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Stress-Energy Form

Recall that a tensegrity framework (G ,p) is universally rigid if when
(G ,q) satisfies the constraints of (G ,p), where q is a configuration
in any RD , then p is congruent to q. That is, cables don’t get
longer, struts don’t get shorter, and bars stay the same length.

If ! = (. . . ,!ij , . . . ) is a stress assigned to the edges of a graph G ,
the following quadratic form is defined for all configurations
p = (p

1

, . . . ,p
n

) for all pi in any Euclidean space
Rd ⇢ Rd+1 ⇢ Rd+2 . . . ,

E!(p) =
X

i<j

!ij(pi � pj)
2.
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Stress-Energy Basics

With respect to the standard basis for Rd , the matrix of E! is
⌦⌦ I

d . But with a permutation of the indices we see that

0

BBB@

⌦ 0 . . . 0
0 ⌦ . . . 0

0 0
. . . 0

0 0 . . . ⌦

1

CCCA
= I

d ⌦ ⌦.

So E! is positive semi-definite (PSD) if and only if ⌦ is PSD.
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The Fundamental Criterion

For a tensegrity graph G , we say that a stress ! is proper if !ij � 0
for {i , j} a cable, and !ij  0 for {i , j} a strut.

Theorem (Stress-Energy)

Let (G ,p) be configuration with n vertices in Euclidean space with

d-dimensional a�ne span, a proper equilibrium stress ! and

corresponding stress matrix ⌦ such that

1
rank ⌦ = n � d � 1,

2 ⌦ is PSD, and

3
the member directions with non-zero stress and bar directions

do not lie on a conic at infinity in the a�ne span of p.

Then (G ,p) is universally rigid.

Notice that there is no hedging about the configuration being
generic. I call a tensegrity that satisfies the conditions above super

stable.
4 / 1



Tensegrity Examples

Kenneth Snelson's
Original Tensegrity

Grunbaum PolygonCauchy PolygonK(3,3) on a conic

Complete Bipartite
Graph K(6,5)

A Desargues' Framework

Cube with Long
Diagonals, K(4,4)
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Snelson Tower

The artist Kenneth Snelson has several tensegrity sculptures worldwide. This 60 ft.

tensegrity Needle Tower is at the Hirshhorn Museum in Washington, D.C. 6 / 1



Principle of Least Energy

The proof of the Fundamental Theorem uses the principle of least
work (my favorite). Suppose that (G ,q) is a framework, in any
dimension, that has cables no longer, struts no shorter, and bars
the same length as (G ,p), which has a proper PSD equilibrium
stress ! of rank n � d � 1. Then

E!(q) =
X

i<j

!ij(qi � qj)
2 

X

i<j

!ij(pi � pj)
2 = 0.

Since ⌦ and thus E! is PSD, q is in the kernel of E! and (G ,q) is
in equilibrium with respect to !. Since p is universal with respect
to !, q is an a�ne image of p, and since the stressed directions do
not lie on a conic at infinity, q is congruent to p. ⇤
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Planar Examples

The planar planar tensegrities above are examples of the following:

Theorem

If (G ,p) is obtained from a convex planar polygon with cables on

the external edges, struts along some of the internal diagonals, and

a proper non-zero equilibrium stress, then it is super stable.

Any tensegrity in this class must have a kernel of rank at most 3.
So the signature of any linear combination of stress matrices must
remain constant, and any PSD example implies they all are PSD of
maximal rank.
Problem: For a convex polygon find one example, with any
arrangement of strut diagonals, that is super stable.
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3D Examples

A prysmic tensigrid is obtained from two regular polygons in
parallel planes, both centered on the z-axis. Cables join adjacent
vertices of the polygons, and each vertex is connected by a cable
to a vertex in the other polygon and by a strut to one other vertex
in the other polygon, maintaining symmetric (dihedral) symmetry.

Theorem (RC and Maria Terrell 1995)

For a prysmic tensigrid, when one polygon is rotated so that there

is a non-zero proper equilibrium stress, then the tensegrity is super

stable.

n vertices k SteDS 
n sommets k pas 

j steps 
W 

n 

Figure 2 Figure 3 

In Hinrichs [lo] there is a classification of certain symmet- 
ric tensegrity frameworks, as well as statements and conjec- 
tures regarding their rigidity. The following is a description of 
these symmetric tensegrity frameworks, which Hinrichs 
calls prismic tensigrids. Consider two circles in disjoint paral- 
lel planes where both circles have their centers on a line L 
perpendicular to the two planes. Note L is a line of rotational 
symmetry for the two circles. Choose n = 3,4,5,. . .. Consider 
two sets of n points, one set on each of the circles, spaced so 
that each set forms the vertices of a regular polygon. Thus 
there are 2n vertices in all. See F&le 2. 

Next choose two integers j, k = 1,2,. . . p l .  On each circle 
connect a cable between any pair of vertices that are k steps 
apart in cyclic order. Connect a strut between some pair of 
vertices on different circles, then rotate the strut about L to 
obtain n disjoint struts. Each of the struts connects a vertex in 
one circle to exactly one vertex in the other circle. We fix 
some orientation of the plane. Lastly for each vertex, connect 
it to that vertex on the other circle which is j steps in a clock- 
wise direction from the other endpoint of the strut. Following 
Hinrichs we call such a framework P,(j, k). (See F'igu~ 3.) 

Note that in addition to the rotational symmetries about L 
each of these frameworks has a symmetries which rotate one 
circle into the other. Also note we have not mentioned what 
the relative positions are for the two sets of points on the 
circles. We wdl see later that in order for there to be any 
chance that the prismic tensigrid is rigid, there is only one 

qui le constituent ne peuvent s'eloigner. Pour chaque etai, les 
deux sommets qui le constituent ne peuvent se rapprocher. 
Pour chaque barre, les deux sommets qui la constituent doi- 
vent demeurer a la mCme distance. On designe la charpente 
par G@), ou G est un graphe dont les sommets correspon- 
dent aux joints de la charpente et dont les aretes decrivent 
quelles sont les paires de sommets qui sont des ciibles, des 
barres ou des etais. On note la configuration par 
p = ,p2, .  . .,pu) ou p,  est le i+me joint de la charpente. 

Dans Particle de Hinrichs [lo], on trouve une classification 
de certaines charpentes de tensegrite symetriques, de m&me 
que des affirmations et des conjectures concernant leur rigi- 
dite. Voici une description de ces charpentes de tenskgrite 
symetriques qu'Hinrichs nomme tensegrites prismiques. 
Considerons deux cercles appartenant a deux plans paralle- 
les disjoints, les deux cercles ayant leur centre sur une droite 
L perpendiculaire a m  deux plans. Remarquons que L est un 
axe de symetrie de rotation pour les deux cercles. Posons 
n = 3,4,5,. . . et considerons deux ensembles de n points, un 
sur chacun des cercles, espaces de telle sorte que chaque 
ensemble constitue les sommets dun polygone regulier. I1 y 
a ainsi 2n sommets en tout. Voir figurn 2.  

Choisissons ensuite deux entiers j, k = 1,2,. . .,n-1 . Sur 
chaque cercle, on lie par un cible toute paire de sommets qui 
se situent a k places l'un de l'autre dans un ordre cyclique. 
On lie par un etai certaines paires de sommets se situant sur 
des cercles dflerents ; on effectue alors une rotation de l'etai 
autour de L pour obtenir n etais disjoints. Chacun des etais lie 
un sommet de l'un des cercles a exactement un sommet de 
l'autre cercle. On determine une certaine orientation du 
plan. Enfin, on lie chaque sommet au sommet de l'autre 
cercle qui se situe a j places, dans la direction horaire, de 
l'autre terminaison de l'etai. Selon Hinrichs, on nommera 
une telle charpente P,(j,k). Foir figule 3.) 

Remarquons qu'en plus des symetries de rotation autour 
de L, chacune de ces charpentes possede une symetrie qui 
pivote un cercle sur l'autre. On remarque egalement que 
nous n'avons pas mentionne les positions relatives des deux 
ensembles de points sur les cercles. On verra plus loin que 
pour qu'il y ait une chance que la tensegrite prismique soit 
rigide, il n'existe qu'une position possible pour l'etai. Ceci 
determine la position relative des deux ensembles de n som- 
mets. Notons egalement que P,(j, k)  est une image-miroir de 
P,(j,n-k) et que ce sont des charpentes congruentes. 

I 
61 
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Symmetric Examples-Form Finding

Many of the examples used by artists are highly symmetric. One example of

that is when the point group of symmetries acts transitively on the vertices and

there are exactly two transitivity classes of cables and one for struts. In this

case, the stress matrix is simply an element of the group algebra for the

representations of the abstract group of symmetries. Each irreducible

representation corresponds to vectors in the kernel of the stress matrix. When

it is 3-dimensional it provides a configuration that is super stable. The ratio

between the cable stresses is a parameter that the user can choose.

http://www.math.cornell.edu/

~

tens/

Dear Delores,

Here is graphic.

A highly symmetric tensegrity

Bob Connelly

This is a computer rendering (by Bob Terrell in Mathematics Department) of a tensegrity structure with the rotational 
symmetries of a regular dodecahedron.  It has 60 nodes connected with 60 red cables that cannot increase in length, 30 other 
blue cables, and 60 brown struts that cannot decrease in length.  Considering the nodes as points, and the cables and struts 
as distance constraints on those points, the structure super stable, which implies that any other configuration of the nodes (in 
any dimension) that satisfies the cable and strut constraints, is congruent to the figure in the picture.  See our catalog 
(http://www.math.cornell.edu/~tens/) where you construct your own highly symmetric tensegrity.  Any of these can be built 
with sticks as struts and wire or springs as cables.

Robert Connelly <rc46@cornell.edu>
Re: new CAM website - graphics needed
August 21, 2008 9:52 AM
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Spiderwebs

There are many other examples of universally rigid tensegrity
frameworks where there is no single stress that rigidifies the
structure. It is easy to construct examples with spiderwebs, which
are tensegrity frameworks where some nodes are pinned or
rigidified, while all the members are cables, as in the examples
below. Any positive equilibrium stress will rigidify the tensegrity.

The projection of any convex
polytope into one of its faces 
creates an equilibrium spiderweb.

The black nodes are pinned. The
process of successively attaching
more nodes is iterated.

The red cables are unstressed
but they are attached to a
universally rigid subframework.
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Dimensional Rigidity

A (tensegrity) framework (G ,p) is called (by Alfakih)
dimensionally rigid if its a�ne span is d dimensional and any
equivalent framework (G ,q) (with bars the same length, cables no
longer, struts no shorter) has an a�ne span of dimension at most
d . Note that a framework may be dimensionally rigid, and yet not
be even locally rigid, as in the examples below. (Dimensionally

maximal would be a better name.)

A ruled hyperboloid
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Dimensional Rigidity and Universal Rigidity

Clearly dimensional rigidity is weaker than universal rigidity, but
they are very closely related.

Theorem (Alfakih 2007)

If (G ,p) has n vertices, with a�ne span d dimensional, and is

dimensionally rigid, then d = (n � 1) or it has a (proper) PSD

equilibrium stress. Furthermore, any equivalent framework is an

a�ne image of p.

If (G , q) is equivalent to (G , p) place p and q in Rd ⇥ 0 and 0⇥ Rd

respectively. Then pi (t) = ((cos t)pi , (sin t)qi ) for each vertex i of G , for

0  t  ⇡/2, is a monotone flex of p to q. That is, the distance |pi (t)� pj(t)|
changes monotonically in t. (E.g. it stays constant for bars.) The configuration

pi (⇡/4) lies in a d-dimensional a�ne space, by the dimensional rigidity, so the

graph of the map from p to q lies in a d-dimensional a�ne subspace of

Rd ⇥ Rd , and the correspondence extends to an a�ne map.
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Iterated Universal Rigidity

Corollary

A framework (G ,p) is universally rigid if and only if it is

dimensionally rigid and the member directions with a non-zero

stress and bars do not lie on a conic at infinity.

The question remains as to what about frameworks (G ,p) that are
universally rigid, but whose stress matrices have too low a rank. It
turns out that in that case there is a sequence of stresses with
stress matrices ⌦1,⌦2, . . . ,⌦k , where each ⌦i is defined on those
configurations in the kernel of the previous ⌦j for j < i . If the final
space of configurations is d-dimensional, then (G ,p) is
d-dimensionally rigid. This is essentially an application of facial
reduction in convexity theory. See Connelly-Gortler.
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Example of Iterated Universal Rigidity

2

1

1

-2

4 4

1

This shows an example of a framework that is dimensionally rigid in the plane,

with a 3-step iteration. The second-level stresses are shown, which turn out to

be lever arm balancing forces. The first and second level stresses are in the

vertical members. A computation shows that the sequence of stress matrices,

when restricted to the kernel of the previous stresses, are each PSD, but after

the first level these higher-level stresses are not PSD on the whole space of

configurations.
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Projective Invariance

A projective map on real projective space can be regarded as a
map as follows: For each point pi 2 Rd define
↵(pi ) = Ap̂i/zi 2 Rd ⇥ 1, where zi 6= 0 is the last coordinate of
Ap̂i , and A is a (d + 1)-by-(d + 1) matrix. If p = (p

1

, . . . ,p
n

) is a
configuration in Rd , and ⌦ is an equilibrium stress matrix for the
stress ! for p, then

AP̂D

�1
D⌦D = 0

shows that D⌦D is another equilibrium stress matrix for ↵(p),
where D is the diagonal matrix with entries zi . The new stress
matrix D⌦D has the same signature for the configuration as ⌦,
where each stress !ij is replaced with zi!ijzj . Note that the sign of
!ij changes if the (projective) image of the member crosses the
line/space at infinity. This shows that infinitesimal rigidity is a
projective invariant, and using this we can show that dimensional
rigidity is projectively invariant. However ...
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Universal Rigidity is not Projectively Invariant

The ladder on the left is not universally rigid, since it has an a�ne
flex. Whereas the orchard ladder, a projective image of the straight
ladder, on the right is universally rigid since there are 3 distinct
stressed directions.
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Averaging-deaveraging Method

A method of relating infinitesimal rigidity to global rigidity going back many

years is the following: Suppose that (G , p) and (G , q) are two equivalent

frameworks, i.e. corresponding bars have the same lengths. Then

p

0
i = pi � qi , i = 1, . . . , n defines an infinitesimal flex on (G , p̄), where

p̄i = (pi + qi )/2 is the average of p and q. If p and q are not congruent, then

p

0 is not trivial, and if they are congruent and have d-dimensional a�ne span

in Rd , then p

0 is trivial. Conversely, if p0 is an infinitesimal flex of (G , p), then

(G , p+ p

0) is equivalent to (G , p� p

0).

Problem: Find an example of congruent frameworks (G , p + p

0), (G , p � p

0) even though p

0 is a non-trivial

infinitesimal flex of (G , p).
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Bipartite Frameworks

A very extensive analysis of the equilibrium stresses of a complete bipartite
graph in any dimension was given in Bolker-Roth. For example:

Theorem (Bolker-Roth 1980)

A complete bipartite graph Km,n(p, q) in Rd for which the a�ne span of p and
q are both d-dimensional and m = d + 1, n = d(d + 1)/2, is infinitesimally
rigid unless its m + n = (d + 1)(d + 2)/2 vertices lie on a quadric surface.

Walter Whiteley showed how the infinitesimal flexes can be found from the

quadric surface.

K(3,3) on a conic
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Universally Rigid Bipartite Frameworks

A natural question is to find a characterization of when a bipartite
framework is universally rigid. The following is partial information.

Theorem (Connelly-Gortler)

If (K (m, n), (p,q)) is a bipartite framework in Rd
, with

m + n � d + 2, such that the partition vertices (p,q) are strictly

separated by a quadric, then it is not universally rigid.

Conversely, if (K (m, n), (p,q)) cannot have its vertices p and q

separated by a quadric, then there is an equilibrium stress with
stress matrix with positive diagonal entries. In Rd the existence of
a PSD maximal rank stress matrix reduces to the case when
m + n = (d + 1)(d + 2)/2.

Conjecture

For all d � 1, (K (m, n), (p,q)) in Rd
is universally rigid if and only

if p and q cannot be strictly separated by a quadric.

20 / 1



Universally Rigid Bipartite Frameworks

The conjecture is true for d = 1, by T. Jordan and V-H Nguyen,
and for d = 2. For d = 3, calculations strongly suggest that it is
true for K (6, 5), the critical case.

The tensegrity on the left is centrally symmetric and so any strictly
separating conic has to be a circle centered at the red center point,
and it is easy to see that there is no such circle. For the tensegrity
on the right the red and blue points are separated by the
degenerate conic consisting of two lines.
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