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Abstract

Suppose that p = (p1,p2, . . . ,pN ) and q = (q1,q2, . . . ,qN ) are
two configurations in Ed, which are centers of balls Bd(pi, ri) and
Bd(qi, ri) of radius ri, for i = 1, . . . , N . In [9] it was conjectured that
if the pairwise distances between ball centers p are contracted in going
to the centers q, then the volume of the union of the balls does not
increase. For d = 2 this was proved in [1], and for the case when the
centers are contracted continuously for all d in [2]. One extension of
the Kneser-Poulsen conjecture, suggested in [6], was to consider var-
ious Boolean expressions in the unions and intersections of the balls,
called flowers, where appropriate pairs of centers are only permitted
to increase, and others are only permitted to decrease. Again under
these distance constraints, the volume of the flower was conjectured
to change in a monotone way. Here we show that these generalized
Kneser-Poulsen flower conjectures are equivalent to an inequality be-
tween certain integrals of functions (called flower weight functions)
over Ed, where the functions in question are constructed from maxi-
mum and minimum operations applied to functions each being radially
symmetric monotone decreasing and integrable.
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1 The Kneser-Poulsen conjecture

Let ‖ . . . ‖ denote the standard Euclidean norm of the d-dimensional Eu-
clidean space Ed. So, if pi,pj are two points in Ed, then ‖pi − pj‖ denotes
the Euclidean distance between them. It will be convenient to denote the
(finite) point configuration consisting of the points p1,p2, . . . ,pN in Ed by
p = (p1,p2, . . . ,pN). Now, if p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN)
are two configurations of N points in Ed such that for all 1 ≤ i < j ≤ N the
inequality ‖qi − qj‖ ≤ ‖pi − pj‖ holds, then we say that q is a contraction
of p. If q is a contraction of p, then there may or may not be a continuous
motion p(t) = (p1(t),p2(t), . . . ,pN(t)), with pi(t) ∈ Ed for all 0 ≤ t ≤ 1 and
1 ≤ i ≤ N such that p(0) = p and p(1) = q, and ‖pi(t)−pj(t)‖ is monotone
decreasing for all 1 ≤ i < j ≤ N . When there is such a motion, we say that
q is a continuous contraction of p. Finally, let Bd(pi, ri) denote the closed
d-dimensional ball centered at pi with radius ri in Ed and let Vold(. . . ) rep-
resent the d-dimensional volume (Lebesgue measure) in Ed. In 1954 Poulsen
[10] and in 1955 Kneser [9] independently conjectured the following for the
case when r1 = · · · = rN :

Conjecture 1.1 If q = (q1,q2, . . . ,qN) is a contraction of p = (p1,p2, . . . ,
pN) in Ed, then

Vold[∪N
i=1B

d(pi, ri)] ≥ Vold[∪N
i=1B

d(qi, ri)].

Conjecture 1.2 If q = (q1,q2, . . . ,qN) is a contraction of p = (p1,p2, . . . ,
pN) in Ed, then

Vold[∩N
i=1B

d(pi, ri)] ≤ Vold[∩N
i=1B

d(qi, ri)].

Actually, M. Kneser seems to be the one who has generated a great deal
of interest in the above conjectures also via private letters written to a num-
ber of mathematicians. (For more details on this see for example [8]). The
state of the art of the Kneser-Poulsen conjecture can be summarized as fol-
lows. (We refer the interested reader to [1] for a detailed description of the
many partial results known.) First, Csikós [2] has proved Conjecture 1.1
(resp., Conjecture 1.2) for continuous contractions in any dimension. Sec-
ond, in a recent paper [1] K. Bezdek and Connelly have managed to prove
Conjecture 1.1 as well as Conjecture 1.2 in the Euclidean plane for arbitrary
contractions.
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2 Flowers of balls

Flowers of balls, which are sets built from balls using the lattice operations
∪ and ∩ have been introduced in [6]. Here we recall their definition following
[3]. Let f be a lattice polynomial that is an expression built up from some
variables using the binary operations ∪ and ∩ with properly placed brackets
indicating the order of the evaluation of the operations. The sign of f is
defined as follows. If f is the union (resp., intersection) of two shorter lattice
polynomials, then sgn f = 1 (resp., sgn f = −1). If f is a single variable,
then sgn f = 0. The structure of f can be described with the help of a
rooted tree Tf defined recursively on the length of f as follows. If f is a
single variable, then Tf is a single vertex labelled with that variable. If
sgn f = 1 (resp., sgn f = −1), then write f in the form f1 ∪ · · · ∪ fj (resp.,
f1 ∩ · · · ∩ fj), where sgn fi ≤ 0 (resp., sgn fi ≥ 0) for all 1 ≤ i ≤ j. Finally,
to obtain Tf take the disjoint union of the trees Tfi

, 1 ≤ i ≤ j and a new
vertex, the root of Tf labelled with f , and draw an edge from the new vertex
f to the roots of the trees Tfi

, 1 ≤ i ≤ j. It is clear that if we know the
rooted tree Tf and the signs of its vertices, then we can reconstruct f . Also,
it will be convenient to write f as f(x1, . . . , xN) indicating the variables of
f by x1, . . . , xN . We will always assume that each variable occurs exactly
once in f meaning that for each 1 ≤ i ≤ N there is exactly one vertex of Tf

labelled by xi. For 1 ≤ i < j ≤ N consider the paths from the vertices xi

and xj to the root f . These paths meet each other first at a vertex g. Let
εij = εji denote the sign of the lattice polynomial g. Finally, a flower of balls
in Ed f(Bd(p1, r1), . . . ,B

d(pN , rN)) is a set of the form, where f(x1, . . . , xN)
is a lattice polynomial. Now, the main result of Csikós [3] can be phrased as
follows.

Theorem 2.1 Let p(t) = (p1(t),p2(t), . . . ,pN(t)) be a continuous motion
with pi(t) ∈ Ed for all 0 ≤ t ≤ 1 and 1 ≤ i ≤ N such that p(0) = p and
p(1) = q, and εij‖pi(t)−pj(t)‖ is monotone decreasing for all 1 ≤ i < j ≤ N .
Then

Vold[f(Bd(p1, r1), . . . ,B
d(pN , rN))] ≥ Vold[f(Bd(q1, r1), . . . ,B

d(qN , rN))].

Furthermore we also conjecture the following discrete version of Theorem
2.1, which we call the generalized Kneser-Poulsen Conjecture:
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Conjecture 2.2 Let p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN) be point
configurations in Ed, such that εij‖pi−pj‖ ≥ εij‖qi−qj‖ for all 1 ≤ i < j ≤
N , where εij, 1 ≤ i < j ≤ N are the sign coefficients assigned to the lattice
polynomial f . Then

Vold[f(Bd(p1, r1), . . . ,B
d(pN , rN))] ≥ Vold[f(Bd(q1, r1), . . . ,B

d(qN , rN))].

The original Kneser-Poulsen Conjecture is Conjecture 2.2 when f consists
of all unions. Note that Conjecture 2.2 implies Conjecture 1.1 and Conjecture
1.2 as well as Theorem 2.1. Also the main theorem of [1] is Conjecture 2.2
for the plane d = 2. We will see next that Conjecture 2.2 also implies some
quite seemingly stronger results.

3 The weighted Kneser-Poulsen conjecture

First, as in [4], let us introduce for real numbers x and y the following
notation: x ∨ y := max{x, y} and x ∧ y := min{x, y}. Second, motivated by
the above definition of flowers one can introduce a special class of real valued
functions with N variables as follows. Let h(x1, . . . , xN) be an expression
built up from the variables x1, . . . , xN using the binary operations ∨ and
∧ with properly placed brackets indicating the order of the evaluation of
the operations. Also, it is assumed that each variable xi, 1 ≤ i ≤ N occurs
exactly once in h. Just like in case of a flower one can assign to h a rooted tree
Th and define the sign of h as well as introduce the sign coefficients εij = εji

for all 1 ≤ i < j ≤ N . In short, we call h a Boolean flower formula with N
variables. Third, let w(x) = (w1(x), . . . , wN(x)) be a vector valued function
with wi(x) being a decreasing non-negative function defined on [0, +∞) and
satisfying

∫ +∞
0

w(x)dx < +∞ for all 1 ≤ i ≤ N . Call such a function
a proper weight vector function. Let p = (p1,p2, . . . ,pN) be an arbitrary
point configuration in Ed. Then the flower weight function (h ◦ w)p of p
generated by h(x1, . . . , xN) and w(x) is defined by

(h ◦w)p(x) := h(w1(‖x− p1‖), . . . , wN(‖x− pN‖)),

for all x ∈ Ed. Having introduced all this we are ready to phrase the follow-
ing extension of the Kneser-Poulsen conjecture, which we call the weighted
Kneser-Poulsen conjecture.
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Conjecture 3.1 Let p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN) be point
configurations in Ed, such that εij‖pi−pj‖ ≥ εij‖qi−qj‖ for all 1 ≤ i < j ≤
N , where εij, 1 ≤ i < j ≤ N are the sign coefficients assigned to the Boolean
flower formula h with N variables, and w is any proper weight vector function
generating the flower weight functions (h ◦w)p and (h ◦w)q. Then∫

Ed

(h ◦w)p(x)dx ≥
∫

Ed

(h ◦w)q(x)dx.

4 Indicator functions

For any set X, the corresponding indicator function IX : X → {0, 1} is
defined by

IX(x) =

{
1 if x ∈ X

0 if x /∈ X
.

Note that IBd(pi,ri)(x) = I[0.ri](‖x − pi‖). Hence when wi = I[0.ri], for i =
1, . . . , N ,∫

Ed

(h ◦w)p(x)dx =

∫
Ed

(h ◦ (IBd(p1,r1)(x), . . . , IBd(pN ,rN )(x))dx

= Vold[f(Bd(p1, r1), . . . ,B
d(pN , rN))],

where h is a Boolean flower formula for ∨ and ∧ corresponding to the lattice
polynomial f for unions and intersections as indicated in Section 3.

This shows that the weighted Kneser-Poulsen Conjecture 3.1 implies Con-
jecture 2.2, which, in turn implies Conjecture 1.1 (resp., Conjecture 1.2) as a
special case. Indeed, we show in the next section that the weighted Kneser-
Poulsen Conjecture 3.1 follows from the generalized Kneser-Poulsen Conjec-
ture 2.2 and, so the two are equivalent, but the weighted version extends to
a larger set of circumstances.

5 Extensions

One natural extension of Conjecture 2.2, which is also a logical consequence,
is to take positive linear sums of terms of the sort, where distance constraints
are consistent for each of those terms. If f and g are two lattice polynomials
on the same variables such that the signs f are the same as the signs of g,
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then we say f and g are compatible. This can be extended to the case when
the set of variables for f and g are not the same by insisting that the signs be
the same on the set of variables that they do share. This gives the following:

Theorem 5.1 Suppose that f1, . . . , fM are a set of pairwise compatible lat-
tice polynomials, and Conjecture 2.2 holds in dimension d for those polynomi-
als. Let p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN) be point configurations
in Ed, such that εij‖pi − pj‖ ≥ εij‖qi − qj‖ for all 1 ≤ i < j ≤ N , where
εij, 1 ≤ i < j ≤ N are the sign coefficients assigned to the lattice polynomials
f1 . . . fM . Then for all ak ≥ 0, k = 1, . . . ,M

M∑
k=1

akVold[fk(B
d(p1, r1), . . . ,B

d(pN , rN))] ≥ (1)

M∑
k=1

akVold[fk(B
d(q1, r1), . . . ,B

d(qN , rN))].

For the time being we assume that the weight functions of Section 3 are
monotone decreasing step functions with a finite number of steps. In other
words, we assume that for each i = 1, . . . , N there are positive real numbers
bi1, . . . , biMi

and ri1 < ri2 · · · < riMi
such that

wi(x) =

Mi∑
j=1

bijI[0,rij ](x).

For each point pi in the the configuration p construct Mi concentric balls
Bd(pi, ri1), . . . ,B

d(pi, riMi
). For the configuration p = (p1,p2, . . . ,pN), re-

place each pi with Mi copies of itself to get p̃i, and create a correspond-
ing configuration of balls Bd(pi, ri1), . . . ,B

d(pi, riMi
) for each i = 1, . . . , N .

Let cik =
∑k

j=1 bij. Then replace each wi with Mi others, where each
wik = cikI[0,rik], k = 1, . . . ,Mi to get w̃. Then

wi(x) =

Mi∑
j=1

bijI[0,rij ](x) =

Mi∨
k=1

cikI[0,rik](x).

If h is a Boolean flower formula for p, replace each term for pi with the wedge
of Mi copies of pi, as above, to get a corresponding Boolean flower formula
h̃. Then ∫

Ed

(h ◦w)p(x)dx =

∫
Ed

(h̃ ◦ w̃)p̃(x)dx.
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The point is that now, each weight function is a positive constant times the
indicator function for some ball. We can now state the corresponding result
for general weight functions, where w(x) = (w1(x), . . . , wN(x)) is a vector
valued function with wi(x) being a decreasing non-negative function defined
on [0, +∞) and satisfying

∫ +∞
0

wi(x)dx < +∞ for all 1 ≤ i ≤ N .

Theorem 5.2 Suppose that f is a lattice polynomial, and Conjecture 2.2
holds in dimension d for p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN) point
configurations in Ed for all possible radii of the balls. Then Conjecture 3.1
holds for the corresponding Boolean flower formula h. In other words since
εij‖pi − pj‖ ≥ εij‖qi − qj‖ for all 1 ≤ i < j ≤ N , where εij, 1 ≤ i < j ≤ N
are the sign coefficients assigned to the lattice polynomial f , then∫

Ed

(h ◦w)p(x)dx ≥
∫

Ed

(h ◦w)q(x)dx.

Proof: By approximating the given monotone decreasing weight functions
w with monotone decreasing step functions we can assume that w is made
of step functions. The argument above shows that by replacing the configu-
rations p and q with p̃ and q̃ we can assume that the step functions wi are
constant on each ball.

We proceed by induction on the number of balls in the formula for the
Boolean flower formula h. If there is only one ball, or if all the weight
functions wi are equal to each other, then the conclusion is clearly equivalent
to Conjecture 2.2. Otherwise, let m be the minimum positive value of all
of the wi. Then mI[0,ri](x) ≤ wi(x) for all x ≥ 0. So we can replace each
wi with wi −mI[0,ri], and we will still have valid weight functions, but with
some balls having 0 weight, thus effectively removing them from the formula.
Hence by induction, the conclusion of Conjecture 3.1 holds.

6 Known results

Although the following inequalities are similar to the inequalities proved by
Gordon [5] and a generalization of [7], they seem to be new. From what we
know, we can state the following, which follows from the main result of [1].

Theorem 6.1 Conjecture 3.1 holds for dimension d = 2, for any Boolean
flower formula h and any proper weight vector function w.

7



The following follows from Theorem 2.1 the main result of [3].

Theorem 6.2 Conjecture 3.1 holds for all dimensions d ≥ 2, for any Boolean
flower formula h and any proper weight vector function w when the configu-
ration q is a continuous monotone repositioning of p consistent with h.

7 Remark and example

Although Theorem 5.1 is natural and follows easily, it is not covered by the
Boolean flower formulas in Theorem 5.2. For example, the following graph
of Figure 1 indicates a sign pattern on four vertices that does not come from
any Boolean flower formula. By Theorem 5.1 if each of the terms in some
sum of area functions is such that change in the distances are consistent and
each of the terms has the Kneser-Poulsen property, then the areas will change
in the expected way.

Figure 1: Here the graph on four vertices is indicated. Edges with a +
indicate that the sign coefficient is +1 and a − indicates that the sign is −1.
The edges with a +1 label are not permitted to increase, and the edges with
a −1 label are not permitted to decrease

The following is an example of a Boolean flower formula (w1 ∨ w3) ∧ w4,
where the weight functions are such that w1 = 4 on D2, w1 = 1 on D1 −D2,
w3 = 1 on D3, and w4 = 3 on D4, where p1 is the center of D1 and D2, p3 is
the center of D3, and p4 is the center of D4. Figure 2 shows how the integral
of the flower weight function is decomposed into integrals of the indicator
functions of the appropriate disks.
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