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Main Problem

Given a graph G and positive scalars dij assigned to each edge
{i , j} in G , construct a configuration p in Rd so that
|pi � pj | = dij . When is it possible, and how can you construct it if
it is possible?

Easy first case is a triangle: The condition is that the triangle
inequalities must hold.
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Equivalently the Cayley-Menger determinant is
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which is a form of Heron’s formula for the area A of the triangle.
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The simplex

The next easy case is for the case of the complete graph. There
are Cayley-Menger constraints, but the Gram matrix is more direct,
although it is less democratic in that one vertex, say p

0

= 0 for
convenience. Then let P be the configuration matrix (without
inserting 1’s in an extra coordinate) for the rest of the vertices. So
the realizability condition is that

P

T
P = (pi · pj)

is PSD of rank d if p has a�ne span in Rd , where
pi · pj = (d2

0i + d

2

0j � d

2

ij )/2. Since this matrix just depends on the

distances dij , when it is PSD, one can factor it as PT
P obtaining a

configuration p.
The Cayley-Menger determinants, which alternate in sign, are just
a few row and column operations from the Gram matrix condition
above.
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Tetrangle Inequality

The triangle inequality is not enough to insure the existence of a
configuration with given edge lengths. For example, one way to
show that a given set of proposed edge lengths are not feasible in
any Euclidean space is to compare them to an appropriate
tensegrity.
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Whenever 1/2  x <
p
3/3, the metric described on the right

cannot be realized in any Euclidean space even though the triangle
inequality holds for all triangles. The tensegrity on the left, since it
is universally rigid, is a certificate that the distances indicated on
the right are not realizable.
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Semi-Definite Programming

Determining when a general graph can be realized in Rd , even for d = 1 can be
di�cult. For example, when G is a cycle of n vertices with given edge lengths,
to determine when it can be realized in R1 is equivalent to the backpack
problem. However, if you do not mind rising to the occasion and simply
realizing in some possibly much higher dimension, there are methods that can
work with reasonably sized graphs. Another approach to graph realization is to
take the given member lengths and apply an algorithm that uses semi-definite
programming (SDP) to find a configuration with a maximal dimensional a�ne
span for the given edge lengths, starting with (G , p). If it returns the
configuration p again, you can conclude that (G , p) is universally rigid. The
problem is that this process only converges to a dimensionally rigid example,
and the measure of success is how close the calculated lengths are to the given
lengths, which can be problematic as the following example shows. The
question of whether there is an “algorithm” to “compute” a given metric is
partly tied up with the question of how the configuration itself is defined.

Is the problem itself well-defined?
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Sloppy Realizationsm EF = 6.67 cm

G H

The black vertices are pinned, while the members on the right have
been increased by less than 1%.
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Bipartite Realizations

Suppose that the graph one wants to reconstruct is a complete
bipartite graph. If the partitions can be strictly separated by a
quadric, then SDP methods will provide a realization, but only in
higher dimensions. On the other hand if the partitions cannot be
separated, then, if our conjecture is correct, the SDP algorithm will
provide a realization in the desired dimension.

But how do you know if the configuration can be separated by a
quadric if you don’t know the configuration?
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ABBIE-Think Globally, Act Locally

One method, due to Bruce Hendrickson, is to split the graph into
two globally rigid pieces and recursively realize each piece in Rd .
Then combine the two pieces into the larger desired realization of
the whole graph. This was “in honor of Abbie Ho↵man for his
admonition to ”think globally, act locally,” although it is doubtful
he had nonlinear optimization in mind!”

This has two di�culties: First, it assumes that the configuration is
generic, and second it needs that not only is the whole graph
globally rigid, the graph has to have enough edges to be assured of
the existence of the globally rigid subgraphs.

The motivation for this “molecule problem” was to reconstruct
moderately large proteins where Nuclear Magnetic Resonance
(NMR) data gave distance information about certain pairs of
atoms, and these graphs had at least some parts that were not
even locally rigid.
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Traditional Reconstuction Methods

One method is to fill in estimates of upper and lower bounds on all
the pairs of distances of the graph, and then improve them as
much as possible using the triangle inequality, tetrangle inequality,
etc. (Bound smoothing.) Then when no further improvements are
possible, project onto R3 using least square methods and then do
some energy minimization. This is explained in Crippen and
Havel’s book.
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3-Realizable Graphs

There are two steps in the realizability problem. Finding a realization in some
possibly higher dimensional Euclidean space, and pushing that realization down
to a lower-dimension, such as dimension 3 or 2 still preserving its edge lengths.
So we can assume the first step, that the graph is realized in some RD , for
some large dimension D. If it always happens that the realization can then be
realized in dimension d , we say the graph is d-realizable.

If a finite graph H is obtained from a finite graph G by a sequence of edge

contractions and deletions, we say that H is a minor of G . A property of

graphs is called minor monotone if when G has the property every minor H of

G also has the property. A forbidden minor for a given graph property is (class

of graphs) G that do not have the property.

Theorem (Robertson-Seymour)

For any graph property that is minor monotone, there is a finite list

of forbidden minors, and there is a polynomial-time algorithm for

determining when a given graph has the property.
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3-Realizable Graphs

It is easy to check that d-realizability is minor monotone, so the quest is to
determine a list of minimal forbidden minors.
The Robertson-Seymour Theorem is great for reassurance, but it does not tell
you how to find the minimal minors. It is like a cheering section, but does not
enter the playing itself.

If d = 1, there is one minimal forbidden minor, the triangle. So a graph is
1 realizable if and only if it is a forest, a finite union of trees.

If d = 2, there is still only one forbidden minor, K(4), the complete graph
on 4 vertices. These are sometimes called series parallel graphs.

If d = 3, then the only forbidden minors are K(5) and the one-skeleton of
the octahedron. See [Connelly-Belk, and Belk].

d � 4 it is not known what the forbidden minors are, although
Laurent-Varvitsoitis do have a result for the cone over a graph in
dimension 4.

Problem: Find a minimal forbidden minor for 4-realizability other than K(6).
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Forbidden Octahedron

This shows an example of an octahedron with the indicated edge
lengths that is only realizable in dimension 4.
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The 4 outside vertices in this picture are forced to be planar, and
the next two can be placed in R4 when the length of the red edge
is between 1 and

p
3. Notice that this framework is universally

rigid. The 10 member directions do not lie on a quadric in RP3.
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Some 3-Realizable Graphs

The following two graphs, V
8

and C

5

⇥ C

2

, are 3-realizable. They
represent critical graphs that have to be shown how they are
3-realizable by hand. See [Belk].

13 / 16



First Section

Back to Local Rigidity

There are several locally rigid frameworks and tensegrities that are
not infinitesimally rigid, not globally rigid, and not universally rigid.
The basic concept is prestress stability. This means roughly that
the framework rests at local minimum of some sort of energy
function that is the sum of energy functions of pairs of distances
and the minimum exists because it passes a second derivative test.
To be more specific let fij be a real-valued function assigned to
each member {i , j} of the graph G , such that it is monotone
increasing for cables of a tensegrity graph, monotone decreasing
for the struts, and at a minimum for a bar and all these functions
are assumed to be concave up. Then for any configuration q in Rd

su�ciently close to a configuration p in Rd , define

E (q) =
X

i<j

fij((qi � qj)
2).

14 / 16



First Section

Prestress stability

It is clear (by the principle of least work again) that if the
configuration p is a strict local minimum point for E , modulo rigid
congruences, then (G ,p) is locally rigid. Define a stress for (G ,p)
by !ij = f

0
ij((pi � pj)2). Furthermore define sti↵ness coe�cients for

E by cij = f

00
ij ((pi � pj)2).
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