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Stress-Energy Form

Recall that a tensegrity framework (G, p) is universally rigid if when
(G, q) satisfies the constraints of (G, p), where q is a configuration
in any RP, then p is congruent to q. That is, cables don't get
longer, struts don't get shorter, and bars stay the same length.

If w=(...,wjj,...) is a stress assigned to the edges of a graph G,
the following quadratic form is defined for all configurations

p = (P1,-.-,Pn) for all p; in any Euclidean space
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E.(p) = > wii(pi — p))*.
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Stress-Energy Basics

With respect to the standard basis for R?, the matrix of E,, is
Q ® 19, But with a permutation of the indices we see that

Q
=172 Q.
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So E, is positive semi-definite (PSD) if and only if Q is PSD.



The Fundamental Criterion

For a tensegrity graph G, we say that a stress w is proper if wj;; > 0
for {i,j} a cable, and wj; <0 for {i, } a strut.

Theorem (Stress-Energy)

Let (G, p) be configuration with n vertices in Euclidean space with
d-dimensional affine span, a proper equilibrium stress w and
corresponding stress matrix S such that

Q@ rankQ=n—-—d -1,

Q@ Q is PSD, and

© the member directions with non-zero stress and bar directions
do not lie on a conic at infinity in the affine span of p.

Then (G, p) is universally rigid.

Notice that there is no hedging about the configuration being
generic. | call a tensegrity that satisfies the conditions above super
stable.



Tensegrity Examples

K(3,3)'0r?.?fomc Cauchy Polygon Grunbaum Polygon A Desargues' Framework

. Kenneth Snelson's Complete Bipartite
Cube with Long Original Tensegrity Grapﬂ K(6 5?

Diagonals, K(4,4)



Snelson Tower

The artist Kenneth Snelson has several tensegrity sculptures worldwide. This 60 ft.

tensegrity Needle Tower is at the Hirshhorn Museum in Washington, D.C. 6/1



Principle of Least Energy

The proof of the Fundamental Theorem uses the principle of least
work (my favorite). Suppose that (G, q) is a framework, in any
dimension, that has cables no longer, struts no shorter, and bars
the same length as (G, p), which has a proper PSD equilibrium
stress w of rank n—d — 1. Then

Eo(a) =) wi(ai—a))* < Y wi(pi — p)* = 0.
i<j i<j
Since Q and thus E, is PSD, q is in the kernel of E, and (G, q) is
in equilibrium with respect to w. Since p is universal with respect
to w, q is an affine image of p, and since the stressed directions do
not lie on a conic at infinity, q is congruent to p. [J



Planar Examples

The planar planar tensegrities above are examples of the following:

If (G, p) is obtained from a convex planar polygon with cables on
the external edges, struts along some of the internal diagonals, and
a proper non-zero equilibrium stress, then it is super stable.

Any tensegrity in this class must have a kernel of rank at most 3.
So the signature of any linear combination of stress matrices must
remain constant, and any PSD example implies they all are PSD of
maximal rank.

Problem: For a convex polygon find one example, with any
arrangement of strut diagonals, that is super stable.



3D Examples

A prysmic tensigrid is obtained from two regular polygons in
parallel planes, both centered on the z-axis. Cables join adjacent
vertices of the polygons, and each vertex is connected by a cable
to a vertex in the other polygon and by a strut to one other vertex
in the other polygon, maintaining symmetric (dihedral) symmetry.

Theorem (RC and Maria Terrell 1995)

For a prysmic tensigrid, when one polygon is rotated so that there
is a non-zero proper equilibrium stress, then the tensegrity is super
stable.

[ED)]



Symmetric Examples-Form Finding

Many of the examples used by artists are highly symmetric. One example of
that is when the point group of symmetries acts transitively on the vertices and
there are exactly two transitivity classes of cables and one for struts. In this
case, the stress matrix is simply an element of the group algebra for the
representations of the abstract group of symmetries. Each irreducible
representation corresponds to vectors in the kernel of the stress matrix. When
it is 3-dimensional it provides a configuration that is super stable. The ratio
between the cable stresses is a parameter that the user can choose.

http://www.math.cornell.edu/~tens/




Spiderwebs

There are many other examples of universally rigid tensegrity
frameworks where there is no single stress that rigidifies the
structure. It is easy to construct examples with spiderwebs, which
are tensegrity frameworks where some nodes are pinned or
rigidified, while all the members are cables, as in the examples
below. Any positive equilibrium stress will rigidify the tensegrity.
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Dimensional Rigidity

A (tensegrity) framework (G, p) is called (by Alfakih)
dimensionally rigid if its affine span is d dimensional and any
equivalent framework (G, q) (with bars the same length, cables no
longer, struts no shorter) has an affine span of dimension at most
d. Note that a framework may be dimensionally rigid, and yet not
be even locally rigid, as in the examples below. (Dimensionally
maximal would be a better name.)

A ruled hyperboloid
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Dimensional Rigidity and Universal Rigidity

Clearly dimensional rigidity is weaker than universal rigidity, but
they are very closely related.

Theorem (Alfakih 2007)

If (G,p) has n vertices, with affine span d dimensional, and is
dimensionally rigid, then d = (n — 1) or it has a (proper) PSD
equilibrium stress. Furthermore, any equivalent framework is an
affine image of p.

If (G,q) is equivalent to (G, p) place p and q in RY x 0 and 0 x R?
respectively. Then p;(t) = ((cos t)pi, (sin t)q;) for each vertex i of G, for

0 <t < 7/2, is a monotone flex of p to q. That is, the distance |p;(t) — p;(t)|
changes monotonically in t. (E.g. it stays constant for bars.) The configuration
pi(m/4) lies in a d-dimensional affine space, by the dimensional rigidity, so the
graph of the map from p to q lies in a d-dimensional affine subspace of

R? x RY, and the correspondence extends to an affine map.
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Iterated Universal Rigidity

A framework (G, p) is universally rigid if and only if it is
dimensionally rigid and the member directions with a non-zero
stress and bars do not lie on a conic at infinity.

The question remains as to what about frameworks (G, p) that are
universally rigid, but whose stress matrices have too low a rank. It
turns out that in that case there is a sequence of stresses with
stress matrices €21, s, ..., Qxk, where each Q; is defined on those
configurations in the kernel of the previous €; for j < i. If the final
space of configurations is d-dimensional, then (G, p) is
d-dimensionally rigid. This is essentially an application of facial
reduction in convexity theory. See Connelly-Gortler.

14/1



Example of Iterated Universal Rigidity

This shows an example of a framework that is dimensionally rigid in the plane,
with a 3-step iteration. The second-level stresses are shown, which turn out to
be lever arm balancing forces. The first and second level stresses are in the
vertical members. A computation shows that the sequence of stress matrices,
when restricted to the kernel of the previous stresses, are each PSD, but after
the first level these higher-level stresses are not PSD on the whole space of

configurations.
15/1



Projective Invariance

A projective map on real projective space can be regarded as a
map as follows: For each point p; € RY define
a(p;) = Api/zi € R x 1, where z # 0 is the last coordinate of
Api, and Ais a (d + 1)-by-(d + 1) matrix. If p=(p1,...,pn) is a
configuration in RY and Q is an equilibrium stress matrix for the
stress w for p, then

APD™IDQD =0

shows that DQD is another equilibrium stress matrix for a(p),
where D is the diagonal matrix with entries z;. The new stress
matrix DQD has the same signature for the configuration as €,
where each stress wj; is replaced with zjw;;z;. Note that the sign of
wjj changes if the (projective) image of the member crosses the
line/space at infinity. This shows that infinitesimal rigidity is a
projective invariant, and using this we can show that dimensional
rigidity is projectively invariant. However ...
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Universal Rigidity is not Projectively Invariant

The ladder on the left is not universally rigid, since it has an affine
flex. Whereas the orchard ladder, a projective image of the straight
ladder, on the right is universally rigid since there are 3 distinct
stressed directions.

17/1



Averaging-deaveraging Method

A method of relating infinitesimal rigidity to global rigidity going back many
years is the following: Suppose that (G, p) and (G, q) are two equivalent
frameworks, i.e. corresponding bars have the same lengths. Then

p; =pi —qi,i = 1,...,n defines an infinitesimal flex on (G, p), where

pi = (pi +qi)/2 is the average of p and q. If p and q are not congruent, then
p’ is not trivial, and if they are congruent and have d-dimensional affine span
in R9, then p’ is trivial. Conversely, if p’ is an infinitesimal flex of (G, p), then

(G,p+ p’) is equivalent to (G,p — p').

Problem: Find an example of congruent frameworks (G, p + p’), (G, p — p’) even though p’ is a non-trivial

infinitesimal flex of (G, p).
18/1



Bipartite Frameworks

A very extensive analysis of the equilibrium stresses of a complete bipartite
graph in any dimension was given in Bolker-Roth. For example:

Theorem (Bolker-Roth 1980)

A complete bipartite graph Km,»(p,q) in RY for which the affine span of p and
q are both d-dimensional and m = d + 1, n = d(d + 1) /2, is infinitesimally
rigid unless its m+ n = (d + 1)(d + 2)/2 vertices lie on a quadric surface.

Walter Whiteley showed how the infinitesimal flexes can be found from the

quadric surface.

19/1



Universally Rigid Bipartite Frameworks

A natural question is to find a characterization of when a bipartite
framework is universally rigid. The following is partial information.

Theorem (Connelly-Gortler)

If (K(m, n),(p,q)) is a bipartite framework in RY, with
m -+ n > d + 2, such that the partition vertices (p,q) are strictly
separated by a quadric, then it is not universally rigid.

Conversely, if (K(m,n),(p,q)) cannot have its vertices p and q
separated by a quadric, then there is an equilibrium stress with
stress matrix with positive diagonal entries. In RY the existence of
a PSD maximal rank stress matrix reduces to the case when
m+n=(d+1)(d+2)/2.

For all d > 1, (K(m, n),(p,q)) in R? is universally rigid if and only
if p and q cannot be strictly separated by a quadric.




Universally Rigid Bipartite Frameworks

The conjecture is true for d = 1, by T. Jordan and V-H Nguyen,
and for d = 2. For d = 3, calculations strongly suggest that it is
true for K(6,5), the critical case.

The tensegrity on the left is centrally symmetric and so any strictly
separating conic has to be a circle centered at the red center point,
and it is easy to see that there is no such circle. For the tensegrity
on the right the red and blue points are separated by the
degenerate conic consisting of two lines.
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