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Folded nodes occur in generic slow-fast dynamical systems with two slow variables. Open regions
of initial conditions flow into a folded node in an open set of such systems, so folded nodes are an
important feature of generic slow-fast systems. Twisting and linking of trajectories in the vicinity of
a folded node have been studied previously, but their consequences for global dynamical behavior
have hardly been investigated. One manifestation of the twisting is as “mixed mode oscillations”
observed in chemical and neural systems. This paper presents the first systematic numerical study
of return maps for trajectories that flow through a region with a folded node. These return maps are
approximated by rank-1 maps, and the local twisting of trajectories near a folded node gives rise to
multiple turning points in the approximating one dimensional maps. A variant of the forced van der
Pol system is used here to illustrate that folded nodes can be a “chaos-generating” mechanism.
Folded saddle-nodes occur in generic one-parameter families of slow-fast dynamical systems with
two slow variables. These bifurcations give birth to folded nodes. Numerical simulations demon-
strate that return maps of systems that are close to a folded saddle-node can be even more complex
than those of folded nodes that are far from folded saddles. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2790372�

Multiple time scales give rise to dynamical phenomena
that are different from those seen in generic vector fields
with a single time scale. This paper examines the “global”
dynamics that are associated with two such phenomena;
namely, folded nodes and folded saddle-nodes. These
folded singularities occur in the context of systems with
two slow variables. Folded nodes are typical in such sys-
tems: they occur in open sets of such systems, and open
regions of trajectories flow to folded nodes. Previously,
stable and unstable slow manifolds of the folded nodes
have been studied. These manifolds twist around a “prin-
cipal canard” trajectory and their intersections are
secondary canards. This paper presents numerical inves-
tigations of the flow map between two cross sections that
lie on opposite sides of a folded node. It finds that this
map is a perturbation of a one-dimensional map. The
approximating one-dimensional map has apparent dis-
continuities at the secondary canards turning points
where its behavior is no longer determined by the folded
nodes themselves and it has turning points in between.
Combined with a global return to the original cross sec-
tion, the nonmonotonic structure of the flow map can
generate chaotic dynamics. This is illustrated with an ex-
ample that is a modification of the forced van der Pol
equation. Folded saddle-nodes are codimension one
bifurcations of systems with two slow variables that give
rise to folded nodes. Numerical computations find
additional complexity of the flow maps of folded
saddle-nodes.

I. INTRODUCTION

Slow-fast vector fields have the form

�ẋ = f�x,y,��, ẏ = g�x,y,�� �1�

with x�Rm the fast variable, y�Rn the slow variable, and �
a small parameter that represents the ratio of time scales. The
dynamics of these systems is shaped by the interactions of
the two time scales. The critical manifold C of the system is
defined by f =0 and consists of equilibria of the layer equa-
tions or fast subsystems ẋ= f�x ,y ,0�. The variable y acts like
a parameter in the layer equations. Where the equilibria of
the fast subsystems are hyperbolic, there is an invariant slow
manifold of system �1� that lies close to the critical
manifold.8 The folds of the critical manifold consist of the
points where Dxf is singular, and hence the tangent space of
C fails to be transverse to the subspace parallel to x coordi-
nates. The equation ẏ=g�x ,y ,0� can be projected onto the
tangent plane of the critical manifold off the fold curve to
give the vector field �−�Dxf�−1Dyfg ,g�. This vector field on
the critical manifold can be rescaled to extend to fold points,
producing the slow flow of the critical manifold. Write
�Dxf�−1 as �det Dxf�−1�Dxf�† �Cramer’s rule�, to obtain the
slow flow ���Dxf�†Dyfg , � �det Dxf�g�. The signs in the
slow flow are chosen so that the orientation of the slow vec-
tor field agrees with the full vector field near stable sheets of
the critical manifold. The choice depends upon whether m is
even or odd. The y component of this slow flow vanishes on
the fold curve. Points where ��Dxf�†Dyfg�0 on the fold
curve are said to satisfy the normal crossing conditions. The
slow flow has equilibrium points on the fold curve where the
normal crossing conditions fail.

Consider now the case of two slow variables, i.e., n=2,
and one fast variable, i.e, m=1. The critical manifold is two-
dimensional and the folds form a curve. The matrix Dxf is a
scalar, and the slow flow is given by �Dyfg ,−Dxfg�, a vector
field tangent to the critical manifold. Points of the fold curve
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where Dyfg=0, but g�0 are called folded singularities or
pseudosingularities. The folded singularities can be classified
as equilibria of the slow flow: the terms “folded nodes,”
“folded foci,” and “folded saddles” are used to describe those
with real nonzero eigenvalues of the same sign, complex
eigenvalues with nonzero real parts, and eigenvalues of op-
posite sign, respectively. Folded saddle-nodes occur where a
folded singularity has a zero eigenvalue. They occur in ge-
neric one-parameter families of systems with two slow vari-
ables. Normal forms �or systems of first approximation1� can
be defined for folded singularities and used to study the local
flows of the full systems �1� in neighborhoods of the folded
singularities,1,9,15 though there are fewer results about
equivalence of systems to their normal forms than is the case
with equilibria of systems with a single time scale. The flows
of the normal forms are surprisingly complex. This paper
adds to our understanding of vector fields with folded nodes
and folded saddle-nodes by describing effects of these struc-
tures on return maps and invariant sets.

Hyperbolic folded singularities are open in the space of
C2 slow-fast systems with two slow variables and one fast
variable. Moreover, an open region of slow flow trajectories
are asymptotic to a folded node, as noted already by
Takens.17 In the full system �1�, all trajectories that flow into
the vicinity of a folded-node emerge from that region: there
is no invariant set in a small neighborhood of the folded
node. Consequently, one expects to encounter folded nodes
in generic periodic orbits and other attractors of these slow-
fast systems. The objective of this work is to determine how
the local flow near the folded node influences the properties
of attractors passing through this region. Folded saddle-
nodes are a codimension-1 bifurcation of slow-fast systems
that give rise to folded nodes in systems with two slow vari-
ables and one fast variable. Thus, flow maps through the
region of folded saddle-nodes are important in understanding
the attractors of generic one-parameter families of slow-fast
systems. This paper does not attempt a thorough analysis of
these flow maps, but it highlights some of their complex
dynamics.

II. FOLDED NODES

A. A normal form

The following equations are a normal form or system of
first approximation1 for folded nodes in systems with two
slow variables and one fast variable:

�ẋ = y − x2, ẏ = − x − z, ż = b , �2�

where 0�b�1 /8. Low-order Taylor expansions of general
three-dimensional systems with a folded node can be re-
duced to this form by coordinate changes.20 Further scaling
of the coordinates �x ,z , t� by �� and y by � eliminates � from
Eq. �2� producing the scaled system

X� = Y − X2, Y� = − X − Z, Z� = b . �3�

The slow flow of system �2� is

ż = 2bx, ẋ = − x − z . �4�

The dynamics of the system �2� were studied by Benoit2–4

and later by Szmolyan and Wechselberger,16

Wechselberger,20 and Guckenheimer and Haiduc.10 Benoit
observed that there are a pair of algebraic solutions to Eq. �2�
that include canards; i.e., trajectories that remain close to the
critical manifold for all time. He also observed that other
canards are possible in the system: these “secondary ca-
nards” spiral around one of the primary canards. Guckenhe-
imer and Haiduc10 showed that the number of these second-
ary canards is unbounded as b→0 and Wechselberger20

studied their bifurcations. In all of this work, the emphasis is
upon the canards and upon the properties of the slow stable
and unstable manifolds as they approach the canard region.
Here we investigate the flow maps that describe how trajec-
tories entering a neighborhood of the folded node exit that
region. Note that no trajectories remain in the vicinity of the
folded node for all time because ż=b is a positive constant.

B. Normal form dynamics and flow maps

In the singular limit �=0, the normal form of the folded
node �Eq. �2�� is an algebraic-differential equation in which
motion is constrained to its critical manifold y=x2. Consider
trajectories with initial conditions that lie far from the critical
manifold in the case ��0 small. These trajectories first flow
almost parallel to the x axis, quickly reaching an � neighbor-
hood of the critical manifold or infinity. Near the critical
manifold, motion is approximated by the slow flow defined
by the system �4�. The slow flow is linear with negative
eigenvalues −1 /2��1−8b /2. Both its eigendirections lie in
the second and fourth quadrants of the �z ,x� plane with the
weaker eigenvector lying closer to the z axis. Trajectories of
the slow flow with initial conditions in the second quadrant
sector bounded by the lines x=0 and z= �−1 /2−�1−8b /2�x
flow to the origin without encountering the fold curve x=0.
The slow flow ceases to be a good approximation to the flow
of the system �2� in a neighborhood of the origin of radius
O��1/2�. The differences between these two systems are more
readily seen by working with the rescaled system �3�.

For large Y and X�0, the system �3� has an attracting
slow manifold that lies close to the surface Y =X2. There is
an open region of trajectories that approach this slow mani-
fold quickly and then follow it to the vicinity of the folded
node at the origin. The variable Z increases linearly along the
manifold. The part of the manifold with Z�0 develops spi-
rals as it approaches the cross section Z=0. When it leaves
this region, the spirals end. Figure 1�a� shows four of these
trajectories with Fig. 1�b� showing an expanded view of their
passage close to the origin. Desroches, Krauskopf, and
Osinga7,14 have produced elegant visualizations of the stable
and unstable manifolds and their intersections.

Benoit3 observed that the curves �X ,Y ,Z��t�= ��t ,�
+�2t2 ,bt� with 2�2+�+b=0 are solutions of the system �3�.
The variational equations describing the flow near one of
these primary canards is a time varying linear system �the
Weber equation� that has complex eigenvalues when ��t �
= �X � �1. Wechselberger20 used these variational equations
to analyze the bifurcations producing secondary canards in
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the system, determining the number of secondary canards in
terms of the ratio � of the eigenvalues for the slow flow �Eq.
�4��. This quantity is O�b� as b→0. Brøns, Krupa, and
Wechselberger6 show that the secondary canards on the
stable slow manifold are all within a distance O���1−��/2� of
the “strong” primary canard of system �2�.

When b is also small, the system �2� can be studied as a
three time scale system with � the ratio of middle to fast time
scale and b the ratio of slow to middle time scale. The sys-
tem �3� becomes a slow-fast system with the two fast vari-
ables �X ,Y� and the slow variable Z like the “tourbillon”
studied by Wallet.18 In the singular limit with Z acting as a
parameter, the flow is described by the two-dimensional vec-
tor fields

X� = Y − X2, Y� = − X − Z , �5�

where Z is now a parameter. These flows have a unique
equilibrium point at �X ,Y�= �−Z ,Z2� ,which changes type as
Z increases. The types are a stable node for Z�−1, a stable
focus when −1�Z�0, a center when Z=0, an unstable fo-
cus when 0�Z�1, and an unstable node when 1�Z. Figure
2 shows phase portraits of these flows for Z=−2, Z=−0.25,
and Z=0. Phase portraits for Z�0 are obtained by the time

reversing symmetry �X ,Y ,Z ,T�→ �−X ,Y ,−Z ,−T� of system
�3�. This time reversing symmetry also implies that the sys-
tem �5� has a continuous family of periodic orbits when Z
=0. The twisting and linking of the trajectories of system �2�
are “explained” by the phase portraits of system �5� with
focal equilibria for �Z � �1. Figure 1�b� plots segments of
four trajectories close to the origin of system �3�.

Yet a further consequence of the time reversing symme-
try is that there is an unstable slow manifold of system �3�
that is the symmetric image of the slow manifold. Figure 3
shows intersections of the slow stable and unstable mani-
folds with the plane Z=0. The intersections of these two
manifolds lie on “maximal” canards that remain on the slow
manifold for all time. Guckenheimer and Haiduc10 showed
that the number of these intersections is O�1 /b� �see also
Refs. 18 and 20�. The presence of several maximal canards
indicates that the flow map through the region of a folded
node is quite complicated. One of the principal contributions
of this paper is to visualize the properties of this map.

We choose two cross sections to the scaled vector field
�Eq. �3��, an initial plane S1 defined by X=50 and a final
plane S2 defined by X=−20. Points in S1 with Y �0 ap-
proach the attracting slow manifold and then follow it to the

FIG. 1. �Color� �a� Four trajectories
of system �3� that link each other as
they pass through the region near the
origin. The parameter b=0.03 Initial
values are �X ,Y�= �50,500� and Z
� �−2.5,−2.18,−1.86,−1.54�. �b� A
detailed view of the trajectories in
the vicinity of the origin.

015108-3 Return maps of folded nodes Chaos 18, 015108 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



fold curve along the Z axis, as illustrated in Fig. 1�a�. Be-
cause the flow contracts strongly onto the stable slow mani-
fold, the image of the flow map F12 from S1 to S2 is close to
a rank-1 map. Numerically, we choose a grid of points along
a segment or two-dimensional mesh in S1 and integrate the
trajectories of these points to their intersection with S2. Fig-
ure 4�a� shows the F12 image in S2 of a rectangular 3�300
grid of points X=50, Y �450,500,550, Z� �−2.99,0�
with parameter b=0.03. This value of b yields moderate
numbers of maximal canards and twists in the slow mani-
folds. The points are colored red, blue, or green according to
whether Y =450, 500, or 550. Note that the images of the
three segments of initial conditions with varying X and fixed
Y lie near a common set of curves, consistent with the flow
map being approximated by a rank-1 map. More information
about the flow map is shown in Fig. 4�b�, which plots the
final value of Z in terms of the initial value of Z for trajec-
tories starting on the segment Y =500. There are seven ap-
parent discontinuities in this map that occur near the maxi-
mal canards. This number of discontinuities is consistent
with the results of Wechselberger20 �cf. Ref. 6� that estimate
the number of intersections of the slow stable and slow un-
stable manifolds in terms of the eigenvalues of the slow flow
for the system. In this case �b=0.03�, the eigenvalue is ap-
proximately �=14.6 and the estimate for the number of in-
tersections of the manifolds is 1+ ���−1� /2�=7. The canards
separate trajectories with differing numbers of twists around
the principal canard. The trajectories displayed in Fig. 1
come from different “branches” of this graph. Each branch
between a pair of discontinuities in Fig. 4�b� corresponds to
a segment of the blue slow stable manifold in Fig. 3 between
successive intersections with the red slow unstable manifold.
These are the sectors whose size is analyzed by Brøns,
Krupa, and Wechselberger.6 Since these segments begin and
end on the slow unstable manifold, the time that it takes for
the trajectory to reach S2 is larger at the ends of the segment
than in the middle. Because Z varies linearly with time, each
branch of the graph shown in Fig. 4�b� has a local minimum.
The presence of these local minima and the discontinuities

FIG. 2. �Color� Phase portraits of planar vector fields �5� for three different
values of Z: �a� Z=−2, �b� Z=0.25, and �c� Z=0. In each case there is a
single equilibrium point. The equilibrium is a stable node whose domain of
attraction lies to the right and above the red trajectory in �a�, a stable focus
whose domain of attraction lies to the right and above the red trajectory in
�b� and a center that is surrounded by a family of periodic orbits that lie
above the parabola Y =X2−1 /2 in �c�. Trajectories below this parabola and
those below the red trajectories in �a� and �b� flow to infinity in finite time.

FIG. 3. �Color� Intersections of the slow stable and unstable manifolds of
the system �3� with the plane Z=0. The parameter b=0.03. The stable mani-
fold was computed by following 370 trajectories with initial conditions
along a segment parallel to the Z axis to their intersections with this plane.
The intersection of the unstable manifold with the plane Z=0 is the reflec-
tion of the stable manifold.
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between branches suggest that folded nodes can serve as a
chaos producing mechanism for three-dimensional systems
with two slow and one fast variable. The next section gives
an example that illustrates that this is indeed the case.

III. AN EXAMPLE: FOLDED NODES
IN INVARIANT SETS

This section presents numerical simulations of the fol-
lowing system, a variant of the forced van der Pol system
with folded nodes:

�ẋ = y + x −
x3

3
, ẏ = − x + a sin�2	
� ,

�6�


̇ = b + �	1 −
1

1 + �x2 − 1�2
 .

Folded nodes occur in the forced van der Pol system5,11 it-
self, but only over a small range of parameters close to val-
ues that produce a folded saddle-node. The scale of the dy-
namics associated with these folded nodes makes it difficult
to resolve the twisting dynamics described in the previous
section. The example introduced here expands the phase
space region in which folded nodes influence the dynamics
and it includes parameters that “tune” the number of twists
made by trajectories entering the folded node. The slow flow
of the system �6� is the system

x� = − x + a sin�2	
� ,


� = 	b + �	1 −
1

1 + �x2 − 1�2

�x2 − 1� .

There are folded singularities if a�1 at points where x
= �1 and sin�2	
�=x /a. If 0�b�a2−1�1 /16	, then two
of the four folded singularities are folded nodes. Small val-
ues of b produce folded nodes with lots of twisting.

Figure 5�a� displays a trajectory of the system �6� with
parameters �a ,b ,� ,��= �1.24,0.001,0.5,0.01� projected into
the �x ,
� plane. The overall shape of the trajectory is similar
to the relaxation oscillations of the forced van der Pol sys-
tem. Trajectories follow a stable sheet of the slow manifold
y=x3 /3−x to the fold curves at x= �1, where they jump to
the opposite sheet. However, the details of the jumps differ
from jumps at fold points that satisfy the normal crossing
condition because they occur near the folded nodes of the
system. Figure 5�b� shows an expanded view of the trajec-
tory near the fold curve at x=−1. The trajectory segment
shown makes four passages through this region, and does not
repeat its past trajectory on subsequent passages. The oscil-
lations associated with the folded node are apparent.

The system �6� has the same symmetry �x ,y ,
�→ �−x ,
−y ,
+0.5� as the forced van der Pol system. Relying on this
symmetry, we study the global behavior of the system via a
half-return map that begins on the section x=0 in the middle
of the jumps with y�2 /3 and integrates trajectories until
they reach this section again �with y�−2 /3� and then ap-
plies the symmetry to obtain a new point on the section with
y�2 /3. Periodic orbits of the half-return map of period k
come from periodic orbits whose projection to the �x ,y�
plane has winding number around the origin either k or k /2,
dependent upon whether the symmetry maps the orbit into
itself. Since there is strong contraction of the flow to the
slow manifold, its half-return map can be approximated by a
rank-1 map. The dynamics of the half-return map can be
visualized by following the trajectories with initial condi-
tions varying along the circle defined by �x ,y�= �0,2 /3� and
plotting the final values of the 
 coordinate versus its initial
values. Figure 6�a� displays the 
 coordinates of the half-
return map for this system for a set of initial conditions on

FIG. 4. �Color online� �a� The intersections of a grid of 3�300 trajectories
with the plane X=−20. The initial conditions are equally spaced in the
rectangle X=50, Y � �450,500�, Z� �−2.99,0�. The color of the points in-
dicates the initial value of Y. �b� Graph of the final values of Z vs initial
values of Z for the trajectories with initial value Y =500 shown in �a�.
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the circle �x ,y�= �0,2 /3�. The apparent discontinuity in val-
ues of the half-return map occurs on the stable manifold of
the folded saddle. Trajectories on one side of the discontinu-
ity flow directly to the fold curve of the system where they
jump to the opposite sheet of the slow manifold. Trajectories
on the other side of the discontinuity turn away from the fold
curve at the folded saddle and follow its unstable manifold to
the vicinity of the folded node. The twisting near the folded
node creates a small region where the return map is not
monotone. A detailed view of this region is shown in
Fig. 6�b�.

The return maps shown in Figs. 6�a� and 6�b� resemble
those of one-dimensional maps that are known to have cha-
otic attractors.12 Figure 6�c� displays a Poincaré map of a
trajectory for this system that further suggests that the system
has a chaotic invariant set. Based on these computations, it is

possible to formulate geometric hypotheses that imply the
existence of chaotic invariant sets passing through neighbor-
hoods of a folded node in a slow-fast system with two slow
and one fast variable. Variations of the parameter b in the

FIG. 6. �Color online� �a� Half-return map for the system �6�. �b� Expanded
view of a portion of the half-return map. �c� Poincaré map constructed from
2000 returns of the trajectory shown in Fig. 5 to the cross section x=0. The
parameters are the same as those used in Fig. 5.

FIG. 5. �Color online� A trajectory of the system �6� that makes repeated
returns to the vicinity of folded nodes. The initial conditions are �x ,y ,
�
= �0,0.636 668,0.868 822� and the parameter values are �a ,b ,� ,��
= �1.24,0.001,0.5,0.01�.
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system �6� influence where trajectories flowing through the
folded node return to the cross section, thereby producing
bifurcations that create and destroy the chaotic invariant set
whose cross section is illustrated in Fig. 6�c�. In comparison
with the forced van der Pol system, the chaotic invariant sets
of this example appear to occupy larger regions of the pa-
rameter space and have larger cross-sectional area in the pa-
rameter space. Guckenheimer, Wechselberger, and Young13

studied another modification of the forced van der Pol equa-
tion that has a different chaos generating mechanism that
produces a sizable chaotic region of its parameter space.
They prove that the theory of Henon-like chaotic attractors19

applies to that example.

IV. FOLDED SADDLE-NODES

Folded saddle-nodes occur when a pair of folded singu-
larities appear on the fold curve of a slow-fast system with
two slow variables. The following system has a folded
saddle-node at the origin when ā=0:

�ẋ = y − x2, ẏ = − x + ā − z2, ż = b̄ . �7�

It can be rescaled to

X� = Y − X2, Y� = − X + a − Z2, Z� = b �8�

by setting

x = ��X, y = �Y, z = �1/4Z ,

�9�
t = ��T, a = ā�−1/2, b = b̄�1/4.

Note that ab2= āb̄2 remains unchanged by the scaling of �.
We may assume that b�0 in system �8� by changing the sign
of Z if b�0. The slow flow of system �7� is

ẋ = − x + ā − z2, ż = 2b̄x . �10�

Folded singularities occur when a�0 in the system �7�, and
the magnitude of a determines their separation. For ā�0, the
system �7� has a folded saddle when x=y=0, z=−�ā, and a

folded node when x=y=0, z=�ā, 0� āb̄2�
1

256 . If āb̄2�
1

256 ,
the folded singularity at x=y=0, z=�ā is a folded focus.

Figure 7 shows the phase portrait of this slow flow for
�a ,b�= �0.01,0.275�. The trajectories along the segment of
the fold curve z=0 flow upwards away from the fold curve.
Thus the strip of trajectories between the stable manifold of
the folded saddle and the strong stable manifold in the upper
half of the �z ,x� plane flow into the folded node. Outside of
this strip the trajectories in the upper half of the �z ,x� plane
reach the fold curve where they jump without encountering
the folded singularities. Note also that the maximal canards
in this system are finite and do not extend to infinity because
all the backward trajectories in the lower half-plane to the
right of the unstable manifold of the folded saddle intersect
the fold curve.

The complicated bifurcations of the folded saddle-node
involve the formation of canard segments within the strip of
trajectories that approach the folded node. The prominent
bifurcations of these trajectories are those associated with
canards that follow the unstable slow manifolds of the folded

saddle and the folded node. Wechselberger20 analyzed the
normal form of a folded node, computing asymptotic formu-
lae for these bifurcations. When a is large enough in system
�8�, the folded saddle and folded node are sufficiently sepa-
rated that the bifurcation theory of the folded node applies
without modification. As a decreases, the stable manifold of
the folded saddle approaches and enters the region of trajec-
tories that oscillate around the folded node. Trajectories close
to the stable manifold of the folded saddle then oscillate
around the folded node. Figure 8�a� shows the plot of final
versus initial Z coordinates of F12 for parameters �a ,b�
= �0.37,0.03�. It is evident that the apparent discontinuity at
the stable manifold of the folded saddle borders on the re-
gion where there are oscillations around the folded node.
Figure 8�b� shows two trajectories on opposite sides of this
apparent discontinuity associated with the folded saddle.
Note that the trajectories immediately to the right of the
folded saddle twist. The inward spiraling of the trajectory is
far less symmetric with its outward spiraling than that dis-
played by the trajectories of the normal form for a folded
node.

The discontinuities of the function displayed in Fig. 8�a�
seem more complicated than the ones displayed by the cor-
responding function for the folded node bifurcation dis-
played in Fig. 4�b�. In particular, the local minima of the
branches close to the stable manifold of the folded saddle do
not decrease monotonically as those of Fig. 4�b�. Instead,
there is an oscillation in their magnitudes. Figure 9�a� plots
the projections of four trajectories onto the �X ,Z� plane.
These trajectories constitute two pairs that straddle the dis-
continuities of the second branch to the right of the stable
manifold of the folded saddle. It appears that the trajectories
in these regions are able to follow the unstable slow mani-
fold of the folded node into the region where oscillations no
longer occur, and that the trajectories from inside this branch
jump “back” to the stable sheet of the slow manifold while

FIG. 7. �Color� Phase portrait of the slow flow equations �10�. The param-
eters are �a ,b�= �0.01,0.275�. The folded node is designated by a triangle
and the folded saddle by a cross. The stable manifold of the saddle and the
strong stable manifold of the node are red; the unstable manifold of the
saddle is blue and additional pair of trajectories approaching the node are
green. The fold curve is the dashed line x=0.
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the trajectories on the other side of the discontinuity jump
away from the slow manifold. The phase portraits of the
two-dimensional flows depicted in Fig. 2 are relevant here.
The separation of trajectories occurs at values of Z that cor-
respond to the case Z�1 in system �5�, where the two-
dimensional flow has an unstable node rather than a focus.
Figure 9�b� plots the image of the flow map of a segment of
trajectories flowing through the region of the folded saddle-
node, similar to Fig. 4�a�. The branches in the upper part of
this image also appear to be more complicated than those
seem in Fig. 4�a�. Further analysis of the flow maps associ-
ated to the folded saddle-node is not pursued here, but is
clearly of interest.

V. CONCLUDING REMARKS

No theorems appear in this paper. Its purpose is to visu-
alize novel aspects of the dynamical behavior produced by
folded nodes in slow-fast systems with two slow variables
and one fast variable. Given the complexity of these phe-
nomena, analytic results that substantiate the numerical ob-
servations may be difficult to obtain. I conjecture that the
main features visualized here for the flow maps through
folded nodes are generic for such systems. Specifically:

• If the parameter b in the normal form �Eq. �2�� of a folded
node is sufficiently small, then its return map will be ap-
proximated by a discontinuous one-dimensional map that
has O�1 /b� branches, each of which is concave upward.

• The “slab” of trajectories giving rise to these branches has
width O���� in the direction parallel to the fold curve.6

FIG. 8. �Color� �a� Image of the flow map F12 of system �8�. Four hundred
points along the segment X=50, Y =400, Z� �−2,0� are integrated to their
intersection with X=−10. The Z coordinate of the final point is plotted
against the Z coordinate of the initial point. �b� Trajectories of system �8�
with initial conditions �50,400,−1.705� and �50,400,−1.7� projected into
the �X ,Y� plane.

FIG. 9. �Color� �a� Four trajectories of the system �8�. The initial conditions
are X=50, Y =400, and Z�−1.655,−1.65,−1.6,−1.595 colored blue, red,
green, and black, respectively. The parameters are �a ,b�= �0.37,0.03�. Note
that the red and green trajectories that lie on the same branch of the flow
map depicted in Fig. 8�a� jump back to positive values of X and reach the
cross section X=−2 with larger values of Z than the other two trajectories.
�b� Image of the flow map F12 of system �8�. Four hundred points along the
segment X=50, Y =400, Z� �−1.995,0� are integrated to their intersection
with X=−10.
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• When the trajectories flowing through the folded node re-
gion return to this region, the twisting of trajectories can
create chaotic invariant sets.

Additional bifurcations associated with secondary canards
near a folded saddle-node have been visualized here, but the
nature of these bifurcations and their dependence upon the
parameters �a ,b� in system �8� have not been investigated.
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