal difficulty that if any two points (or any one point on the unit sphere) of
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any configuration lie on any sphere through the origin, the configuration is
not generic. This is inconvenient. So we say that any configuration in Sd that
is the central projection of a generic configuration in Rd+1 is quasi-generic in
Sd.

From Proposition 11, we also note that if a configuration p is generic in
Rd+1 then ps is quasi-generic on the d-sphere. The converse is not quite true,
but if ps is quasi-generic on the d-sphere, then some of the cones over p are
generic. In particular, without any additional work, we know that global
rigidity in Sd is also a quasi-generic property.

Combining this with Corollary 10, we have the desired transfer between
Euclidean space and spherical space of the same dimension.

Theorem 12 Spherical Transfer of Generic Global Rigidity A graph
G is generically globally rigid in Rd if and only if G is quasi-generically
globally rigid in the sphere Sd.

7 The Pogorelov Map

Note that Examples 8.3 and 8.6 show that for non-generic configurations,
a framework may be globally rigid in the plane, but not when lifted up to
the sphere, and a framework may be globally rigid on the sphere with the
projection not globally rigid in the plane. The generic form of this result is
the best possible.

It is interesting to observe that Theorem 12 can be shown by methods
of Pogorelov [16], and these methods also show how to do a similar transfer

to hyperbolic space. The idea is that there is a function T̃ : S|V |d+ × S|V |d+ →
R|V |d×R|V |d that takes a pair of edge-equivalent configurations p,q in S|V |d+ ,
the half sphere, to a corresponding pair of edge-equivalent configurations in
R|V |d, such that G(p) is equivalent to G(q) if and only if the correspond-
ing image configurations are equivalent in R|V |d. This can be used to show
Theorem 12, which we outline here.

Let n be the vector n = (0, 1) in Rd × R1 = Rd+1, the north pole of the
sphere Sd, and define Sd

+ = {v ∈ Sd | 〈v,n〉 > 0}, where 〈·, ·〉 is the standard
inner product in Rd+1. Then define T : Sd

+ × Sd
+ → Rd, by

T (p1,q1) = (p1 − 〈n,p1〉n)/〈n,p1 + q1〉. (3)
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for (p1,q1) ∈ Sd
+ × Sd

+, where Rd = Rd × 0 ⊂ Rd+1. Then the map T̃ is

defined by T̃ (p,q) = (T1(p,q), T2(p,q)) = (T1(p,q), T1(q,p)), where

T1(p,q) = (T (p1,q1), . . . , T (p|V |,q|V |)), (4)

and T is defined by (3). For a single pair of vertices (p1,q1), T̃ is central
projection into a 2d-dimensional hyperplane orthogonal to (n,n), followed
by projection parallel to (n,0) or (0,n) into Rd×Rd. It is a straightforward,
but tedious, exercise to verify that ||T (pi,qi) − T (pj,qj)|| = ||T (qi,pi) −
T (qj,pj)|| if and only if ||pi − pj|| = ||qi − qj||, where || · ||2 = 〈·, ·〉. Thus
for any graph G, and configurations p,q in Sd

+, G(p) is edge equivalent to
G(q) if and only G(T1(p,q)) is edge equivalent to G(T2(p,q)). It is also
straightforward to verify that T̃ is a homemorphism. Namely it is one-to-one
and onto.

Suppose that p is a generic configuration in Rd and G is not generically
globally rigid in Rd. By the results of [6] and [10], for an open neighborhood
of U of p in Rd|V |, there is an injection f : U → Rd|V | such that G(p) is edge
equivalent but not congruent to G(f(p)), for all p ∈ U . Then by the remarks
above, T̃−1(p, (f(p)) ∈ Sd

+ × Sd
+ consists of two G edge-equivalent but not

congruent configurations in Sd
+. It also easy to verify that projection onto

the first coordinate of T̃−1({p, f(p)) | p ∈ U}) is open in Sd
+. This means

that quasi-generic configurations in Sd
+ are not globally rigid for the graph

G.
Similarly for any quasi-generic configuration p in Sd, by replacing some

vertices by their antipodes, we can assume that the configuration lies in Sd
+.

If it is not globally rigid in Sd
+, an argument similar to the one in [6] shows

that there is a homeomorphism from an open neighborhood U of p to another
open subset of Sd|V | as in the Euclidean case. We can then use the Pogorelov
map T̃ in the opposite direction, to show that G is not generically globally
rigid in Rd, finishing this proof of Theorem 12.

It is also possible to use this idea to prove that a graph G is generically
globally rigid in Rd if and only if G is quasi-generically globally rigid in
the hyperbolic space Hd. Here one uses the same formulas (3) and (4),
but the inner product 〈·, ·〉 is given by the indefinite inner product where
Hd = {v | 〈v,v〉 = −1} and ||v−w||2 = 〈v−w,v−w〉 defines the distance
between v and w in Hd.

This completes a circle of ideas, concerning cones, projections and averag-
ing as in Section 8, which were used in [17] and [18] to understand Pogorelov’s
map.
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(a) (b)

Figure 4: (a) This is a cone in the plane that is not globally rigid, although
the projection is globally rigid on the line. Here α = 60◦, β = 120◦, and the
other two angles at the cone vertex are 90◦. (b) This is a second realization
with the same edge lengths.

8 Examples and a Further Criterion

We present some examples that are illustrative or provide counterexamples
to natural conjectures one might be inclined to make. Figure 4 will be used
for several examples. For such a cone over a cycle, as in Figure 4 the plane
configuration is globally rigid if and only if there not is another way of adding
the internal angles to a multiple of 360◦ by changing the sign of some, but
not all, the angles.

Example 8.1: The cone on the rectangle in Figure 4 is infinitesimally rigid in the
plane, and it has a stress matrix with rank 2 = 5 − 3. This is a
certificate that shows the underlying graph is generically globally rigid
in the plane, but not in that configuration.

Example 8.2: It is easy to see that the cone in Figure 4 projects to a configuration in
the line. The configuration in the line is globally rigid in the line, but
again the cone is not globally rigid in the plane.

Example 8.3: Suppose that the configuration of the cone in Figure 4 is perturbed
slightly in the plane, say to a generic configuration. That generic con-
figuration will be globally rigid in the plane. However, by applying an
affine shear that only stretches or shrinks in the vertical direction it
is possible to increase or decrease the angles α and β together so that
α + β = 180◦ again, and thus the cone returns to being not globally
rigid in the plane in the new, non-generic configuration.
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This shows that global rigidity, even starting at a generic configuration
is not an affine invariant. By way of contrast, at a generic configuration,
rigidity (and equivalently infinitesimal rigidity) is an affine invariant,
and more strongly, a projective invariant.

Example 8.4: One must be careful about how to apply Theorem 5. Just because
a given configuration is infinitesimally rigid and the graph is generi-
cally globally rigid, it does not mean that there is necessarily a stress
matrix of maximal rank. Non-generic configurations can sneak in in
unexpected ways. Figure 5a shows an example of an infinitesimally
rigid framework in the plane that is generically globally rigid with a
one-dimensional stress space, where the non-zero stress matrices are all
of rank 2 < 6− (2 + 1) = |V | − (d + 1). This is because the members
adjacent to the top and bottom vertices all have 0 stress, and because
the middle degree three vertices in the line segment are adjacent to
two collinear bars and so the bar going to the top or bottom vertex
must have 0 stress. Since the other bars at the top and bottom vertices
are not collinear, their stresses must be 0 as well. So the rank of the
stress matrix Ω must be the same as the rank of the 4-by-4 submatrix
corresponding to the four vertices on the horizontal line. That rank is
2.

Example 8.5: The framework in Figure 5b also has only the stress on the collinear
polygon - which gives a stress matrix of rank 3 < 7 − (2 + 1) = |V | −
(d + 1). However, the framework is infinitesimally rigid and globally
rigid. We will see below that these properties are sufficient to prove
the graph is generically globally rigid.

Example 8.6: One might ask if there is a framework, G(p), where there is a a generic
configuration with some stress matrix of not maximal rank. Such a
simple example is when G is the complete graph K5 in the plane.
Generically K5 has a stress in three-space. A generic configuration in
three-space projects to a generic configuration in the plane, and since
the affine span of the K5 in three-space is three-dimensional, the rank
of the associated stress matrix will not be maximal for this stress. Of
course, by Theorem 3, there is another stress which has a stress matrix
of maximal rank.

Example 8.7: It is possible to provide an example of a cone that is globally rigid
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(a) (b)

Figure 5: (a) The four horizontal vertices form a cycle in a line. The long
edge in that cycle is shown as an arc, so that the different bars will be visible.
This is not globally rigid, though the graph is generically globally rigid. (b)
The five horizontal vertices form a cycle on the line - and its stress matrix has
lower rank. The framework is isostatic and globally rigid and this guarantees
the graph is generically globally rigid .

(a) (b)

Figure 6: (a) This cycle in the line that is not globally rigid in the line. But
the cone over this graph is globally rigid in the plane. The two thick edges
are the same length, and must connect q1 with q2 to complete the alternate
realization, and they don’t meet. (b) K3,3 on an ellipse, has one stress with
tension on boundary hexagon, and compression on the three interior bars.
In this configuration, the framework is globally rigid in all dimensions.
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in the plane that projects to a cycle of four points in the line, which
are not globally rigid. For example, permute the cyclic graph whose
configuration is P = [0, 2, 3, 1] to [1, 3, 2, 0] on the line. If the cone
point is chosen generically, the cone will not be globally rigid in the
plane. Figure 6 shows this.

Example 8.8: The framework on K3,3 in Figure 6b is globally rigid in this special
configuration but it is not infinitesimally rigid when it has a stress. The
graph is not generically globally rigid because it is generically isostatic
and thus not redundantly rigid.

As suggested by Example 8.5, there is one further connection to explore.
Given a framework G(p) which is infinitesimally rigid and globally rigid in
Rd, but does not have a stress of rank |V | − (d + 1) (Example 8.8), do we
know that the graph is generically globally rigid in Rd? The following result
answers this in a strong way.

Theorem 13 Given a framework G(p) which is globally rigid and first-order
rigid in Rd, then there is an open neighborhood Np of G(p) which is all
globally rigid and first-order rigid.

Proof. If there are fewer than d vertices, the assumption of infinitesimal
rigid gurantees this is a complete graph, with joints affinely independent.
The theorem is clearly true for such complete graphs.

Assume that G(p) does not have an open neighborhood Np in which all
frameworks are globally rigid, |V | ≥ n. Then there is a convergent sequence
G(pk) of non-globally rigid frameworks, converging to G(p).

For each of the frameworks in this sequence, take one of the other bar-
equivalent realizations: G(qk). We can select one vertex v0, and by trans-
lation, bring each G(qk) to have qk

0 = p0. Then, by compactness, there
is a convergent subsequence G(qm), converging to G(q). G(q) must be
bar-equivalent to the limit of the corresponding G(pm) - which means bar-
equivalent to G(p).

If G(q) is not congruent to G(p), it contradicts the assumption that G(p)
was globally rigid. Therefore G(q) congruent to G(p). If we apply this same
congruence to all the G(qm), we have a two sequences G(rm) and G(pm)
which each converge to G(p). Moreover, for each pair, G(rm) and G(pm) are
bar-equivalent.
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The general averaging technique shows that pm − rm is an infinitesimal
motion of the average framework: G(pm+rm

2
). Specifically, for each edge

{i, j}:

(
pm

i + rm
i

2
−

pm
j + rm

j

2
) · [(pm

i − rm
i )− (pm

j − rm
j )]

=
1

2
[(pm

i − pm
j ) + (rm

i − rm
j )] · [(pm

i − pm
j )− (rm

i − rm
j )]

=
1

2
[(pm

i − pm
j )2 − (rm

i − rm
j )2 = 0

The conclusion that this is = 0 follows because of the bar equivalence of
the two frameworks.

Now, since G(p) is infinitesimally rigid, p affinely spans the space, as do
the pm, rm, and pm+rm

2
for sufficiently large m. If we repeat this calculation

for pairs that are not edges, then the fact that pm and rm are not congruent
means that some distance is being changed, and that some pair has a non-zero
strain (dot product) for this motion. When pm and rm are not congruent,
then pm − rm is a non-trivial infinitesimal motion.

This means that the rank of the rigidity matrix for each of the frameworks
G(pm+rm

2
) is lower than required for infinitesimal rigidity. Since each of

pm and rm converge to p, so does pm+rm

2
. We conclude that G(p) is the

limit of frameworks which are not infinitesimally rigid, and therefore is not
infinitesimally rigid. This contradiction completes the proof. �

Since every open neighborhood contains generic configurations, we have
the following corollary, which gives an additional certificate which guarantees
generic global rigidity.

Corollary 14 If G(p) is globally rigid and infinitesimally rigid in Rd, then
G is generically globally rigid in Rd

We call any framework G(p) which provides this certificate (is infinitesi-
mally rigid and globally rigid) strongly rigid.

Corollary 15 If there is one strongly rigid framework G(p) in Rd, then the
set of all configurations q making G(q) strongly rigid is open and dense in
Rd, and includes all generic configurations.
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Suppose that a graph G has no configuration p where G(p) is strongly
rigid. In this case, the set of globally rigid frameworks is thin - of co-
dimension at least 1. Provided the graph is at least 2-connected there will
be some globally rigid frameworks - for example putting all the vertices in a
line. However, none of these globally rigid frameworks can be infinitesimally
rigid. They must also have a stress, by the original results of Henrickson.

The concept of strongly rigid frameworks applies to spherical frameworks,
as a guarantee of an open dense subset, and of generic global rigidity, since
it applies to the cones to the origin.

The proof of Theorem 13 applies in all projective metrics, such as hyper-
bolic geometry, since the averaging process works in all these metrics [18]. So
the concept of strong rigidity extends to these other metrics. We also know
that infinitesimal rigidity transfers, for projectively equivalent configurations,
and therefore generically, to these other metrics [17].

From these results, examples and observations for cones and spherical
frameworks, we have the following:

1: By Theorems 8 and 9, a cone framework G ∗ {v}(p∗) is a certificate
for generic global rigidity of G ∗ {v} in Rd+1 if and only if G(pH) is
a certificate for generic global rigidity of G in Rd if and only if G(pS)
is a certificate for generic global rigidity of G in Sd. The concept, and
properties, of a certificate for generic global rigidity in Sd are well-
defined.

2: By Theorems 8 and 11, G∗{v}(p∗) is strongly rigid in Rd+1 if and only
if G(pS) is strongly rigid in Sd.

3: G ∗ {v}(p∗) is may be globally rigid in Rd+1 (equivalently G(pS) is
globally rigid Sd) even if G(pH) is not globally rigid Rd (Example 8.2).

4: G(pH) may be globally rigid Rd even if G∗{v}(p∗) is not globally rigid
in Rd+1 (equivalently G(pS) is not globally rigid Sd) (Example 8.7).

For a general graph G we have the following breakdown of possibilities at
particular frameworks.

Case 8.1: For generic configurations p there are three possibilities:

(a) G(p) is not infinitesimally rigid and thus not rigid and not globally
rigid.
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(b) The framework G(p) has a stress with rank of the stress matrix
equal to |V |− (d+ 1). The framework G(p) is globally rigid in Rd

and all generic configurations are globally rigid in Rd.

(c) All stress matrices have a rank |V |−(d+2) or less. This framework
is not globally rigid in Rd and no generic configuration makes G
globally rigid in Rd.

Case 8.2: For non-generic realizations p in Rd, there are many possibilities:

(a) The framework G(p) is a certificate for generic global rigidity
(has a stress matrix with rank |V | − (d+ 1) and is infinitesimally
rigid). In this case, the graph G is generically globally rigid in Rd

(Theorem 5).

(b) The framework G(p) is strongly rigid (is infinitesimally rigid and
is globally rigid). The configuration has an open neighborhood of
globally rigid frameworks, and the graph G is generically globally
rigid in Rd (Theorem 13 and Corollary 14).

(c) The framework G(p) is not infinitesimally rigid. We learn nothing
about the generic global rigidity of G, regardless of whether G(p)
is globally rigid or not, and regardless of whether G(p) has a stress
with a stress matrix of rank |V | − (d+ 1) or not (Example 8).

9 Other Conjectures

This analysis brings up a further question: Is there an easily calculated
quantity that will determine global rigidity of G(p) at the given configura-
tion with probability 1? By way of contrast, for rigidity, such a quantity is
infinitesimal rigidity, and the calculation of the rank of the rigidity matrix
for the given configuration. For global rigidity, the examples show that even
having infinitesimal rigidity and a stress with stress matrix rank |V |− (d+1)
is not sufficient for that configuration, though it is a certificate for generic
global rigidity of the graph, as discussed in §4. More generally, the Tarski-
Seidenberg elimination theory shows that there must exist a finite list of
polynomial equations [7] - but this does not provide any constructive process
for identifying them.

Vertex-splitting is another general technique for extending generically
rigid frameworks to larger generically rigid frameworks, in each dimension
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[21, 22]. Recently, Jordan and Szabadka [15] has proven that vertex split-
ting, with both vertices of degree ≥ 3 preserves global rigidity for all graphs
in the plane. The following was conjectured in [4]

Conjecture 1 Global RigidityVertex Splitting If G is a generically
globally rigid graph in Rd, n ≥ 3, and G′ is generiated from G by vertex
splitting for d-space, so that each of the split vertices has valence at least
d+ 1, then G′ is generically rigid in Rd

One difficulty with replicating the edge-splitting proof in [7] is to show
that vertex splitting on a reduntantly rigid graph generates a redundantly
rigid graph. In particular, what is missing is that the edge joining the two
split copies of the vertex is redundant!

In the following, we go out on a limb.

Conjecture 2 In dimension 3, K5,5 is the only vertex 4-connected generi-
cally redundantly rigid graph that is not generically globally rigid.

More generally, we conjecture that for any dimension n ≥ 3 the set of re-
dundantly rigid, (d+ 1)-connected graphs which are not generically globally
rigid is finite. Related to this is whether there is such a generically redun-
dantly rigid, vertex (d+1)-connected, but not generically globally rigid graph,
that has a complete graph Kd+1 as a subgraph. If such a graph exists, then
there might be a way of building several such examples.
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