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Potential functions

How is the stability of a structure determined
when it is statically indeterminant or even
not statically rigid?
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Potential functions

How is the stability of a structure determined
when it is statically indeterminant or even
not statically rigid?

Think of each member as a spring at rest (a
bar), in tension (a cable), or in compression
(a strut).  In the spirit of Hooke’s Law
define an energy function as follows:
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Member potentials

For each member {i,j} define (or determine)
Eij(x) its potential at length x1/2.  So the total

energy for any configuration q=(q1, q2, …
qn) in Ed is

E(q)=Si<j Eij(|qi-qj|2).
The Eij functions are chosen (or computed)

with respect to a fixed configuration p as
follows.
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The individual energy functions

A bar:  A local minimum,
concave up

2
ij jiE (|p - p | )

ji
|p - p | 2
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A strut:  Monotone decreasing,
concave up

2
ij jiE (|p - p | )

A cable:  Monotone increasing,
concave up

2
ij jiE (|p - p | )
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The critical calculation

Define wij = E¢ij(|pi-pj|2) the first derivative of Eij at
x= |pi-pj|2.  Then a calculation shows that p is a
critical point for the energy functional E if and
only if w = (…, wij,…) is a proper self stress for
the tensegrity G(p).

Our goal is to determine when the configuration p is
a local minimum for E, up to congruences.  So we
calculate the second derivative.
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Stiffness

For each member {i,j}, define
cij = E¢¢ij(|pi-pj|2) > 0,

the second derivative of Eij at |pi-pj|2 as the
stiffness coefficient of member {i,j}.  We assume
that these coefficients are all positive.  Define C as
the e-by-e diagonal matrix whose ij, ij diagonal
entry is cij, where e is the number of members in
the tensegrity.
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Hessian
Let p¢= (p1¢, p2¢, … pn¢) be a set of directions, where

each pi¢ is in Ed.  So E(p + tp¢), for 0 ≤ t, has
derivative 0 when t = 0, for all p¢.  A calculation
shows that the second derivative in this direction p¢
is given by the sum of the following two quadratic
forms:

4 Si≤j cij[(pi- pj)(pi¢- pj¢)]2  + 2 Si≤j wij(pi¢- pj¢)2.
The matrix S = 4 R(p)TCR(p) is what we call the

stiffness matrix, where R(p) is our old friend the
rigidity matrix.  Note that S is always positive semi-
definite, and 4 (p¢)T S p¢ is the term on the left.
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Stress matrix
The matrix of the form on the right is 2 W, where

each non-zero off-diagonal entry of W is defined
to be -wij corresponding to each coordinate, and
such that the row and column sums are 0.  The
matrix W is called the stress matrix and is very
interesting. It can provide a lot of global
information about the tensegrity, although it can
have negative eigenvalues.

Define the matrix H = 4 S + 2 W.  So 2 (p¢)TWp¢ is
the term on the right for the second derivative
above.
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Prestress stability

Corresponding to given stress coefficients w,
and stiffness coefficients, we say that G(p)
is prestress stable if H is positive semi-
definite with only the trivial infinitesimal
flexes in its kernel.  The following is in Connelly-
Whiteley 1995.

Theorem:  If a tensegrity G(p) is prestress
stable in Ed, then it is rigid in Ed.



11

Examples of prestress stable
tensegrities

The pattern of tensions and compressions is on
the right.  Neither of these structures is
infinitesimally rigid.
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Displacements and forces

Given a prestress stable tensegrity structure
G(p) and an equilibrium force F applied to
the configuration p, how does p deform to
accommodate F, and how is the force
resolved?
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Displacements and forces

Given a prestress stable tensegrity framework G(p)
and an equilibrium force F applied to the
configuration p, how does p deform to
accommodate F, and how is the force resolved?

As a first approximation to the displacement Dp,
solve  F + 2HDp = 0, which is possible since H
has maximal rank, and 2H is the gradient of the
approximation to the energy form.  Then the
resolving stress can itself be determined from the
edge lengths and the energy formulas.
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Example of a displacement

it deforms into a configuration
that does resolve the force.

When the equilibrium force above is
applied to this tensegrity it cannot
resolve the force as is, but. . .
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An application to packings

What sort of model of rigidity is appropriate
for packings of ellipses in the plane or
ellipsoids in space?

Even for a single ellipse in a triangle, what
does a maximal ellipse with a fixed axis
ratio look like?

(Joint work with A. Donev, S. Torquato, F. Stillinger, Chaiken, et. al.)
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An ellipse in a triangle

If the lines through the points of
contact do not intersect in a point,
then a rotation (counterclockwise
here) about the triangle enclosed
moves the ellipse into the triangle.
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The critical case

When the 3 lines meet at a point there is an
"infinitesimal flex" of the ellipse inside the
triangle.  So there is no occasion when the
ellipse is "infinitesimally rigid" inside the
triangle.
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Modeling ellipses

At each point of contact between ellipses place a circle
whose curvature is the same at the curvature of the
ellipse at that point. Join these centers in each ellipse
with a statically rigid bar framework.  Join the centers
of touching circles with a strut.
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Consequences of the model

• The tensegrity paradigm applies to irregularly
shaped particles.

• The notion of being infinitesimally rigid applies,
BUT, unlike the case when all the particles are
circles (or spheres in space), being rigid does not
always imply infinitesimal rigidity.  (The
canonical push does not work in general.)

• If the structure is infinitesimally rigid, then there
is a minimum number of contacts that are
necessary.  We calculate that next.
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Contacts for ellipses

Suppose a packing of ellipses in the plane is such that
all are pinned except for n which are allowed to
move, and the system is infinitesimally rigid.  Each
ellipse has 3 degrees of freedom and each contact
corresponds to 2 ellipses, except for the boundary.
So if n is large enough so that the boundary effects
are negligible, and if Z is the average degree of a
jammed ellipse packing, then

Z ≥ 6 - O(n-1/2),
which seems unlikely for congruent ellipses.
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Contact numbers for ellipsoids

Doing the same calculation in 3-space, where
each ellipsoid has 3 distinct axis lengths, the
degrees of freedom of each ellipsoid is 6.
Then the average degree is Z ≥ 12 - O(n-2/3),
which seems almost impossible for
congruent ellipsoids unless they are a small
perturbation of one of the standard most
dense packings of congruent spheres.
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Almost spherical ellipsoids

There was a famous argument between Newton and
Gregory about how many spheres can touch a
single sphere, all with the same radius in a
packing.  Newton said 12, Gregory 13.  Newton
was right as shown in the 1950’s.  This must also
be true for ellipsoids if the axis ratios are close
enough to 1.  So the coordination number for such
ellipsoids cannot be greater than 12 either.  So if
any sort of random packing of such packings is
jammed, its coordination number should be closer
to 6 than 12 and it cannot be statically rigid.
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Contact numbers for spheroids

When the ellipsoid has one degree of
rotational symmetry, i.e. when two of the
three axes are the same length, that subtracts
from the degrees of freedom of the
ellipsoids.  In that case, for infinitesimal
rigidity, one needs Z ≥ 10 -O(n-2/3) for the
coordination number.
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Experimental results

In the 8 author joint paper in Science, it is
shown that in dimension 3 with congruent
(monodispersed) ellipsoids with an axis
ratio chosen in the range close to 1, but not
equal to, have coordination number less
than 12 in the case when all axes are
different and less than 10 (about 9.5 for
some) when two of the axes are the same.
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The moral of the story

• Random, even mildly random, packings of
ellipsoids must not be infinitesimally rigid.
They must be prestress stable.

• “Random” packings of monodispersed
ellipsoids with the appropriately chosen axis
ratios tend to have surprisingly high
packing densities.
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Packing densities and
coordination numbers

9.80.671 : 1 : 0.6
(m&m’s)

11.40.73 1 : 1.3 : 0.77

9.50.70 1 : 1 : 1.5

60.631 : 1 : 1

Coordination
numberPacking densityAxis ratios
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The m&m container and
simulation
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Remarks

Theorem (L. Fejes Toth 1940’s):  The most dense
packing of any centrally symmetric convex body
in the plane is achieved with a lattice packing.

In particular, for any ellipse, it has maximum
packing density p/√12=0.90699…, the same as the
most dense packing of congruent circles, and for a
periodic packing it is achieved by a one parameter
family of ellipses obtained by some rotation of the
standard circle packing dilated in one direction
only.
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An ellipse packing with max
density



31

An ellipse packing with max
density
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An ellipse packing with max
density
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Packing congruent ellipsoids

A. Bezdek and W. Kuperberg showed that
there are packings of congruent ellipsoids
whose packing density exceeds
p/√18=0.7408…, the most dense packing of
congruent spheres in 3-space.  This was
improved by Donev, Chaiken, Stillinger,
Torquato to 0.7704…
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The first layer
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The ellipsoid packing

Each layer is as in the previous slide.  But each layer
is turned 90º and laid down onto the next layer.  It
then fits better than laying them down in a parallel
manner.  The axis ratio of the ellipsoids in each
layer is √3.  The length in the third direction is
arbitrary.  So this 77% density can be achieved
when any of the 3 axis ratios is √3.  Each ellipsoid
is in contact with 14 others.

Note that the most dense random arrangement of
ellipsoids was one where one of the axis ratios
way 1.68, where as √3=1.732….
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Question

Is there an upper bound a < 1 for the best
packing density of congruent ellipsoids,
independent of the axis ratios?


