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Abstract
A tensegrity is finite configuration of points in E¢ suspended rigidly
by inextendable cables and incompressable struts. Here it is explained
how a stress-energy function, given by a symmetric stress matrix, can
be used to create tensegrities that are globally rigid in the sense that
the only configurations that satisfy the cable and strut constraints are
congruent copies.

1 Introduction

In 1947 a young artist, Kenneth Snelson, was intrigued with a particular
structure that he invented. It was a few sticks that were suspended rigidly
in midair without touching each other. It seemed like a magic trick. When
he showed this to the entrepreneur, builder, visionary, and self-styled math-
ematician, R. Buckminster Fuller, he was inspired to call it a tensegrity be-
cause of its “tensional integrity”. Fuller talked about them and wrote about
them extensively. Snelson went on to build a great variety of fascinating
tensegrity sculptures all over the world including a 60 foot work of art at the
Hirschhorn museum in Washington, DC. as shown in Figure 1.

Why did these tensegrities hold up? What were the geometric principles?
They were often under-braced, and they seemed to need a lot of tension for
their stability. So Fuller’s name, tensegrity, is quite appropriate.
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Figure 1:

My proposal is that there is a very reasonable and pleasant model to de-
scribe the stability of most of the tensegrities that Snelson and others have
built. There are results that can be used to predict the stability of a tenseg-
rity, and there is a calculation that seems to reasonably imply stability, but
also to create tensegrities that are stable. In the following, up to Section 8§,
there will be a self -contained elementary development of a set of principles
that can be used to understand many of the Snelson-like tensegrities. This
relies on the properties of the stress matrix, discussed in Section 5. Then in
Section 8 the properties of the stress matrix are applied to generic configu-
rations of bar tensegrities (usually called bar frameworks), where there have
been a lot of exciting new results recently, and the ideas will be outlined.

The discussion here emphasizes the stress matrix and the stress-energy
functional, and largely ignores the first-order theory, about which a lot has
been written.

There are several quite interesting applications of the theory of tenseg-



rities. Of course, there is a natural application to structural engineering,
where the pin-jointed bar-and-joint model is appropriate for an endless col-
lection of structures. See [34, 1, 37] for example. See [31, 38, 35, 36, 32] for
the first-order theory, and see [17] for the more general approach that com-
bines the first-order theory and the stress matrix approach that is developed
here. In computational geometry, there was the carpenter’s rule conjecture,
inspired by a problem in robot arm manipulation. This proposes that a non-
intersecting polygonal chain in the plane can be straightened, keeping the
edge lengths fixed, without creating any self-intersections. The key idea in
that problem uses basic tools in the theory of (first-order) tensegrity struc-
tures. See [14, 13] as well as Subsection 7.8 here. Granular materials of
hard spherical disks can be reasonably modeled as tensegrities, where all the
members are struts. Again the theory of tensegrities can be applied to pre-
dict behavior and provide the mathematical basis for computer simulations
as well as predict the distribution of internal stresses. See [19)].

2 Notation

Formally define a tensegrity as a finite set of labeled points called nodes,
where some pairs of the nodes are connected with inextendable cables, some
pairs of nodes are connected with incompressible struts, and some pairs of
nodes are connected with inextendable, incompressible bars. The cables,
struts, and bars are all called members of the tensegrity. A continuous mo-
tion of the nodes, starting at the given configuration of a tensegrity, where the
member constraints are satisfied, is called a flex of the tensegrity. Any con-
figuration of points has continuous flexes, such as rotations, translations, and
their compositions that are restrictions of congruences of the whole space.
These are called trivial flezes of the tensegrity. If the tensegrity has only
the trivial flexes that satisfy the member constraints, then it is rigid in E?.
Otherwise it is called flezible. Note that members can cross one another, in-
tersect, and we are not concerned with what materials one might use to build
a tensegrity that enforce the member constraints. This is a purely geometric
object. Figure 2 show some examples of rigid and flexible tensegrities in the
plane and space.

The rigid tensegrity in space in Figure 2 is one of the original objects
made by Snelson. It is quite simple but suspends three sticks, the struts,
rigidly without any pair of them touching. Indeed Snelson does not like to
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Figure 2: Nodes are denoted by small round points, cables by dashed line
segments, struts by solid line segments, and bars by thin line segments.

call an object made of cables and struts a tensegrity unless all the struts are
completely disjoint, even at their nodes. If a tensegrity, by the definition
here, is such that the struts are disjoint, while all the other members are
cables, it will be called a pure tensegrity.

One can build many of the rigid tensegrities shown here with rubber (or
plastic) bands for cables, and dowel rods with a slot at their ends serving as
struts or bars.

In what follows, there will be some discussion of techniques for computing
the rigidity of tensegrties. As a by-product of this analysis global rigidity,
defined in Section 3, will emerge naturally.

Let G denote the underlying tensegrity graph of nodes, where the edges
of G, the members, are each labeled as cables, struts or bars. Let p =
(p1,---,Pn) denote the configuration of nodes, where each p; is a vector
in EZ. The whole tensegrity is denoted as G(p). I regard this notation as
somewhat bezarre, but it is helpful to distinguish between the configuration
p and the way the pairs of nodes are connected with the three types of
members. There are occasions, where the graph G is not needed, and the
configuration can stand alone by itself, and there are other times when on
the graph G is relevant, and the configuration is put in the background.

An important concept is the notion of a stress associated to a tensegrity,
which is a scalar w;; = w;; associated to each member {i,j} of G. Call the



vector w = (...,wjj,...), the stress. We can suppress the role of G here
by simply requiring that w;; = 0 for any non-member {7, j} of G. A stress
w=(...,wj,...)is proper if w;; > 0 for a cable {7, j} and w;; < 0 for a strut
{i,7}. There is no condition when {7, j} is a bar. We say a proper stress w
is strict if each w;; # 0 when {i, j} is a cable or strut. One should be careful
here, since in the paper [32], a proper stress is called what is strict and proper
here. I prefer the definition here since it is convenient to not necessarily insist
that all proper stresses are strict. One should also be careful not to confuse
the notion of stress here with that used in structure analysis, in physics or in
engineering. There stress is defined as a force per cross-sectional area. In the
set-up here there are no cross-sections; the scalar w;; is better interpreted as
a force per unit length.

Let w = (..., wj,...) be a proper stress for a tensegrity graph G. For
any configuration p of nodes in E?, define the stress-energy associated to w

as
E,(p) = sz‘j(Pz‘ -p;)% (1)
i<j
where the product of vectors is the ordinary dot product, and the square of
a vector is the square of its Euclidean length.
A conceit I like is to say the tensegrity G(p) dominates the tensegrity
G(q), and write G(q) < G(p), for two configurations q and p, if

pi —p;| > | —aq;| for {i,j} a cable,
pi —p;| < |ai—gq;| for {i,j} astrut and (2)
pi —p;| = |ai—q;| for{i,j} abar.

So if G(p) dominates G(q) and w is a proper stress for G, then E,(p) >
E.(q), and when w is strict and E,(p) = E,(q), then |p; — p;| = |a; — qj]
for all the members {4, j} of G. The conditions of (2) are called the tensegrity
constraints.

3 Local and global rigidity

So, more formally, a tensegrity G(p) is rigid, if the only continuous of flex
of G(p) that satisfies the tensegrity constraints (2) are the restrictions of
congruences. One could even call this local rigidity as in [20]. There is



a good body of work devoted to the detection and understanding of local
rigidity. One can see some good surveys in [31, 35, 36].

However, most of the structures that are are made by Snelson and other
artists actually enjoy a stronger property. We say a tensegrity G(p) is globally
rigid in E? if for any other configuration q of the same labeled nodes in E,
G(q) < G(p) implies that q is congruent to p. In other words, if the member
constraints of (2) are satisfied by q, then there is a rigid congruence of E?
given by a d-by-d orthogonal matrix A and a vector b € E? such that for
i=1,...,n, q; = Ap; + b. Indeed, even more strongly, regard E¢ c EP,
for d < D. If, even though G(p) is in E4, it is true that G(p) is globally
rigid in EP, for all D > d, then we say G(p) is universally globally rigid. For
example, both rigid tensegrities in Figure 2, are universally globally rigid.
The example in Figure (3a) is rigid in the plane, but not globally rigid in the
plane, since it can fold around a diagonal. Figure (3b) is globally rigid in
the plane but not universally globally rigid, since it is flexible in three-space.
Figure (3c) is universally globally rigid. These are all bar frameworks.

(a) (b) (c)

Figure 3: Three examples of planar rigid bar frameworks.

The local and global rigidity of the examples in Figure 3 are fairly easy to
determine, but what are some tools to use for more complicated tensegrities?
The energy function E,, described in Section 2 helps. The idea is to look for
situations when the configuration p is a minimum for the functional E,,. The
first step is to determine when p is a critical point for E,. This will happen
when all directional derivatives given by p’ = (p},...,p)) starting at p are
0. So we perform the following calculation starting from (1) for 0 < ¢ < 1:

L(p+tp) =Y wi((pi — py)* + 2t(p: — p,) (P} — P}) + (P} — P))°).
1<J



Taking derivatives and evaluating at t = 0, we get:

d
T B+ 100 =2 ) wii(pi — py)(p} — P)). (3)
i<j
At a critical configuration p, equation (3) must hold for all directions p’, so
the following equilibrium vector equation must hold for each node :

> wii(ps = pi) = 0. (4)

When equation (4) holds for all : = 1,...,n, we say w is an equilibrium stress
or equivalently a self stress, or just a stress for p when the equilibrium is clear
from the context. To get an understanding of how this works, consider the
example of a square in the plane as in Figure 4. It is easy to see that the

Figure 4: A square tensegrity with its diagonals, where a proper equilibrium
stress is indicated.

vector equilibrium equation (4) holds for the three vectors at each node, even
though many people tend to put —/2 instead of —1 for the strut stresses.
If a configuration p were the unique minimum, up to rigid congruences,
for F,,, we would have a global rigidity result immediately, but unfortunately
that is almost never the case. We must deal with affine transformations.

4 Affine transformations

An affine transformation or affine map of E¢ is determined by a d-by-d matrix
A and a vector b € E¢. If p = (py,...,Pn) is any configuration in E9, an
affine image is given by q = (qy, ..., q,), where q; = Ap; + b.
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If the configuration p is in equilibrium with respect to the stress w, then
so is any affine transformation q of p, as is seen by the following calculation:

> wij(a; —ai) = Y wij(Apj +b— Ap; —b) = A wi;(p; — i) = 0.

j j j
So our stress-energy functional F,, can’t “see” affine transformations, at least
at critical points. Of course we know that when something is globally rigid,
it cannot exclude rigid congruences, but the group of affine transformations
are more than we would like. Notice that even projections, which are singu-
lar affine transformations, also preserve equilibrium configurations. Indeed,
the equilibrium formula (4) is true if and only if it is true for each coordi-
nate, which is the same as being true for orthogonal projections onto each
coordinate axis.

This brings us to the question, for a tensegrity G(p) in E¢, when is there
an affine transformation that preserves the member constraints (2)7 It is
clear that the matrix A is the only relevant part. For us, it will turn out that
we also only need to consider when the members are bars. If {i,j} is a bar
of GG, then the matrix A determines a transformation that preserves that bar
length if and only if the following holds:

(pi—p;)° = (a—q)’
= (Api — Ap])
= [A(pi — pj)]" Alpi — p))
= (pi— pJ)TATA( - Pj),
or equivalently,
(i = py)"(ATA = I)(p; — p;) = 0 (5)

where ()7 is the transpose operation, I is the d-by-d identity matrix, and
vectors are regarded as column vectors in this calculation. If Equation (5)
holds for all bars in G(p), we say it has a bar preserving affine image, which
is non-trival if A is not orthogonal. Similarly, G(p) has a non-trivial affine
flez if there is a continuous family of d-by-d matrices A,, where Ay = I, for
t in some interval containing 0 such that each A; satisfies Equation (5) for ¢
in the interval.

This suggests the following definition. If v = {vy,..., vy} is a collection
of vectors in E¢, we say that they lic on a quadric at infinity if there is a
non-zero symmetric d-by-d matrix () such that for all v; € v

vIQv; = 0. (6)
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The reason for this terminology is that real projective space RP?~! can be
regarded as the set of lines through the origin in E?, and equation (6) is the
definition of a quadric in RP?1.

Notice that since the definition of an orthogonal matrix A is that AT A —
I? = 0, the affine transformation defines a quadric at infinity if and only if
the affine transformation is not a congruence.

Call the bar directions of a bar tensegrity the set {p; —p;}, for {i,j} a bar
of G. With this terminology, Equation (6) says that if the member directions
of a bar tensegrity under an affine transformation A satisfy (5), they lie on
a quadric at infinity. Conversely suppose that the member directions of a
bar tensegrity G(p) lie on a quadric at infinity in E¢ given by a non-zero
symmetric matrix ). By the spectral theorem for symmetric matrices, we
know that there is an orthogonal d-by-d matrix X = (X7)~! such that:

A 0 0 - 0
0 X 0 -~ 0
X'Qx =10 0 A3 -+ 0
0O 0 0 -+ Mg

Let A_ be the smallest \;, and let A, be the largest \;. Note co < 1/A_ <
1/A4 < oo, A_ is non-positive, and A, is non-negative when () defines a non-
empty quadric and when 1/A_ <t <1/A\;, 1 —t\;, >0foralli=1,...,d.
Working Equation (5) backwards for 1/A_ <t < 1/\; we define:

VI—1t\ 0 0 0
0 VI—1X; 0 0
A =XT 0 0 V9I—1tA3 - 0 X (7

0 0 0 VA Y
Substituting A; from Equation (7) into Equation (5), we see that it provides
a non-trivial affine flex of G(p). If the configuration is contained in a lower
dimensional hyperplane, we should really restrict to that hyperplane since

there are non-orthogonal affine transformations that are rigid when restricted
to the configuration itself. We have shown the following:

Proposition 1. If G(p) is a bar framework in E?, such that the nodes do not
lie in a (d—1)-dimensional hyperplane, then it has a non-trivial bar preserving

9



affine tmage if and only if it has a non-trivial bar preserving affine flex if and
only if the bar directions lie on a quadric at infinity.

It is useful to consider when bar tensegrities have the bar directions that
lie on a quadric at infinity. In E2, the quadric at infinity consists of two
distinct directions. So a parallelogram or a grid of parallelograms have a
non-trivial affine flex. In E3 it is more interesting. The quadric at infinity
is a conic in RIP?, the projective plane, and such a conic is determined by 5
points. An interesting example is the bar tensegrity in Figure 5. The surface

Figure 5: Figure (a) is the ruled hyperboloid given by z? + y? — 22 = 1.
Figure (b) is the flattened version after an affine flex.

is obtained by taking the line (z, 1, z) and rotating it about the z-axis. This
creates a ruling of the surface by disjoint lines. Similarly (z,1, —x) creates
another ruling. Each line in one ruling intersects each line in the other ruling
or they are parallel. A bar tensegrity is obtained by placing nodes where a
line on one ruling intersects a line on the other ruling, and bars such that
they join every pair of nodes that lie on same line on either ruling.

Consider the diagonal matrix ) with diagonal entries A\; = Ao = 1, A3 =
—1. When one node of each bar is translated to a single point, they all
lie on a circle at infinity given by (. The flex given by Formula (7) flexes
the configuration until the nodes lie on a line when ¢ = 1/\; = 1 because
two of the eigenvalues for () vanish for that value of ¢, and in the other
direction, when ¢ = 1/A_ = —1, the nodes lie in a plane. There is a pleasant
description of this motion in [23] at the end of Chapter 1. This structure is
easy to build with dowel rods and rubber bands securing the joints where
the rulings intersect.

10



The space of d-by-d symmetric matrices is of dimension d + (d* — d)/2 =
d(d+1)/2. So if the vector directions of a tensegrity are less than d(d+1)/2,
then it is possible to find a non-zero d-by-d symmetric matrix that satisfies
Equation (6), and then flex it into a lower dimensional subspace. This proves
the following, due to Barvinok in [2].

Theorem 2. If G(p) is a bar framework in EP with less than d(d + 1)/2
bars, then it has a realization in E® with the same bar lengths.

This suggests the following definition: If a (bar) graph G is such that any
realization G(p), for a configuration p in some E”| implies that G have a
realization in E? with the same bar lengths, then we say G is d-realizable.
Note that this is a property of the graph G, and in order to qualify for
being d-realizable, one has to be able to push a realization in E” down to
a realization E¢ for ALL realizations in E”. For example, the 1-realizable
graphs are forests, graphs with no cycles. In particular, a triangle is not
1-realizable.

This is inspired from a problem in nuclear magnetic resonance (NMR)
spectroscopy. The atoms of a protein are tagged and some of the pairwise
distances are known. The problem is to identify a configuration in E3 that
satisfies those distance constraints. Finding such a configuration in EP, for
some large D is computationally feasible, and if G is 3-realizable, one can
expect to find another configuration in E? that satisfies the distance con-
straints.

For any graph G, another graph H is called a minor of G if it can be
obtained by edge contractions or deletions. In particular if a minor of a
graph G is not d-realizable, then G itself is not d-realizable. It is easy to
see that a graph is 1-realizable if and only if it does not have a triangle as a
minor. In other words, the triangle is a complete list of forbidden minors for
1-realizability. It is not too hard to show that the graph K4, the tetrahedron,
is also a complete list of forbidden minors for 2-realizability. In [4, 3] M. Belk
and I show the following:

Theorem 3. A complete list of forbidden minors for 3-realizability is the set
of two graphs, K5 and edge graph of the regular octahedron.

This implies that there is a reasonable algorithm to detect 3-realizablity
for an abstract graph and, when the edge lengths are given, to find a real-
ization in E3. Tensegrity techniques are used in a significant way in [3].
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5 The stress matrix

The stress-energy function E,, defined by (1) of Section 2 is really a quadratic
form. It is an easy matter to compute the (symmetric) matrix associated to
that quadratic form. Note that the square of the difference of two variables,

z1 and xy is
2 +1 -1 X1
= (o) (12 (5):

For each i # j, define an n-by-n matrix €2(4,7), where the (7,7) and (7, 7)
entries are 1, the (i,j) and (j,7) entries are —1, while are the other entries
are 0. Then

x
T2
.. 2
(361 Lo - xn) E wiAi, 3) | | = E wij(Ti — ;)7
i<j : i<j
Ty
for any stress (---,wj;, --). So for any stress w, where w;; = wj; for all

1 <4 < j < n, define the associated n-by-n stress matriz Q =3, wi; (i, j)
such that the (7, j) entry is —w;; for i # j, and the diagonal entries are such
that the row and column sums are 0. Recall that any stress w;; not designated
in the vector form w = (--- ,w;;, - ) is assumed to be 0.

With this terminology regard a configuration p = (p1,...,p,) in E? as a
column vector. Then

E.(p) = Y wi(pi—p))

i<j
= D wylei— 2P+ ) wly— )+
i<j 1<j
T n
= (z1 22 - ) " + (1 we Yn) Q2 y:2 +...,
. b
where each p; = (x4, y;,...), fori =1,...,n. So we see that E,, is essentially

given by the matrix € repeated d times. The tensor product of matrices (or
sometimes the Kronecker product) gives the matrix of E, as Q ® I¢, and

E.(p) = (p)"Q® Ip.

12



It is also convenient to rewrite the equilibrium condition (4) in terms of
matrices. Define the configuration matriz for the configuration p as

_(P1 P2 - Pn
P = ( 1 1 - 1 ) ’
a (d 4 1)-by-n matrix, and the equilibrium condition (4) is equivalent to

PQ=0.

Each coordinate of P as a row vector multiplied on the right by €2 represents
the equilibrium condition in that coordinate. The last row of ones of P
represent the condition that the column sums (and therefore the row sums)
of 2 are 0. It is also easy to see that the linear rank of P is the same as the
dimension of the affine span of py,...,p, in E%.

Suppose that we add rows to P until all the rows span the co-kernel of
Q). The corresponding configuration p will be called a universal configuration
for w (or equivalently €2).

Proposition 4. If p is a universal configuration for w, any other configura-
tion q which is in equilibrium with respect to w is an affine image of p.

Proof. Let @ be the configuration matrix for q. Since the rows of P are
a basis for the co-kernel of €2, and the rows of ) are, by definition, in the
co-kernel of €, there is a (d + 1)-by-(d + 1) matrix A such that AP = Q.
Since P and () share the last row of ones, we know that A takes the form

(A b
(1)

where A is a d-by-d matrix, b is a 1-by-d matrix (a vector in E%), and the
last row is all 0’s except for the 1 in the lower right hand entry. Then we see
that for each i =1,...,n, q; = Agp; + b, as desired. H

The stress matrix plays a central role in what follows. Note that when
the configuration p is universal, with affine span all of E?, for the stress w,
the dimension of the co-kernel (which is the dimension of the kernel) of €2 is
d, and the rank of 2 is n —d — 1. But even when the configuration p is not
universal for w, it is the projection of a universal configuration, and so the
rank Q2 <n-—d—1.

13



6 The fundamental theorem

We come to one of the basic tools for showing specific tensegrities are globally
rigid and more. If w is a proper equilibrium stress for the tensegrity G(p),
p; — Pj, where w;; # 0 is called a stressed direction and the member {37, j} is
called a stressed member. Note that if G(q) < G(p), w;; # 0, and |p; —p;| #
|q; — q;l, then £, (q) < E,(p). So if p is a configuration for the minimum
of E,, the stressed members are effectively bars. This allows Proposition 1
to be applied.

Theorem 5. Let G(p) be a tensegrity, where the affine span of p = (P1,---,Pn)
is all of B¢, with a proper equilibrium stress w and stress matriz Q. Suppose
further

1.) Q is positive semi-definite.

2.) The configuration p is universal with respect to the stress w. (In other
words, the rank of Q isn—d—1.)

3.) The stressed directions of G(p) do not lie on a quadric at infinity.
Then G(p) is universally globally rigid.

Proof.  Suppose that q is configuration such that G(q) < G(p). Then
E,(q) < E,(p). By Condition 1.), E,(q) = E,(p) = 0, and w is an equi-
librium stress for the configuration q as well as p. By Condition 2.) and
Proposition 4, q is an affine image of p. By Condition 3.) and Proposition
1, q is congruent to p. O

Notice that in view of Proposition 1, Condition 3.) can be replaced by
the condition that G(p) is has no affine flexes in E¢. For example, if it is
rigid in E¢, that would be enough.

With this in mind, we say that a tensegrity is super stable if it has a
proper equilibrium stress w such that Conditions 1.), 2.) and 3.) hold. If
just Conditions 1.) and 3.) hold and w is strict (all members stressed), then
we say G(p) is unyielding. An unyielding tensegrity, essentially, has all its
members replaced by bars.

14



7 Examples

7.1 The square tensegrity
The stress matrix for the square of Figure 4 is

+1 -1 +1 -1

O —1 +1 =1 +1
Tl 4+1 -1 41 —1
-1 +1 —1 +1

So 2 hasrank 1 =4 —2—1=n —d — 1, and since its trace is 4, its single
eigenvalue is 4, and it is positive semi-definite. This makes it unyielding,
and since the underlying graph is the complete graph, it is universally glob-
ally rigid. It is also super stable. There are several ways to generalize this
example.

7.2 Polygon tensegrities

In [9] T showed that a tensegrity, obtained from a planar convex polygon by
putting a node at each vertex, a cable along each edge, and struts connecting
other nodes such that the resulting tensegrity has some proper equilibrium
stress, is always super stable. Figure 6 shows some examples. These results
answered some questions of Griinbaum in his notes [21].

Cauchy polygon Griinbaum polygon The points lie on a circle, but are
y polyg Roth polygon not constrained to lie on that circle

Figure 6:

7.3 Radon tensegrities

Radon’s Theorem says that if p = (py, . .., Pay2) are d+2 points in E¢, no d+1
in a hyperplane, then they can be separated into two simplices o’ and ¢?~% of

15



dimension ¢ and d — ¢ such that their intersection is a common point, which
is a relative interior point of each simplex. They can also be used to define
a super stable tensegrity as well. Write ZZ:? AePr = 0, where ZZ:? A =0,
while A\, >0 fork=1,...;i+ 1, and \py <Ofor k=i+2,...,d+ 2. Then
the following rank one matrix is the stress matrix

A1
A

Q=| T | A o Aar),
Adt2

since for the configuration matrix P,

At
P Af ~0.
>\d'+2
So the stress w;; = —A\;\;. The edges of 0% and ¢ are struts, while all the

other members are cables. Since the rank is d+2 —d—1 = 1, and Q2 is
positive semi-definite, the tensegrity is super stable. Figure 7 shows the two

examples in the plane and in three-space.

Figure 7:

This tensegrity has been described in [7].
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7.4 Centrally symmetric polyhedra

In [29] L. Lovasz showed effectively that if one places nodes at the vertices
of a centrally symmetric convex polytope, cables along its edges, and struts
between its antipodal points, the resulting tensegrity has a strict proper
equilibrium stress, and any such stress will have a stress matrix such that
Conditions 1.) and 2.) hold, while condition 3.) is easy to check. Thus such
a tensegrity is super stable and universally globally rigid. This is explained
in [6] and answers a question of K. Bezdek. Figure 8 shows such an example
for the cube, which is easy to check independently.

Figure 8: A cube with cables along its edges and struts connecting antipodal
nodes, which is super stable.

7.5 Prismatic tensegrities

Consider a tensegrity in E* formed by two regular polygons (p1, ..., p,) and
(Pn+1,---,P2n) in distinct parallel planes, each symmetric about the same
axis. Cables are placed along the edges of each polygon. Each node of
each polygon in connected by a cable to a corresponding node in the other
polygon, maintaining the rotational symmetry. Similarly each node of each
polygon in connected to a corresponding node in the other polygon by a
strut, maintaining the rotational symmetry. The ends of the cable and strut
are k steps apart where 1 < k < n — 1. This describes a prismatic tensegrity
P(k,n). In [16] it is shown that each P(n, k) is super stable when the angle
of the twist from a node in the top polygon to the projection of the node
at the other end of the strut is m(1/2 + i/n). Figure 9 shows P(6,1). The
Snelson tensegrity in the introduction is P(3,1).
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Figure 9: The prismic tensegrity P(6,1).

7.6 Highly symmetric tensegrities

Many of the tensegrities created by artists such as Snelson have the super
stable property discussed here. They need the stress for their stability. Their
tensional integrity is part of their stability. Symmetry seems to a natural part
of art, so I thought it would be interesting to see what symmetric tensegrities
were super stable. It turns out that the symmetry simplifies the calculation
of the rank and definiteness of the stress matrix. In addition the theory
of the representations of finite groups is a natural tool that can be used to
decompose the stress matrix. With Allen Back and later Robert Terrell,
we created a website, where one can view and rotate the pictures of these
tensegrities. This is available at [40]. See also [11] for an explanation of the
group theory and rigidity theory.

The tensegrity graph G is chosen so that there is an underlying finite
group [ acting on the tensegrity such that the action of I' takes cables to
cables and struts to struts, and the following conditions hold:

i.) The group I' acts transitively and freely on the nodes. In other words,
for each p;, p; nodes, there is a unique element g € I' such that gp; = p;.

ii.) There is one transitivity class of struts. In other words, if {p;, p;} and
{pr, P} are struts, then there is g € I' such that {gp;, 9p;} = {pPk, Pi}
as sets.

iii.) There are exactly two transitivity classes of cables. In other words,
all the cables are partitioned into two sets, where I' permutes the the
elements of each set transitively, but no group element takes a cable
from one partition to the other.
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The user must choose the abstract group, the group elements that correspond
to the cables, the group element that corresponds to the struts, and the ratio
of the stresses on the two classes of cables. Then the tensegrity is rendered.
Figure 10 shows a typical picture from the catalog.

Figure 10: A super stable tensegrity from the catalog [40]. In the catalog, the
struts are colored green, one cable transitivity class is colored red, and the
other blue. In this example, the cables lie on the convex hull of the nodes,
and struts are inside.

7.7 Compound tensegrities

The sum of positive semi-definite matrices is positive semi-definite. So we can
glue two super stable tensegrities along some common nodes, and maintain
Condition 1.). Condition 3.) is no problem. But the rank Condition 2.) may
be violated. But even if Condition 2.) does not hold, each of the individual
tensegrities will remain globally rigid, even if some of the stresses vanish on
overlapping members.

One example of this process is the delta-Y transformation. If one super
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stable tensegrity has a triangle of cables in it, one can add a tensegrity of the
form in the upper right of Figure 7 so the stresses on the overlap of the three
struts exactly cancel with the three cable stresses in the other tensegrity. So
the three triangle cables are replaced the three other cables joined to a new
node inside the triangle. In this case the resulting tensegrity is still super
stable since the radon tensegrity is planar and using Condition 3.). Figure 11
shows how this might work for the top triangle of the Snelson tensegrity of
Figure 2. Taken from [39] Figure 12 shows this replacement on both triangles.

Figure 11:

Figure 12:

If the replacement as in Figure 12 is done for a polygon of with four or
more vertices, the resulting tensegrity may not be super stable or even rigid,
but in [39] it is shown that if the polygons have an odd number of vertices and
the struts are placed as far away from the vertical cables as possible, then the
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resulting tensegrity is super stable. In other words, if the star construction is
done on P(2k+ 1,k) as in Figure 13 the resulting tensegrity is super stable.

Figure 13:

It is also possible to put two (or more) super stable together on a com-
mon polygon to create a tensegrity with a stress matrix that satisfies Con-
dition 1.) while the universal configuration is 4-dimensional instead of 3-
dimensional. But each of the original pieces are universally globally rigid.
The 4-dimensional realization has an affine flex around the 2-dimensional
polygon used to glue the two pieces together. So the tensegrity has two non-
congruent configurations in E3 as one piece rotates about the other in E*.
Meanwhile struts and cable stresses can be arranged to cancel, and thus those
members are not needed in the compound tensegrity. Figure 14 shows this
with two Snelson tensegrities combined along a planar hexagonal tensegrity.
This is similar to the situation in [26] by T. Jordan and Z. Szabadka, where
some pairs of nodes do not change their distances for other non-congruent
realizations.

This is something like the start of the Snelson tower of Figure 1, but
hexagonal polygon in the middle is planar, which seems a bit surprising.
This tensegrity is unyielding and rigid, but not super stable. But possibly
to create more stability Snelson includes more cables from one unit to the
other, and this destroys the planarity of the hexagon.

There are many different ways to combine super stable units, possibly
erasing some of the members in the basic units to get similar rigid tensegrities.
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Figure 14:

7.8 Pure and flexible examples

Recall that a pure tensegrity is one that has only cables and struts and
the struts are all disjoint. We have seen several examples in E? of pure
tensegrities, the simplest being Snelson’s original as in Figure 11 on the
left. But what about the plane? One might be tempted to think that the
tensegrity of Figure 15 is rigid, but it isn’t. Indeed, there are no pure rigid

Figure 15:

tensegrities in the plane. This follows from the main theorem in [14], the
proof of the carpenter’s rule property. This theorem says that any chain
of non-overlaping edges in the plane can be continuously expanded (flexed)
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until it is straight. This result also allows for disjoint edges, and at least,
for a short time, the expansion can be run backwards to be a contraction,
keeping the struts at a fixed length. See [13] for a discussion of expansive
flexes from a tensegrity point of view.

8 Generic global rigidity

The configurations in previous sections must be constructed carefully. What
about a bar framework where the configuration is more general? It turns out
that the problem of determining when a bar framework is globally rigid is
equivalent to a long list of problems known to be hard. See [33] for exam-
ple. The problem of whether a cyclic chain of edges in the line has another
realization with the same bar lengths, is equivalent to the uniqueness of a
solution of the knapsack problem. This is one of the many problems on the
list of NP complete problems.

One way to avoid this difficulty, is to assume that the configuration’s
coordinates are generic. This means that the coordinates of p in E? are alge-
braically independent over the rational numbers, which means that there is no
non-zero polynomial with rational coordinates satisfied by the coordinates of
p. This implies, among other things, that no d + 2 nodes lie in a hyperplane,
for example, and a lot more. In [12] I proved the following:

Theorem 6. If p = (p1,...,Pn) in B is generic and G(p) is a rigid bar
tensegrity in B¢ with a non-zero stress matriz Q of rank n—d — 1, then G(p)
is globally rigid in E<.

Notice that the hypothesis includes Conditions 2 and 3 of Theorem 5.
The idea of the proof is to show that since the configuration p is generic,
if G(q) has the same bar lengths as G(p), then they should have the same
stresses. Then Proposition 1 applies.

Then recently in [20] the converse of Theorem 6 was shown as follows:

Theorem 7. If p = (p1,...,Pn) in E is generic and G(p) is a globally
rigid bar tensegrity in B, then either G(p) is a bar simplex or there is stress
matriz 2 for G(p) with rankn —d — 1.

The idea here, very roughly, is to show that a map from an appropriate
quotient of an appropriate portion of the space of all configurations has even
topological degree when mapped into the space of edge lengths.
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As pointed out in [20], using these results it is possible to find a polynomial
time numerical (probablistic) algorithm that calculates whether a given graph
is generically globally rigid in E¢, and that the property of being globally rigid
is a generic property. In other words, if G(p) is globally rigid in E¢ at one
generic configuration p, it is globally rigid at all generic configurations.

Interestingly, it is also shown in [20] that if p is generic in E¢, and G(q)
has the same bar lengths in G(p) in E?, then G(p) can be flexed to G(q) in
E4*! similar to the tensegrity mentioned in Subsection 7.7 of compounded
Snelson tensegrities.

A bar graph G is defined to be generically redundantly rigid in E? if
G(p) is rigid at a generic configuration p, and it remains rigid after the
removal of any bar. A graph is vertex k-connected if it takes the removal of
at least k vertices to disconnect the rest of the vertices of G. The following
theorem of Hendrickson [22], provides two necessary conditions for generic
global rigidity.

Theorem 8. If p is a generic configuration in E?, and the bar tensegrity
G(p) is globally rigid in E?, then

a.) G is vertex (d + 1)-connected, and
b.) G(p) is redundantly rigid in E2.

Condition a.) on vertex connectivity is clear since otherwise it is possible
to reflect one component of G about the hyperplane determined by some d or
fewer vertices. Condition b.) on redundant rigidity is natural since if, after a
bar {p;, p;} is removed, G(p) is flexible, one watches as the distance between
p; and p; changes during the flex, and waits until the distance comes back
to it original length. If p is generic to start with, the new configuration will
be not congruent to the original configuration.

Hendrickson conjectured that Conditions a.) and b.) were also sufficient
for generic global rigidity, but it turns out in [10] that the complete bipartite
graph Kj 5 in E? is a counterexample. This is easy to see as follows.

Similar to the analysis in Subsection 7.3 for each of the nodes for the
two partitions of K55 consider the affine linear dependency Z?:l ANipi =
0,57 A = 0and 1% Ap; = 0,5°.\; = 0, where (py,...,ps) and
(Ps, - - -, P10) are the two partitions of K5 5. According to [8], when the con-
figuration p = (p1, ..., P1o) is generic in E3, then, up to a scaling factor, the
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stress matrix for Kjs5(p) is
A6
Ao
A1
: (/\6 )\10) 0

As
But the rank of 2 is 2 < 10 — 3 — 1 = 6, while rank 6 is needed for generic
global rigidity in this case by Theorem 7.

In E?, Kj 5 is the only counterexample to Hendrickson’s conjecture that I
know of. On the other hand in [18] it is shown that a graph G is generically
globally rigid E¢ if an only if the cone over G is generically globally rigid
in E4*!. This gives more examples in dimensions greater than 3, and there
are some other bipartite graphs as well in higher dimensions by an argument
similar to the one here.

Meanwhile, the situation in the plane is better. Suppose G is a graph and
{i,j} is an edge of GG, determined by nodes i and j. Remove this edge, add
another node k£ and join k to ¢, 7, and d — 1 distinct other nodes not ¢ or j.
This is called a Henneberg operation or sometimes edge splitting. Figure 16
shows this operation on a tensegrity (although we are concerned here with
bar frameworks).

Figure 16: Graph a.) is split along the lower right inside edge, to get the
graph b.).

It is not hard to show that edge splitting, as in Figure 16 preserves generic
global rigidity in E¢. When the added node lies in the relative interior of the
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line segment of the bar that is being split, there is a natural stress for the new
bar tensegrity, and the subdivided tensegrity is also universal with respect
to the new stress. If the original configuration is generically rigid, a small
perturbation of the new configuration to a generic one will not change the
rank of the stress matrix. Thus generic global rigidity is preserved under
edge splitting. In [5, 24|, A. Berg and T. Jordan and later B. Jackson and
T. Jordan solve a conjecture of mine with the following:

Theorem 9. If a graph G is vertex 3-connected (Condition a.) for d = 2)
and is generically redundantly rigid in the plane (Condtion b.) for d = 2),
then G' can be obtained from the graph K4, by a sequence of edge splits (as
in Figure 16) and insertions of additional bars.

Thus Hendrickson’s conjecture, that Condition a.) and Condtion b.)
are sufficient as well as necessary for generic global rigidity in the plane, is
sufficient as well as necessary. This also gives an efficient non-probablistic
polynomial-time algorithm for determining generic global rigidity in the plane.
See also [25, 28, 30, 27| for other results and applications.
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