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1. Introduction

In [2] a connection is made between what are called “M” matrices, as used
in Colin de Verdière’s theory of graph invariants, and stress matrices as used in
rigidity theory in [1]. Following a description of stress matrices and their properties
relevant to rigidity theory, it is shown how a theorem of László Lovász [2], using
results about M matrices, implies a conjecture about the global rigidity of certain
tensegrity frameworks by Károly Bezdek.

2. Stress Matrices

Given a finite graph G = (V,E) without loops or multiple edges, where V
is the set of n vertices labeled 1, . . . , n and E the edges, a stress matrix Ω is a
symmetric n-by-n matrix, where the off-diagonal entries are denoted as −ωij and
the following conditions hold:

(1) When i 6= j and {ij} is not in E, then ωij = 0.
(2) [1, 1, . . . , 1]Ω = 0.

Condition (2) defines the diagonal entries of Ω in terms of the off-diagonal entries.
The i-th row and column of Ω correspond to the i-th vertex.

Consider a configuration of points p = (p1, . . . , pn), where each pi is in Euclidian
d-dimensional space Ed. Form the d-by-n configuration matrix P = [p1, p2, . . . , pn],
where each pi is regarded a column of P . The configuration p is said to be
in equilibrium with respect to the stress ω = (. . . , ωij , . . . ) if PΩ = 0. This is
equivalent to the vector equation for each vertex i,

∑
j ωij(pj − pi) = 0. Some

basic properties of stress matrices, which can be found in [1], are in the following
proposition.

Proposition 2.1. If the configuration p is in equilibrium with respect to the stress
ω, then the following hold:

(1) The dimension of the affine span of the configuration p is at most n− 1−
rank Ω.

(2) If the dimension of the affine span of the configuration p is exactly n−1−
rank Ω, and q = (q1, . . . , qn) is another configuration in equilibrium with
respect to ω, then q is an affine image of p.

If Condition (2) in Proposition 2.1 holds for a configuration p, then we say p
is universal with respect to ω. It is easy to see that if a configuration p, with a
d-dimensional affine span is not universal for a given equilibrium stress ω, then
there is a configuration q, whose affine span is at least (d + 1)-dimensional, that
projects orthogonally onto p, and which is in equilibrium with respect to ω as well.
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3. Global Rigidity

Suppose that the edges of a graph G are labeled either a cable or a strut.
We say a configuration q, corresponding to the vertices V , is dominated by the
configuration p if the cables of q are not increased, and struts are not decreased
in length. We call G(p) a tensegrity, and if every configuration in Ed that is
dominated by p is congruent p, we say G(p) is globally rigid in Ed.

If v1, v2, . . . are vectors in Ed, we say that they lie on a conic at infinity if for
all i, there is a non-zero d-by-d symmetric matrix C such that vT

i Cvi = 0, where
()T is the transpose. The following fundamental result can be found in [1].

Theorem 3.1. If a configuration p in Ed has an equilibrium stress ω, with ωij > 0
for cables, ωij < 0 for struts, (called a proper stress for G = (V,E)) such that

(1) the member directions pi − pj, for {ij} in E, do not lie on a conic at
infinity,

(2) the matrix Ω is positive semi-definite, and
(3) the configuration p is universal with respect to ω,

then G(p) is globally rigid in EN , for all N ≥ d.

Any configuration that satisfies the hypothesis above is called super stable.

4. Lovász’s Result

The following result of Lovász in [2] has a situation that satisfies all the condi-
tions of Theorem 3.1 except condition (3). Condition (1) is easy to verify.

Theorem 4.1. If a tensegrity framework G(p) is defined by putting cables for the
edges of a convex 3-dimensional polytope P and struts from any interior vertex to
each of the vertices of P , then the configuration p has a proper equilibrium stress
ω, and any such non-zero stress has a stress matrix Ω with exactly one negative
eigenvalue and 4 zero eigenvalues.

If one takes the stress matrix Ω from Theorem 4.1 and removes the row and
column corresponding to the central vertex, then one gets an M matrix as used
in the definition of Colin de Verdière’s number defined as a graph invariant. The
problem is to get rid of the offending negative eigenvalue.

5. The Conjecture

Suppose P is a convex polytope in E3 and one creates a tensegrity G(p) by
assigning the vertices of P as the vertices of a configuration for G, the edges of
P as the cables for G(p), and assigning struts as some of the internal diagonals
such that G(p) has a proper equilibrium stress. Then it appears that the resulting
stress matrix Ω satisfies the conditions for being super stable, but no proof is
known in general. Károly Bezdek specialized that conjecture to the case when the
polytope P is centrally symmetric. With the help of Theorem 4.1 by Lovász, we
can prove that conjecture, which is the following.
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Theorem 5.1. For any 3-dimensional centrally symmetric convex polytope P , the
associated tensegrity GP (p), with struts between all antipodal vertices, has a stress
ω such that GP (p) is super stable. Furthermore any such proper equilibrium stress
for GP (p) is such that it serves to make GP (p) super stable.

Proof. Let ω′ denote any non-zero proper stress determined by the conclusion of
Theorem 4.1 for the centrally symmetric polytope P with the central vertex as the
interior point. Let ω̂′ denote the stress on GP (p) obtained by replacing each cable
and strut stress with the stress on its antipode. Then ω̂′ is an equilibrium stress
for GP (p) as well. Hence ω′ + ω̂′ is a proper equilibrium stress for GP (p), where
stresses on antipodal cables and struts are equal. So we assume without loss of
generality that the stresses in ω′ are symmetric, and Theorem 4.1 assures us that
the associated stress matrix has only one negative eigenvalue.

Suppose that i and j correspond to antipodal vertices of P . Let ω′
i0 = ω′

j0 < 0
be the stresses from the central vertex to the i and j vertices coming from the
stress ω′. Form a small tensegrity Gij(pi, pj , 0) with just three vertices i, j, and
the central vertex 0, where {i, j} is a strut, while {0, i} and {0, j} are cables. Let
ωij = 2ω′

i0 = 2ω′
j0 < 0, and replace ω′

i0 and ω′
j0 with −ω′

i0. It is easy to check
that this is an equilibrium stress for Gij(pi, pj , 0) whose associated stress matrix
is positive semi-definite. Extend this to all the vertices of G by having all other
stresses 0. The associated stress matrix Ω′

ij defined on all the vertices of G is
still positive semi-definite. But now Ω′ + Ω′

ij has its (0, i) and (0, j) entry 0. Let
Ω′ +

∑
ij Ω′

ij = Ω, where the sum is over all antipodal vertices {i, j}. We obtain
a stress matrix Ω corresponding to a stress ω, where all the ω0i = 0 and ωij < 0
for pairs {i, j} of antipodal vertices. Otherwise ωij = ω′

ij . Since Ω is obtained by
adding a positive semi-definite matrix

∑
ij Ω′

ij to Ω′, none of the eigenvalues of Ω′

decrease. It is clear that the stress ω is an equilibrium stress for a configuration
whose affine span is 4-dimensional, since the central vertex can be displaced into
E4, where it has essentially been disconnected from all the other vertices. So the
0 eigenvalues of Ω must stay at 0, while the negative eigenvalue must increase to
provide the extra 0. If we remove the central vertex, then the resulting framework
with antipodal vertices connected by struts is super stable, as desired.

It clear that the above process can be reversed, starting with an arbitrary
equilibrium stress ω for the centrally symmetric polytope P to obtain a proper
stress for a tensegrity as in Theorem 4.1. So any such proper equilibrium stress ω
for struts connecting antipodal vertices of P will be super stable. �
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