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1 Introduction

This paper presents a brief overview of algorithms that aid in the analysis of dynamical
systems and their bifurcations. The viewpoint is geometric and the goal is to describe
algorithms that reliably compute objects of dynamical significance. Reliability has
three facets:

1. the probability that the algorithm returns an answer for different choices of start-
ing data,

2. whether the computed object is qualitatively correct, and

3. the accuracy with which the objects are computed.

Numerical analysis has traditionally concentrated on the third of these topics, but the
first two are perhaps more important in numerical studies that seek to delineate the
structure of dynamical systems.

This survey concentrates on exposition of fundamental mathematical principles
and their application to the numerical analysis of examples. There is a strong in-
terplay between dynamical systems theory and computational analysis of dynamical
systems. The theory provides a framework for interpreting numerical observations and
foundations for algorithms. Apparent discrepancies between computational output and
theoretical expectations point to areas where phenomena have been overlooked in the
theory, areas where algorithms produce misleading results, and areas where the re-
lationship between theory and computation is more subtle than anticipated. Several
examples of simple systems are used in this article to illustrate seeming differences
between computation and theory.
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Geometric perspectives have been introduced relatively recently to the numerical
analysis of ordinary differential equations. The tension between geometric and more
traditional analysis of numerical integration algorithms can be caricatured as the in-
terchange between two limits. The object of study are systems of ordinary differential
equations and their flows. Numerical solution of initial value problems for system of
ordinary differential equations discretize the equations in time and produce sequences
of points that approximate solutions over time intervals. Dynamical systems theory
concentrates on questions about long time behavior of the solution trajectories, often
investgating intricate geometry in structures formed by the trajectories. The two limits
of (1) discretizing the equations with finer and finer resolution in time and (2) letting
time tend to infinity do not commute. Classical theories of numerical analysis give
little information about the limit behavior of numerical trajectories with increasing
time. Extending these theories to do so is feasible only by making the analysis specific
to classes of systems with restricted geometric properties. The blend of geometry and
numerical analysis that is taking place in current research has begun to produce a
subject with lots of detail and richness. Interesting examples from diverse applications
infuse the subject and establish mathematical connections between other disciplines.
Thus, the development of better algorithms and software can have far reaching con-
sequences. This paper takes a pragmatic view of this research. The focus here is on
understanding the mathematical properties observed in numerical computation and on
assessing the capability of theory, algorithms and software to elucidate the structure
of dynamical models in mathematics, science and engineering. Issues that have been
investigated from this perspective are presented and a few pointers are provided to the
rapidly growing literature.

2 Numerical Integration

2.1 Classical Theory

Systems of ordinary differential equations

ẋ = f(x); f : Rn → Rn (1)

define vector fields. Vector fields on manifolds are also defined by systems of the form
(1) in local coordinates [148]. The existence and uniqueness theorem for ODEs [86]
states that a Lipschitz continuous vector field (1) has a unique flow Φ : Rn ×R→ Rn

defined in a neighborhood of Rn×0 with the properties that Φ(x, 0) = x and Φ̇(x, t) =
f(Φ(x, t)). The time t map φt : Rn → Rn is defined by φt(x) = Φ(x, t). The curves
Φ(x, t) defined by fixing x and letting t vary are trajectories, denoted by xt. There are
seldom explicit formulas for Φ in terms of f . Iterative numerical integration algorithms
are used to compute trajectories with discrete time approximations that march along
the trajectories. Numerical integration is a mature subject, but still very active - espe-
cially with regard to algorithms designed for special classes of equations. The subject
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is supported by extensive theory and abundant software. Several excellent texts and
references are Henrici [91], Gear [66], Hairer, Norsett and Wanner [86], Hairer and
Wanner [87] and Ascher and Petzold [10]. Part of the intricacy of the subject lies in
the fact that no single integration algorithm is suitable for all problems. Different al-
gorithms reflect trade-offs in ease of use, accuracy and complexity. The basic concepts
of numerical integration are explained here only briefly. Explicit Runge-Kutta algo-
rithms are described, followed by a short survey of refinements, alternate approaches
and terminology for numerical integration of ODEs.

Explicit Runge Kutta methods construct mappings ψh from the vector field (1)
that depend upon a parameter h, called the time step of the method. Several partial
steps are taken from an initial point, and the values are combined to produce the map
ψh. The primary goal is to produce a family of mappings ψh depending on h, whose
Taylor series expansion in the time step h agrees with that of the flow map φh to a
specified degree. Each function evaluation is called a stage of the method. The method
is said to have order d if the Taylor series agree to degree d+1. Each stage is performed
at a point that depends upon the preceding stage. The scheme for an s-stage method
has the following form:

k1 = f(x)

k2 = f(x+ ha21k1)
... (2)

ks = f(x+ h(as1k1 + as2k2 + · · ·+ as,s−1ks−1

ψh(x) = x+ h(b1k1 + b2k2 · · ·+ bsks)

Formulation of higher order Runge-Kutta methods for system (1) is based upon
repeated differentiation of this equation. With each differentiation, substitution of
f(x) for ẋ on the right hand side yields expressions for the derivatives of trajectories
in terms of derivatives of f . For example, the second and third derivatives of x(t) are
given by

ẍ = Dxfẋ = Dxff

x(iii) = Dxxff
2 + (Dxf)2f

Taylor expansion of ψh in the system of equations (2) gives expressions in the derivatives
of f and the coefficients aij and bj of the method. Equating the degree d+1 expansions
of ψh and x(h) obtained from repeated differentiation of system (1) produces a system
of polynomial equations for aij and bj. The number of equations obtained in this
manner grows faster than d. For d ≤ 4, there are order d methods with d stages [86].
Order d methods with d > 4 require more than d stages. As d increases, the complexity
of solving the equations for order d methods grows rapidly. The fourth order method

k1 = hf(x0)

k2 = hf(x0 + k1/2)

k3 = hf(x0 + k2/2)
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k4 = hf(x0 + k3)

x1 = x0 +
1

6
(k1 + 2k2 + 2k3 + k4)

is a “standard” choice [86].

The simplest Runge-Kutta method is the forward Euler method defined byEh(x) =
x+ hf(x). This is a single stage explicit Runge-Kutta method, but it receives limited
use for two reasons. First, it only has order one. For example, if f(x) = x, then
Eh(x) = (1 + h)x and φh(x) = exp(h)x = (1 + h + h2/2)x + O(h3). If l → ∞ and
h → 0 so that lh = t, then the iterates En

h (x) converge to φt(x). This expresses
the convergence of the method. In the example f(x) = x with x(0) = 1 and t = 1,
El

1/l(1) = (1 + 1/l)l while φ1(1) = e. Taking logarithms, we estimate the difference

log(e) − log(El
1/l(1)) = 1 − l log(1 + 1/l) = −l/2 + o(l). The order gives the degree

of the lowest order term in the difference between the Taylor series expansion of φt(x)
and its computed value from l steps of steplength h with lh = t. Computing the value
of the vector field to single precision (seven decimal digits) of accuracy for moderate
times with a first order method can be expected to take millions of time steps. This
can be reduced to a few tens of time steps with a fourth order method. Even with fast
computers, the performance of the Euler method is awful.

The second limitation of the Euler method is its instability for stiff systems. This
is exemplified by the example ẋ = −λx with Eh(x) = x− hλx and φt(x) = exp(−λt).
All of the solution trajectories tend to zero as t → ∞. However, if hλ > 2, then
the trajectories of the numerical method are unbounded, with oscillating signs. This
phenomenon persists in multidimensional linear systems with negative eigenvalues of
large magnitude. Many examples, in particular those obtained by discretization of
partial differential equations, have rapidly decaying modes whose eigenvalues place
stringent limits on the time steps with which the Euler method gives trajectories that
even qualitatively resemble the trajectories of a vector field.

Explicit, fixed time-step Runge Kutta methods are only one group of widely
used methods. We give here a list of criteria that are used to distinguish and classify
numerical integration algorithms.

• Explicit vs. implicit:

In explicit methods, the next time step is computed by direct evaluation of func-
tion(s) of previously computed data. In implicit methods, the next step is com-
puted by solving a system of equations, often using Newton’s method. The
use of implicit methods is motivated by the difficulties of solving stiff systems.
Compare the explicit Euler method with the implicit Euler method, defined by
xn+1 = xn + hf(xn+1). This differs from the explicit Euler method in that the
function evaluation takes place at the still unknown next point along the approxi-
mate trajectory. The equation for xn+1 is implicit since xn+1 appears on the right
hand side of the equation. For the linear example ẋ = −λx with large λ > 0,
the equation is readily solved, giving the formula xn+1 = xn/(1 + hλ). When
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λ > 0, |xn| → 0 monotonically for any initial condition and any positive step
size h. The limitations on step length that were necessary to achieve stability for
the explicit Euler method have disappeared, at least for this system. All explicit
Runge-Kutta methods applied to a linear equation yield polynomials that are un-
bounded as the step length increases. Therefore, they all become unstable when
applied to the equation ẋ = −λx with large enough λ > 0. When the desired
time span for an integration is long enough compared to the step length required
for stability by explicit integrators, the differential equation is called stiff. Devel-
opment of stiff integrators was a particularly active research area in the 1970’s.
The guiding criterion that was applied to this work was Dahlquist’s concept of
A-stability [35], namely that the integrator should remain stable for all positive
step sizes when applied to a linear system with negative eigenvalues. Explicit
Runge Kutta-methods are not A-stable, a fact that provided strong motivation
for improvement of implicit methods.

• One-step vs multi-step

One-step methods only use information from the last computed step while multi-
step methods use information from several previously computed steps in deter-
mining the next step of the integrator. Multi-step methods have the advantage
over one-step methods that higher order accuracy can be achieved with a single
function evaluation at each time step. On the other hand, theoretical inter-
pretation of one step methods is easier since they can be regarded as giving
approximations to the flow map φh. A k-step multi-step method can be viewed
as a discrete mapping on a product of the phase space with itself k times, but
it is difficult to single out the class of mappings on this larger space than corre-
spond to multi-step methods. A k-step method also needs a way to compute the
first k steps, for example by using a Runge-Kutta algorithm. Implicit multi-step
methods called backwards differentiation formulae are used widely as integrators
for stiff systems [87, 10].

• Fixed step vs. variable step

The most common type of adaptation in numerical integrators is the use of
prediction-correction to adjust step size. Variable time step algorithms incor-
porate criteria for assessing the accuracy of each computed time step. With
Runge-Kutta methods, accuracy is commonly assessed by formulating methods
of different orders that share intermediate time steps. By comparing the solutions
with the principal terms in the asymptotic expansions of the truncation error for
each method, an estimate of the error for the time step can be made. If the esti-
mate is larger than a predetermined error criterion, the time step is reduced and
the step is repeated. Typically, there are also criteria used to determine when
time steps can be increased while maintaining the desired error criteria. For the
most part, heuristic arguments and tests with sample problems form the basis of
adaptive strategies that are used to vary time steps. As with multistep methods,
variable step methods are hard to interpret as discrete approximations to a flow.
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The use of variable time step methods is an area in which practice is far ahead of
theory. There are few theorems describing the qualitative properties of adaptive
time step algorithms viewed as dynamical systems.

Extrapolation is a technique that can be used to improve the order of accuracy of
either explicit or implicit integrators. Many integrators have asymptotic expan-
sions in step size h for the errors made in computing φt as h tends to zero. When
numerical computations of φt are performed with different step sizes, the sequence
of computed values can be fit to the beginning of the asymptotic expansion for
the errors. These can then be extrapolated to the limit h = 0, giving a higher
order estimate for φt. The extrapolation process is independent of the integrator
that is used, so that high orders are achievable using simple low-order integrators.
Most implementations of extrapolation methods are based upon integrators for
which only even terms appear in the asymptotic expansion of the error. The
methods can readily vary their order adaptively by selecting the number of in-
termediate time-steps and the segment of the asymptotic expansion that is fit.
These properties give these methods more flexibility in automatically adapting
to ongoing computations than high order Runge-Kutta methods.

There is renewed interest in Taylor series methods for numerical integration at
this time, some of it motivated by work on verification discussed below in Section
2.3. Series solutions of trajectories are easy to construct theoretically: substitution of
a power series expansion x(t) =

∑
ait

i into the system (1) yields a recursive system
of equations for ai. Implementation requires that the series expansion of f(x(t)) is
computed, and this is not straightforward. On the one hand, finite difference approxi-
mations of the derivatives of f are no more accurate than the Runge-Kutta methods.
On the other hand, symbolic differentiation of f produces long complicated formulas
that are expensive to evaluate. But there is a third way. Automatic differentiation [73]
is a technique for computing derivatives with only round-off errors that makes the
computation of highly accurate Taylor series approximations to solutions practical.
The series can be computed readily to sufficiently high order that the radius of con-
vergence and truncation errors of the Taylor polynomials can be estimated, enabling
choice of time steps based entirely upon information at the initial point of the step.
Moreover, the methods produce dense output in that the Taylor polynomials give the
value of the trajectory at all intermediate times to uniform order. In Runge Kutta
methods, there is no procedure to directly evaluate the trajectory at fractional time
steps while maintaining the order of accuracy of the methods. A posteriori tests of the
Taylor polynomials can form the basis for adaptive reduction of step size. For exam-
ple, error criteria can be formulated in terms of the difference between the vector field
evaluated along the Taylor polynomial approximation to a trajectory and the tangent
vectors to these approximate solutions [32]. While Taylor series methods long ago were
demonstrated to work extremely well on a broad range of examples [32], they have
not yet been widely adopted. The advent of improved programming languages and
environments may change this situation.
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Complementary to the classification of numerical integrators as explicit/implicit,
one-step/multi-step and adaptive/fixed-step are questions about whether numerical
integrators preserve mathematical structure found in special classes of problems. The
most intense effort has been devoted to the development of symplectic integrators [134].
A Hamiltonian vector field is one that has the form of Hamiltonian’s equations in
classical mechanics: ṗ = ∂H/∂q and q̇ = −∂H/∂p with Hamiltonian function H :
Rn × Rn → R. The flow of a Hamiltonian vector field is symplectic, meaning that it
preserves the two form

∑
dpi∧dqi and energy preserving, meaning that H is a constant

of the motion. A symplectic integrator is one for which each time step is given by a
symplectic map. The differences between symplectic integrators and other methods
become most evident when performing very long time integrations. A common feature
of non-symplectic integrators is that the value of H changes slowly along trajectories,
but eventually drifts far from its original value [151]. Symplectic integrators do not
usually preserve energy either, but the fluctuations in H from its original value remain
small. On a deeper level, KAM theory implies that quasiperiodic motions are frequently
observed in symplectic flows [134]. Symplectic integrators define maps that satisfy
assumptions of the KAM theory while nonsymplectic integrators generally do not. The
construction of symplectic integrators is still sufficiently new that it is early to tell how
prevalent they will become as the methods of choice for investigation of conservative
systems.

2.2 Limit Sets

Classical theories of numerical integration give information about how well different
methods approximate trajectories for fixed times as step sizes tend to zero. Dynamical
systems theory asks questions about asymptotic, i.e. infinite time, behavior. Only
recently has there been emphasis upon understanding whether numerical methods pro-
duce good approximations to trajectories over arbitrarily long periods of time [143].
We investigate the question as to when the limits of step size tending to zero and
time tending to infinity can be interchanged in numerical computations, but there are
additional questions that give a different perspective on long time integration. Two
phenomena shape our discussion on the limitations of long time integration. The first
phenomenon is based upon a slow drift of numerically computed trajectories from
those of the underlying vector field. Consider the explicit Euler method applied to the
harmonic oscillator

ẋ = −y
ẏ = x

The flow trajectories are circles, but the non-zero trajectories of the numerical method
satisfy x2

n+1+y2
n+1 = (1+h2)(x2

n+y2
n) and are all unbounded. The second phenomenon is

closely related to structural stability of hyperbolic invariant sets. Hyperbolic invariant
sets have the property that trajectories do not remain close. There is a bound δ > 0 so
that no two distinct trajectories in the invariant set remain within distance δ of each
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other. Given this fact, it is unreasonable to expect that a numerical computation will
remain close to the trajectory of its initial condition for all time. Nonetheless, there is a
sense in which numerical trajectories can give excellent approximations to trajectories
within the invariant set. The concepts of pseudoorbits and shadowing described in this
section help explain this apparent paradox.

Further discussion of infinite time behavior of flows and approximating numerical
methods will be facilitated by the following definitions and concepts from dynamical
systems theory:

• Invariant set

Λ is an invariant set if φt(Λ) = Λ for all t. Λ is forward invariant if φt(Λ) ⊂ Λ
for all t > 0. Λ is backward invariant if φt(Λ) ⊂ Λ for all t < 0.

• ω-limit set of a trajectory

y is in the ω-limit set of the trajectory x(t) if there is a sequence ti →∞ so that
x(ti)→ y.

• α-limit set of a trajectory

y is in the α-limit set of the trajectory x(t) if there is a sequence ti → −∞ so
that x(ti)→ y.

• Wandering point

x is a wandering point if there is a neighborhood U of x and a T > 0 so that
t > T implies x(t) 6∈ U .

• Non-wandering set

The non-wandering set is the complement of the set of wandering points.

• (Uniformly) hyperbolic structure

A hyperbolic structure of a compact invariant set Λ is an invariant splitting of
tangent spaces TΛR

n = Es ⊕ Eu ⊕ Ec so that Ec is the one dimensional space
tangent to the vector field and for t large Dφt expands vectors in Eu at an
exponential rate while contracting vectors in Es at an exponential rate.

The wandering set of a flow is open and the nonwandering set is closed. One
of the goals of dynamical systems theory is to decompose the nonwandering set into
disjoint closed subsets, called basic sets, which have dense orbits. When this can be
done, the entire phase space can be partitioned into the stable sets of the basic sets.
The stable set of a basic set is the set of points whose ω-limit is in the basic set.
Similarly, the unstable set of a basic set is the set of points with α-limit set in the basic
set. The geometric characterization of structural stable dynamical systems advanced
by the seminal work of Smale [140] gives a large class of systems for which these
decompositions have a particularly nice form. On a compact manifold M , structurally

8



stable systems have a finite number of basic sets Λi, each of which posses a uniformly
hyperbolic structure.

Chaotic dynamical systems display sensitive dependence to initial conditions:
nearby trajectories diverge from one another, typically at exponential rates. In the
presence of sensitive dependence to initial conditions, it is hardly reasonable to expect
that a numerical method will accurately track the trajectory of its initial condition
for long times, since trajectories of nearby initial conditions do not remain close to the
chosen one. Any error made in a single step of a numerical integration will be amplified
by the inherent divergence of trajectories. This fact underlies fundamental limitations
in the accuracy of numerical integration over long times. In hyperbolic invariant sets,
it is inevitable that errors in the numerical solution of the initial value problem grow
exponentially. This is even true for iteration of diffeomorphisms where there is no
truncation error of numerical integration, only round-off error in the evaluation of the
diffeomorphism.

The effects of sensitivity to initial conditions prompt new perspectives on the
initial value problem. Over short times, we expect numerical integration to be accurate.
What positive results can be established about long time integration? In the case of
hyperbolic invariant sets, there is a satisfying theory whose ultimate conclusion is that
numerical trajectories approximate actual trajectories of a different initial condition.
The concepts of shadowing and pseudoorbit [20] have been used to explore these issues.
For a discrete dynamical system defined by the mapping F : Rn → Rn, a δ-pseudoorbit
is a sequence of points xi with the property that |xi+1 − F (xi)| < δ. On each iterate,
there is an error of at most δ in the location of the next point relative to the location of
the mapping applied to the current point of the pseudoorbit. If there is a point y whose
trajectory has the property that |F i(y)− xi| < ε, then we say that the trajectory of y
ε-shadows the pseudoorbit. The extension of the shadowing concept and this theorem
to a flow Φ requires allowance for time “drift” along trajectories. If (xk, hk) ∈ Rn ×R
is a sequence of points and time increments, it is a δ-pseudoorbit if Φ(xk, tk)− xk+1 <
δ for each k. The pseudoorbit ε-shadows the orbit of y if there are times tk with
|xk−Φ(y, tk)| < ε and |hk−(tk+1−tk)| < ε [30]. For a numerical iteration or integration,
we can view the algorithm as producing a pseudoorbit. The one step accuracy of the
method determines a δ for which the numerical trajectory is a pseudoorbit. We can ask
for which systems, which one step methods ψh, which initial conditions x and which ε
there is a point y so that Φ(y, nh) ε-shadows the numerical trajectory ψnh(x).

The qualitative characteristics of the invariant sets of a flow Φ are a big factor
in determining whether they satisfy shadowing properties. Hyperbolic basic sets do.
Here is the statement of a result for discrete time systems.

Theorem 1 [20] Let Λ be a hyperbolic invariant set of a C1 diffeomorphism F . If
ε > 0, there is a δ > 0 such that every δ-pseudorobit for a trajectory in Λ ε-shadows a
trajectory of F in Λ

Numerical trajectories that start near a hyperbolic attractor Λ will stay near Λ and they
will be shadowed by trajectories within the attractor. Thus, the shadowing property of
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hyperbolic sets enables us to recover long time approximation properties of numerical
trajectories when they are computed with sufficient accuracy for fixed, moderate times.
This theorem is very satisfying mathematically, but we note with caution that there are
few examples of hyperbolic attractors that arise from physical examples. The chaotic
attractors that have been observed in applications seem not to be hyperbolic and
structurally stable. The discrete Henon mapping is the example that has been studied
most intensively [89]. The details of its dynamical properties are much more subtle
and complex than those of hyperbolic attractors [20], but they appear to be typical of
chaotic attractors with a single unstable direction. Additional complexity is present
in partially hyperbolic attractors in which the dimension of the unstable manifolds
of points vary within attractors [2, 127]. Hammel et al. [88] have investigated the
shadowing properties of one dimensional mappings and the Henon mapping. They
demonstrate that very long sections of trajectories have the shadowing property, but
that one cannot expect it to hold for infinite time.

Coombes et al. [30] implemented methods for shadowing trajectories of vector
fields. Convergence of a numerical integration algorithm proves that it provides shad-
owing of trajectories for fixed, finite times. Nonetheless, the theory of these algorithms
says little about the precision of a pseudoorbit required to provide an ε-shadow of a
trajectory. The ability to shadow trajectories for long periods of time is closely related
to their Liapunov exponents (discussed in Section 2.3) and exponential dichotomies. If
there are no Liapunov exponents close to zero, then an infinitesimal neighborhood of a
trajectory x(t) can be decomposed into unstable directions that diverge from x(t) and
stable directions that converge towards x(t). Deviations from x(t) in the stable direc-
tions (eventually) become smaller in the forwards direction while deviations from x(t)
in the unstable directions become smaller in the backwards direction. Heuristically, to
find an orbit shadowed by a pseudo-orbit, take the trajectory that matches the projec-
tion of the pseudoorbit onto the stable directions at its beginning and onto the unstable
directions at its end. Several authors, including [28, 29, 30, 31, 88], have formalized
this conceptual framework to give explicit estimates for the shadowing constants of a
vector field.

Consider a set of points (xk, tk), k = 0, . . . , N along a trajectory of the vector
field f with flow Φ. These points satisfy the equations

Φ(xk, tk)− xk+1 = 0 (3)

for = 0, . . . , N − 1. We can view the left hand side of these equations as a map
F : R(n+1)(N+1) → RN . A one-step numerical method for integrating the vector field
gives an approximation to this map. The analysis of Coombes et al. [30] apply Newton’s
method and its extensions to analyze how much the solutions of the system (3) change
with perturbations of Φ. To deal with the flow direction itself, these authors constrain
the points xk to lie on a fixed set of cross-sections to the vector field. The important
quantities in determining the shadowing data are the magnitude of a right inverse to
the map F and the C2 norm of the vector field in a neighborhood of the trajectory.
The right inverse of F is not determined uniquely: there are essentially n degrees of
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freedom that specify a trajectory. To obtain a right inverse whose norm is relatively
small, the trajectory is decomposed into its expanding and contracting directions. The
contracting coordinates are chosen at the beginning of the trajectory and the expanding
coordinates are chosen at its end. Using their methods Coombes et al. [30] demonstrate
shadowing of very long trajectories in the Lorenz system [113].

2.3 Error Estimation and Verified Computation

Numerical integration algorithms are fundamental tools for the investigation of dy-
namical systems, but the results they produce are seldom subjected to verification or
rigorous error estimation. Indeed, the exponential divergence of trajectories in systems
with sensitive dependence to initial conditions sets limits on the time for which one can
expect a numerical trajectory to remain close to the actual trajectory with the same
initial condition. Naive attempts at estimating the errors of numerical integration tend
to introduce artificial instability coming from varied sources such as the rectilinear ge-
ometry inherent in interval arithmetic [33]. This wrapping phenomenon amplifies the
expected exponential growth of errors, typically producing pessimistic results. This
state of affairs creates a tension between simulation and the mathematical theory of
dynamical systems. On the one hand, numerical integration seems necessary in the
investigation of systems that don’t have analytically explicit solutions. On the other
hand, the difficulty in estimating the errors in these integrations makes it hard to use
simulations in rigorous analysis. There has been recent progress in attacking this issue,
and the number of successful examples in which numerical computation gives rigorous
results about dynamical systems is growing steadily.

The variational equations ξ̇(t) = Dfx(t)ξ(t) of a trajectory x(t) for system (1)
give an infinitesimal picture of how nearby trajectories differ. The exponential growth
rates of solutions to this time varying linear system of differential equations are the
Liapunov exponents of the trajectories. Their existence is discussed in the next section.
The computation of Liapunov exponents must contend with two phenomena. The first
phenomenon is that the rates of expansion and contraction along a trajectory may vary
dramatically. This is particularly evident in canard solutions to systems of differential
equations with multiple time scales [47, 48, 57], also discussed in the next section.
The second phenomenon is that the directions of expansion and contraction may twist
along a trajectory. Changes in twist are intimately involved in the bifurcations that
take place in chaotic invariant sets. Both of these phenomena are common, so general
algorithms for computing Liapunov exponents should take them into account. Suppose
that (xk, tk) is a sequence of points along a trajectory and that Dk is the Jacobian of
the flow map from (xk, tk) to (xk+1, tk+1). Denoting by σ1, . . . , σn the singular values
of JN = DN · · ·D2D0, the Liapunov exponents are defined as the limits of log(σi)/tN
as N →∞. Thus computation of the Liapunov exponents requires computation of the
singular values of JN . Performing this computation by first computing the product and
then computing the singular values is ill-conditioned in general. If the largest Liapunov
exponent is separated from the remaining ones, the JN tend to rank one matrices and
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small perturbations of the Di produce large relative changes in the magnitudes of its
smaller singular values. To accurately compute the smaller singular values, two basic
strategies have been proposed [136, 152]. The first is to form exterior powers of the
Jacobians that represent its action on subspaces. The dominant singular values of
exterior power i will be the product of the largest i singular values, so the Liapunov
exponents can be recovered from the ratios of the largest singular values of the exterior
powers. The second strategy is perform a matrix decomposition of JN by working with
its factors iteratively. For example, the QR factorization of JN can be computed by first
computing the QR factorization D0 = Q0R0. Then one computes the QR factorization
of D1Q0 = Q1R1. Proceeding inductively, one computes Dk · · ·D0 = QkRk · · ·R0.
The inductive step is to compute the QR factorization Dk+1Qk = Qk+1Rk+1. Dieci
et al. [41] have proposed a continuous analog for this factorization of JN based upon
solving Riccati equations. The goal is produce a frame, i.e., a smoothly varying set of
orthogonal coordinate systems along the trajectory, so that the variational equations
become triangular when transformed to this frame. The differential equations satisfied
by the frame are a Riccati system for which there are special methods of numerical
integration [39, 111].

The most direct approaches to error estimation for numerical integration are
based upon interval arithmetic. Numbers are replaced by intervals and operations
are replaced by enclosures. For example, the sum of two intervals is an interval that
contains the sum of any numbers contained in the two summands. For calculations
involving a moderate number of operations, interval arithmetic is often an effective
means of obtaining rigorous estimates for calculations. As an example, interval im-
plementations of Newton’s method often work well to give precise estimates on the
location of all the zeros of a function, including proofs of their existence. Within
the context of dynamical systems, Lanford’s computer based proof for the existence
of a fixed point for the period doubling renormalization operator on unimodal func-
tions [108, 109] exploits the application of interval arithmetic to Newton’s method.
Application of interval arithmetic to numerical integration is an old idea [33], but the
results are frequently disappointing, leading to poor bounds on the computation of
a trajectory compared to the apparent accuracy of the calculation. Unless the flow
is uniformly contracting in the phase space, each step of an interval based numerical
integration tends to produce larger enclosing intervals. The continued growth of en-
closing intervals limits severely the number of time steps that can be taken before the
bounds become useless. The work on shadowing described above and three additional
examples illustrate ways of circumventing these limitations of interval arithmetic.

The first example comes from the work of Löhner. He replaces intervals by Taylor
series (or jets) augmented by bounds that enclose function values. These Taylor series
with bounds are the fundamental objects with which computations are performed.
Thus, a function f : Rn → R is approximated on a domain D ⊂ Rn by a polynomial P
and ε > 0 with the property that |P (x)−f(x)| < ε for all x ∈ D. This is a much richer
class of objects than intervals, and it is possible to construct a precise numerical calculus
for these objects in the context of floating point arithmetic. Lanford’s numerical proof
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of the Feigenbaum conjectures uses these data structures [108]. Berz has implemented
this calculus in his COSY software, using the term differential remainder algebra [15],
and applied it to normal form calculations of Hamiltonian systems to achieve strong
estimates of the stability properties of accelerator designs [115]. Löhner uses algorithms
that compute Taylor series approximations of trajectories for differential equations with
automatic differentiation, and then obtains error estimates for these approximations.
The error estimates come from an adaptation of the contraction operator used in the
Picard proof of existence of solutions to ordinary differential equations. If f : Rn → Rn

is Lipschitz continuous and T is small enough, then the operator

Π(g)(t) = x0 +
∫ t

0
f(g(s))ds

acting on continuous functions g : [0, T ] → Rn with g(0) = x0 has a contracting fixed
point at the solution to the differential equation ẋ = f(x) with initial condition x0.
Bounds on T are readily computed in terms of the domain, magnitude and Lipschitz
constant of f . Löhner applies this operator in the context of Taylor series with re-
mainders to obtain good bounds on Taylor series approximations to the solution of the
differential equation. This work complements the use of automatic differentiation to
produce high order numerical integration algorithms based upon Taylor series.

The second example of error estimates for solutions of differential equations ex-
ploits transversality in the context of planar dynamical systems. Guckenheimer and
Malo [80] observed that numerical integration of rotated vector fields [54] can be used
to compute curves that are transverse to the trajectories of a planar vector field. Using
the terminology of Hubbard and West [94], we expect the numerical trajectories of the
rotated vector fields to be fences that provide barriers the trajectories of the original
vector field can cross only once. Interval arithmetic can be used to verify that the
trajectories of the rotated vector fields are indeed transverse to the trajectories of the
original vector field. The advantage of this method compared to direct error estimation
of trajectories is that the transversality computations are all local to individual time
steps of the rotated vector field. The interval estimates for each time step are inde-
pendent of one another, so the growth of the estimates does not propagate from one
time step to the next. Using these ideas, Guckenheimer [75] described an algorithm to
rigorously verify the correctness of phase portraits of structurally stable planar vector
fields defined by functions for which interval evaluations have been implemented.

The fourth example of rigorous results based upon numerical error estimates is
the recent analysis of the Lorenz system by Tucker [146]. In 1963, Lorenz described
the first strange attractor that was observed via numerical computation [113]. A more
complete geometric model of the Lorenz attractor was formulated fifteen [84] years
later. Verification that the assumptions underlying the geometric model are satisfied
by the Lorenz system has been a benchmark problem in the numerical analysis of
dynamical systems. The key assumption can be expressed as the statement that there
exists a family of cones in the tangent spaces of points in the attractor that are forward
invariant. Tucker has solved this problem. His work is based upon a careful dissection
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of a neighborhood of the attractor into regions on which the behavior of the variational
equations can be described with interval computations. The interval analysis itself does
not need to be precise once a suitable covering of the attractor has been constructed.

3 Computation of Invariant Sets

Invariant sets with complex geometry are common in dynamical systems. The com-
plexity comes both in the local structure of the sets and in convoluted shapes of smooth
objects. Smale’s horseshoe [141] is an important example of a fractal invariant set for
a discrete time dynamical system. The analog of the horseshoe in continuous time
dynamical systems is the solenoid [140]. The stable and unstable manifolds of peri-
odic orbits in the horseshoe and solenoid are folded, with regions of arbitrarily large
curvature. The Lorenz system [113] has been a rich source of complex geometric ob-
jects, including the convoluted, two dimensional stable manifold of the origin and its
fractal, chaotic attractor. The algorithmic aspects of computing invariant sets is a rel-
atively new subject compared to numerical integration. The list of successful methods
for directly computing invariant sets has been growing. This section surveys research
on computing four types of invariant sets: periodic orbits, invariant tori, stable and
unstable manifolds of equilibria and chaotic invariant sets.

3.1 Periodic Orbits

A periodic orbit of a flow φ is a non-equilibrium trajectory x(t) with x(0) = x(T )
for some T > 0. The minimal value of T is the period of the orbit. Perhaps the
most common way of finding stable periodic orbits is to identify them as the limit sets
of trajectories computed by numerical integration. However, there are circumstances
in which numerical integration does not yield an accurate representation of a stable
periodic orbit. An example is given below. There are also circumstances in which the-
oretical considerations suggest that the computation of periodic orbits with numerical
integration may fail. A one-step numerical integration method with fixed steps is a
diffeomorphism, and periodic orbits of flows become invariant curves of the time h map
φh of the flow. The theory of normal hyperbolicity implies that if the periodic orbit
is hyperbolic, then the map defined by a numerical integration algorithm will have an
invariant curve near the periodic orbit if it is a sufficiently accurate approximation of
φh. On this invariant curve there may be resonance, with numerical trajectories con-
verging to a stable, discrete periodic orbit with a finite number of points rather than
filling the periodic orbit densely. This cannot happen for φh if h is incommensurate
with the period. When T is a multiple of h, the periodic orbit is a continuous family
of periodic orbits of φh. This qualitative discrepancy between the generic behavior of
a numerical integration algorithm and the flow map seldom impedes the identification
of stable periodic orbits as the limits of numerical trajectories. Nonetheless, when try-
ing to compute periodic orbits whose stability is weak enough, normal hyperbolicity
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breaks down and the numerical algorithm may acquire more complex limit sets close
to the periodic orbit. In particular, using numerical integration to accurately identify
the location of saddle-node bifurcations of periodic orbits is problematic.

It is desirable to have direct methods for locating periodic orbits for at least three
reasons:

• Numerical integration may fail as described above.

• Direct methods may be more efficient than numerical integration for computing
periodic orbits.

• Unstable periodic orbits are not readily obtainable as limit sets of trajectories.

The equations defining periodic orbits are boundary value problems for ordinary differ-
ential equations. Most of the extensive literature and software dealing with boundary
value problems applies to two point boundary value problems with separated boundary
conditions [9]. While the equations for periodic orbits can be recast in this form by
enlarging the dimension of the phase space, this approach has not been successfully ap-
plied to many problems. Instead, most studies of periodic orbits use algorithms that are
specifically designed for the solution of boundary value problems with periodic bound-
ary conditions. There are two methods that dominate these studies: simple shooting
methods and the collocation method implemented in the computer code AUTO [50].
For these methods to work well, the periodic orbit should itself be robust with respect
to perturbation: the periodic orbit should vary continuously with deformations of the
vector field. A sufficient condition for this robustness can be formulated in terms of
the monodromy matrix of the orbit γ. The monodromy matrix A of a point x ∈ γ is
the Jacobian of the time T flow map at x. The monodromy matrix A always has 1 as
an eigenvalue (with f(x) as eigenvector), but if 1 is a simple eigenvalue of A, then the
periodic orbit perturbs smoothly with perturbations of f . A periodic orbit for which
1 is a simple eigenvalue of A is called regular.

The periodic orbit equations of a vector field do not have isolated solutions. If
γ(t) is a periodic orbit and c ∈ R, then γ(t + c) is also a periodic orbit. To obtain a
regular system of equations for points approximating a periodic orbit, this degeneracy
coming from translation in time must be removed. In simple shooting methods, this
is typically done by restricting initial conditions to lie in a cross section to the peri-
odic orbit. The return map for the cross section is defined by mapping each point to
the next point on its trajectory lying in the cross section. Simple shooting methods
compute the return map using a numerical integration algorithm. This is augmented
by using a root finding algorithm such as Newton’s method to compute a fixed point
for the return map. Implementing simple shooting methods is straightforward, but
their performance is subject to numerical limitations that are explained below. There
have been many implementations of simple shooting methods, for example in the code
LOCBIF [102]. There is one detail worth noting. Computing the return map requires
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that the intersection of a trajectory with the cross-section be computed. Many numer-
ical integration algorithms do not yield values at intermediate points of a trajectory
between time steps with the same accuracy as those at the time steps. In this case,
interpolation using several computed points of the trajectory or a change of time step
that yields a point on the trajectory can be used to complete the calculation of the
return map. If the cross-section is given by the equation xk = c, E. Lorenz observed
that one can rescale the vector field by dividing by its kth component to obtain a
vector field near the cross-section in which the kth component evolves with unit speed.
Choosing the time step for the rescaled vector field to be c− xk gives a time step that
ends on the cross-section.

The numerical difficulties with simple shooting come from two sources. The
first source of difficulty is the accuracy of the return map. Newton’s method requires
the Jacobian J of the return map. If J is computed with finite differences, this can
make application of Newton’s method to the return map erratic. The second source of
difficulty with simple shooting is due to the potential ill-conditioning of the problem.
The return map may have a Jacobian with very large norm at the intersection of a
periodic orbit with a cross section. This norm can readily become large enough that
changes in initial condition of unit precision produce changes in the value of a return
map that are larger than a desired error tolerance in the fixed point procedure used to
locate the periodic orbit. In the canard example discussed below, integration over part
of the cycle produces an extremely ill-conditioned flow map. While simple shooting
works with many problems despite these potential difficulties, more elaborate methods
for computing periodic orbits are often required.

Multiple shooting algorithms address the difficulties associated with ill-conditioning
of the return map. Instead of solving the single equation Φ(x, t) = x for a fixed point
of the return map, one seeks a set of points (xk, tk), k = 0, . . . , N with t0 = 0, xN = x0

and Φ(xk, tk+1− tk) = xk+1 for k = 0, . . . , N − 1. This forms a system of nN equations
in (n + 1)N variables. For a regular periodic orbit, there is a smooth N dimensional
manifold of solutions coming from different choices of xk on the periodic orbit. Multi-
ple shooting algorithms either constrain the (xk, tk) to lie in a set that yields a unique
point on the periodic orbit, or they augment the system of equations to yield a regular
system of (n+ 1)N equations. Conceptually, multiple shooting is simple. By judicious
choice of the length of segments along the periodic orbit, the condition number of the
system of equations Φ(xk, tk+1 − tk) = xk+1 can be reduced to manageable levels on
problems where simple shooting fails completely. We illustrate this with an example.

Problems with multiple time scales are especially prone to ill-conditioned return
maps since the periods of the periodic orbits may be very long when measured in
the faster time scales of the problem. The following example exhibits stable periodic
orbits that cannot be computed readily with numerical integration or a simple shooting
method. These orbits are examples of trajectories called canards due to their visual
appearance in a family of vector fields that generalizes the van der Pol equation [47, 48].
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Figure 1: Periodic orbits of the extended van der Pol equation. The orbits which follow
the middle, unstable branch of the “slow” manifold are canards.

Figure 2: Fourth order Runge-Kutta integration of the canard vector field. Due to
the massive instability of the unstable branch of the slow manifold, the integration is
unable to compute trajectories that follow this branch. Compare with the family of
canards shown in Figure 1.

The vector field

ẋ =
1

ε
(y − x2 − x3)

ẏ = a− x

is a translate of the van der Pol equation when a = −1
3

and has two time scales when
ε > 0 is small. The single equilibrium point at (a, a2 + a3) undergoes supercritical
Hopf bifurcation at a = 0 with decreasing a. Figure 1 shows periodic orbits from
this family with ε = 0.001, computed with a multiple shooting algorithm based upon
automatic differentiation. The periodic orbits that emerge grow very quickly in a to
a relaxation oscillation approximated by a pair of segments that follow the nullcline
y = x2 + x3 and a pair of horizontal segments that are tangent to the nullcline. The
growth of the periodic orbits occurs during an interval of a whose width shrinks to zero
proportionally to exp(−1/ε) [47]. The cycles of intermediate size in the family have a
segment that follows the unstable middle portion of the nullcline with x ∈ (−2/3, 0).
In this region, trajectories of the vector field diverge rapidly from one another at
a rate comparable to exp(−1/ε). This divergence makes it essentially impossible to
compute a trajectory that follows the nullcline using numerical integration forwards in
time with double-precision (64 bit) floating point arithmetic. Starting near the local
minimum of the nullcline, an error in the computation of one step comparable to the
unit precision of the floating point arithmetic produces a point whose trajectory will
leave a moderate sized neighborhood of the nullcline in a time comparable to 50ε, the
factor 50 being approximately the logarithm of the unit precision. For ε = 0.001,
this time is approximately 0.05, only long enough for y to travel a short distance up
the nullcline at the rate |ẏ| = a − x. Consequently, forward numerical integrations
of trajectories appear to “peel off” from the unstable portion of the nullcline without
traveling very far along it. Varying a appears to produce almost a discontinuity in
the numerical ω-limit sets. Attempts to find the canard solutions with Runge-Kutta
algorithms find a narrow interval of a of width comparable to 10−14 in which the
integration algorithm becomes chaotic, erratically producing a combination of small
and large loops along the same numerical trajectory. Such a trajectory is illustrated
in Figure 2. Thus, despite the fact that the canard cycles are stable, they cannot
be computed readily with numerical integration. Guckenheimer et al. [77, 81] have
been developing new algorithms for the computation of periodic orbits based upon
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the use of Taylor series and automatic differentiation. Automatic differentiation is
used to achieve high orders of accuracy while maintaining coarse meshes and relatively
small systems of equations to solve. We describe here the multiple shooting algorithm
used to produce Figure 1. Approximations to the periodic orbit are parametrized by a
discrete mesh of points (xk, tk) near the periodic orbit, including the times associated to
these points. Numerical integration from one mesh point to the next is performed using
Taylor polynomial approximations to the trajectories, with step sizes chosen adaptively
so that estimated errors of the trajectory lie below a predetermined threshold. The
Taylor series and the Jacobians of the Taylor series coefficients with respect to variation
of the mesh point are computed using procedures that are part of the program ADOL-
C developed at Argonne National Laboratory [73]. The variational equations for the
orbit are solved along with the original differential equation. The system of equations
Φ(xk, tk+1−tk) = xk+1, k = 0, . . . , N is augmented with N additional equations. These
additional equations express constraints that force updates of (xk, tk) to be orthogonal
to the trajectory of (xk, tk) in Rn+1. The tangent vector to this trajectory is given
by (f(xk), 1). (In the case of k = 0 where we fix t0 = 0, the times t1, . . . , tN −
1 are varied instead of t0.) For a regular periodic orbit, the augmented system of
equations is regular and Newton’s method is used to solve it. The algorithm requires
an initial approximation to a periodic orbit as starting conditions, say a set of points
obtained from a numerical integration. New mesh points are created adaptively when
the norm of the Jacobian from the previous mesh point exceeds a specified bound. Mesh
points are removed when the remaining points adequately represent the periodic orbit.
Continuation, described in the next section, is easily implemented in this algorithm.
Automatic differentiation is used to compute derivatives of the Taylor series coefficients
with respect to parameters as well as with respect to the phase space variables. A
parameter is regarded as an additional independent variable in the augmented system
of equations. Continuation steps are taken by computing the tangent vector to the
curve of solutions of the augmented equations and adding an increment of this tangent
vector v ∈ R(n+1)N+1 to the current solution. Yet one more equation is added to
the augmented system, constraining Newton updates to be orthogonal to the tangent
vector v.

Global boundary value methods for computing periodic orbits project the equa-
tion γ̇(t) = (1/T )f(γ(t)) onto finite dimensional approximations of the space Γ of
smooth functions γ : S1 → Rn. Alternatively, we can try to solve γ̇(t) = f(γ(t)) for
curves with γ(0) = γ(T ). In both alternatives, the period T is an unknown that is
part of the equations to be solved. The global method used in the code AUTO [52, 53]
is collocation. The approximations to Γ consist of continuous, piecewise polynomial
functions. A discretization of γ is determined by a mesh of N points (x1, . . . , xN) and
N time intervals t1, . . . , tN . Inside each of the N mesh intervals k collocation points
are chosen. In AUTO, as well as the boundary value solver colsys and its descen-
dants [9, 52, 53], the collocation times for each mesh interval are at Gauss points in
order to produce superconvergence of the method. The polynomial function on each
mesh interval is required to satisfy the differential equation at the collocation points
and to be continuous at the endpoints of the mesh intervals. For an n dimensional
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system, this yields a total of n∗N ∗ (k+1) independent equations on the same number
of variables. The orbit period is one additional independent variable, and it is balanced
by an equation that removes the degeneracy associated with time translation. This can
be done by restricting a point of the orbit to a cross section or it can be given by an
integral phase condition in the form

∫
g(γ(s))ds = 0 for a function g : Rn → R. The

system of n∗N ∗(k+1)+1 equations defined by the collocation algorithm is quite large.
Fortunately, the Jacobian of this system is sparse. AUTO exploits the sparsity using
a special Gaussian elimination procedure in its Newton iterations to obtain solutions
of the periodic orbit equations.

The accuracy and efficiency of the Taylor series methods are demonstrated in the
following example. The planar vector field

ẋ = y − y2 − x(x2 − y2 + 2y3/3 + c)

ẏ = x+ (y − y2)(x2 − y2 + 2y3/3 + c)

has a periodic orbit that lies in the zero set of the polynomial h = x2 − y2 + 2y3/3 + c
when c ∈ (0, 1/3). The value of h along a computed curve measures the distance of
the curve from the periodic orbit. Figure 3 displays values of h along approximate
periodic orbits with c = 0.07 and period approximately 7.7 computed in three ways.
The top panel presents values of h at the 60 mesh points of an AUTO calculation of
the periodic orbit. The data is representative of the most accurate approximations to
the orbit produced by AUTO while varying the number of mesh points, the number
of collocation points and the error tolerances allowed by the algorithm. The middle
panel shows three numerical trajectories computed with a fourth order Runge-Kutta
algorithm using step sizes of fixed lengths 0.00125, 0.001 and 0.0001. The step size 0.001
appears to provide close to optimal accuracy for this method, with round-off errors
apparently dominating truncation errors for smaller step sizes. The lower panel displays
the results of a calculation using a multiple shooting algorithm based on automatic
differentiation. There are five mesh intervals with the solution approximated on each
half of a mesh interval by the degree 16 Taylor series polynomial at the boundary mesh
points. Convergence was obtained in 6 Newton steps starting with mesh points that
are far from the computed solution. The maximum value of |h| in the three calculations
is approximately 6×10−11, 8×10−15 and 6×10−16. The Taylor series methods achieve
the best accuracy, comparable to the inherent precision of the floating point arithmetic,
with surprisingly coarse meshes. Further development of methods based upon Taylor
series appears to be very promising.

3.2 Invariant Tori

Invariant tori are a prominent feature of symplectic flows and also arise through Hopf
bifurcation of periodic orbits in dissipative systems. For flows with a global cross-
section on a two dimensional torus, a fundamental invariant is the winding number,
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Figure 3: Three different methods have been used to compute a periodic orbit that lies
along the level curve h = 0.07 of the polynomial h = x2 − y2 + 2y3/3. Values of h are
plotted as a function of time during one traversal of the periodic orbit. The numerical
periodic orbit in the top panel was computed with AUTO, the three in the middle
panel with a fourth order Runge-Kutta method, and the bottom one with a multiple
shooting algorithm employing automatic differentiation.

or equivalently the rotation number of a return map [90]. This invariant is rational if
and only if the flow has periodic orbits. If the flow is C2 and the winding number is
irrational, then all trajectories of the flow are dense [38]. KAM theory [90] and the
theory of normal hyperbolicity [93] provide theoretical tools for the analysis of invariant
tori. There is a modest body of research on algorithms for computing these objects,
much of it framed in the context of invariant curves of discrete time systems. Three
different approaches, quite different from one another, are discussed here.

The first approach to computing invariant tori of discrete maps has been to repre-
sent one dimensional tori as graphs of functions and to formulate a system of equations
that gives a finite dimensional approximation to the invariance of these curves. This
approach has been pursued in different ways. KAM Theory restricts attention to in-
variant tori on which the motion is conjugate to irrational rotation and solves for the
Fourier series of the conjugacy. In the case of invariant curves, piecewise polynomial
approximations of invariant curves lead to general algorithms that apply to invariant
curves that contain periodic orbits as well as tori that have irrational rotation numbers.
Implementations of such methods have been described by Kevrekidis et al. [101] and
van Veldhuizen [147]. Their results indicate that it is difficult numerically to follow
a family of invariant tori to the point at which they begin to lose smoothness and
disappear. Aronson et al. [8] give a comprehensive description of ways in which tori
with rational winding numbers can lose smoothness.

The second approach to computing invariant tori was pioneered by Greene [72].
This method seeks to compute invariant tori in symplectic systems by approximation
with periodic orbits. Most of the research has concentrated on area preserving diffeo-
morphism of the plane. KAM theory proves that each periodic orbit of elliptic type is
surrounded by a family of invariant curves with irrational rotation numbers satisfying
diophantine inequalities [72, 155]. Each of these invariant curves is the limit of periodic
orbits whose rotation numbers are obtained by truncating the continued fraction ex-
pansion of the irrational rotation number. Periodic orbits of high period are computed
with root finding algorithms analogous to either shooting or global boundary value
methods. Estimates of the convergence of the approximating periodic orbits to the
(unique) invariant measure of the invariant curve gives information about the struc-
ture of the invariant curve. If the diffeomorphism depends upon a parameter, some of
the invariant curves may evolve into Cantor sets. Renormalization methods have been
applied to study this transition, especially for invariant curves for the golden mean and
other rotation numbers with periodic continued fraction expansions [110]. The numer-
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ical computations of these “last” invariant curves have been based upon computations
of approximating periodic orbits.

Dieci et al. [45, 42, 44, 43] have investigated the computation of invariant tori
for vector fields. Their starting point has been the formulation of a partial differential
equation that implies the invariance of the torus. This partial differential equation
states that the vector field is tangent to the torus. The innovative aspects of these
studies lie in using algorithms for solving PDE’s to address this problem. The torus is
represented as the image of a mapping on a discrete grid, and then partial differential
equations are approximated to yield a set of equations for this mapping analogous to
global methods for computing periodic orbits. Implementations of the algorithms have
been tested on a few examples like the forced van der Pol equation, but experience as
to the domain of problems for which these algorithms work well remains limited.

3.3 Stable and Unstable Manifolds

Stable and unstable manifolds of equilibrium points and periodic orbits are important
objects in phase portraits. In physical systems subject to disturbances, the distance of
a stable equilibrium point to the boundary of its stable manifold provides an estimate
for the robustness of the equilibrium point. The closer the boundary, the more likely
disturbances will kick the system out of the basin of attraction of the equilibrium. In
the simplest situations, these boundaries are formed by stable and unstable manifolds of
saddles. In more complex situations, the basin boundaries are fractal, chaotic invariant
sets containing large numbers of periodic orbits and their stable manifolds. Thus, there
is great interest from both theoretical and practical perspectives in computations of
stable and unstable manifolds.

From a naive perspective, it would appear that the computation of stable and
unstable manifolds of equilibria is no more difficult than numerical integration. For
one dimensional manifolds this is true. One dimensional stable and unstable mani-
folds of equilibria of flows consist of pairs of trajectories, so their computation can
be implemented by applying an initial value solver to a well chosen initial condition.
Higher dimensional stable and unstable manifolds are harder to compute. The two
dimensional stable manifold of the origin for the Lorenz system [113]

ẋ = 10(y − x)

ẏ = 28x− y − xz

ż = −8

3
z + xy

has served as a benchmark problem. There are two difficulties in computing this mani-
fold. First, the stable eigenvalues at the origin of this system are approximately −2.67
and −22.8 with a ratio that is approximately 8.56. As a result, backwards trajectories
in the manifold tend to flow parallel to the strong stable direction. Numerical inte-
gration of initial conditions in the stable manifold uniformly clustered near the origin
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produces only a strip along the strong stable direction. The second difficulty in com-
puting this stable manifold is that it becomes highly convoluted far from the origin.
Part of the manifold spirals around the z-axis while part of it curls around the stable

manifolds of the equilibria located at (±6
√

(2),±6
√

(2), 27) [126].

Symbolic methods can be used to compute high order approximations to the
Taylor series of stable and unstable manifolds at equilibrium points. One approach
to these algebraic calculations is to subsume the computation of stable and unstable
manifolds of equilibria into the linearization problem: finding a smooth coordinate
transformation that transforms the system ẋ = f(x) into a linear system of equations
near an equilibrium. In the transformed coordinates, the stable and unstable man-
ifolds are linear subspaces. Formally, the linearization problem can be reduced to a
sequence of systems of linear equations for the Taylor series of the coordinate transfor-
mation [78]. These linear systems degenerate if the eigenvalues λi at the equilibrium
satisfy resonance conditions of the form

λi =
n∑
j=1

ajλj

with non-negative integer coefficients aj. The order of the resonance condition is
∑
aj.

When resonance conditions are satisfied, transformation to normal forms containing
only nonlinear terms associated with the resonance conditions can still be accomplished
but the system can only be linearized with finite smoothness related to the order of the
resonance conditions [96]. Transformation to simpler nonlinear systems, called normal
forms, is used extensively in the analysis of bifurcations [78, 131].

Algebraic computation of linearizations and normal forms are readily imple-
mented in symbolic systems for vector fields of moderate size [133]. Nonetheless, the
complexity of these computations grows quickly with problem size. For large prob-
lems, instead of computing a full linearization, one would like to extract more limited
information. Problems are common for which almost all modes are highly damped and
a low dimensional submanifold in the phase is attracting. These problems often arise
from investigations of instability when a system is driven by external forces until its
attractors are time dependent, but not highly disordered. Beyn and Kless [17] have
examined the computation of low dimensional invariant manifolds within this context.
They study the use of iterative methods in linear algebra to compute the location and
normal forms of invariant manifolds while avoiding such operations as the factorization
or inversion of the full system Jacobian at an equilibrium.

The most complete work on computing stable and unstable manifolds has been
done in the context of one dimensional stable and unstable manifolds of fixed points of
discrete time dynamical systems. These methods have been applied to the return maps
of periodically forced continuous systems and to computation of two dimensional stable
and unstable manifolds of periodic orbits [24]. One dimensional stable and unstable
manifolds of fixed points for maps have fundamental domains: if the eigenvalue of the
manifold is positive, each half of the manifold is the union of iterates of a segment
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joining a point to its image. Moreover, the manifold lies close to its tangent near the
fixed point. Thus an initial approximation of the manifold can be obtained by iterat-
ing points that lie in a small fundamental domain of the linearized map of the fixed
point. However, this procedure does not always give a well resolved approximation to
the manifold because the points may separate from one another as they iterate away
from the fixed point. Algorithms that avoid this difficulty have been implemented [104].
Yorke et al. [114] have used a divide and conquer algorithm to compute one dimensional
stable and unstable manifolds of saddles in two dimensional maps. These straddle al-
gorithms locate a stable manifold by finding segments whose endpoints iterate towards
the saddle point and then proceed in opposite directions along the unstable manifold
of the saddle. Continuity implies that a point of the segment lies in the stable man-
ifold. Iteratively following the midpoint of the segment and selecting the half that
straddles the stable manifold, the intersection of the stable manifold with the segment
can be located precisely. The method is inherently very robust, but it does not empha-
size computational efficiency. Recently, Osinga and Krauskopf [104] have described a
different procedure to compute one dimensional stable and unstable manifolds.

Some research has been done on the global computation of two dimensional stable
and unstable manifolds of equilibria for flows. Several different strategies have been
used with reasonable success on such problems, all tested with the stable manifold of
the origin in the Lorenz system. Johnson et al. [97] rescaled the vector field so that
it had constant length. This approach makes trajectories advance at uniform speed,
but their direction continues to follow the strong unstable manifold. Guckenheimer [85]
experimented with computation of the geodesic rays in the induced metric of the stable
manifold. This procedure appeared to work well, but developed numerical instabilities
far from the equilibrium. Osinga and Osinga and Krauskopf [125, 104] have developed
methods based upon the graph transform. The graph transform is an operator that
is used to prove the stable manifold theorem, and Osinga in her thesis implements
methods that follow closely the proof. As the Lorenz system stable manifold grows, it
acquires complex folds and twists [126]. Tracking the manifold through these folds and
twists has been difficult. The graph transform methods are based upon a decomposition
of the phase space into a product of linear stable and unstable manifolds near the
equilibrium, but the manifold does not remain transverse to the unstable manifold of
the equilibrium. Therefore, an adaptive set of coordinate systems is required to track
the manifold as it turns. In the methods of Guckenheimer and Johnson, the manifold
is computed as a set of curves that bound a growing disk in the manifold. These curves
grow in length quickly enough that an interpolation procedure that places new points
on the curves as they grow is required to resolve the stable manifold adequately. In
places where the manifold develops sharp folds, it becomes difficult to perform this
interpolation accurately.

A complementary method for computing the stable and unstable manifolds of low
dimensional systems similar to the straddle algorithms of Yorke et al. was implemented
by Dellnitz and Hohmann [37]. To compute a compact portion of the manifold, a region
in phase space is partitioned and each partition element is marked as to whether it
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might intersect the desired manifold. Starting with a coarse partition, many partition
elements can usually be marked as not containing an intersection point. These are
discarded, and the remaining elements of the partition are refined and then tested to see
whether they intersect the manifold. The number of rectangles in successive refinements
that must be tested depends on the dimension of the manifold being computed rather
than on the dimension of the phase space, so the methods appear feasible for two
dimensional manifolds of rather large systems.

Doedel [51] has suggested yet another procedure for computing stable and unsta-
ble manifolds based upon the solution of boundary value problems. The idea advanced
by Doedel is to formulate an iterative procedure in which each step is the solution of
a two point boundary value problem. If W is the invariant manifold and U ⊂ W is
a neighborhood of the equilibrium point that has been determined, then one wants to
compute a larger neighborhood of the equilibrium in W . The boundary value solver
end point conditions for one end of the interval will be chosen so that the end point
of the desired trajectory lies on the boundary of U . If W has dimension d, then these
boundary conditions have dimension d − 1. The other end point is required to lie on
a specified manifold V transverse to W . If V has complementary dimension to W ,
one more boundary condition is needed. This can be obtained either by enlarging the
dimension of V or by allowing the transit time from one end point to the other to vary.
The latter strategy is similar to that used by a boundary value solver to obtain the
period of a periodic orbit by fixing its length in time while rescaling the vector field
with a free parameter.

Robust implementations of algorithms to compute two dimensional stable and
unstable manifolds of equilibria have not yet been achieved. The work described above
reveals some of the obstacles that have been discovered. These obstacles appear sur-
mountable. Recent improvements in computers should make methods feasible that
previously required too much floating point computation or memory use. Better adap-
tive methods to discretize the intricate geometry of two dimensional stable and unstable
manifolds are needed before we will have general purpose codes that reliably compute
two dimensional stable and unstable manifolds of equilibria.

3.4 Chaotic Invariant Sets

Chaotic invariant sets have been the focus of a large amount of dynamical systems
research. Chaos is a term that has come to mean any type of asymptotic dynamics
more irregular than quasiperiodicity. Numerous papers have made the claim that chaos
occurs in a particular system, but most of these claims are based only upon visual
observation of numerical trajectories. Infrequently, the claims are substantiated with
arguments demonstrating that the system has a property that implies the existence of
chaos. The strongest criterion for the existence of chaos is the existence of horseshoes
in discrete systems or solenoids in flows [140]. These are invariant sets which are
topologically equivalent to subshifts of finite type in the case of discrete time and their
suspensions in the case of flows. All of these objects have been extensively studied from
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measure theoretic and statistical viewpoints. They carry invariant measures which are
ergodic and have positive entropy and Liapunov exponents [59, 158].

Horseshoes and solenoids vary continuously with C1 perturbations of a map or
flow, lending credence to numerical observations of chaotic structure. The Smale-
Birkhoff Homoclinic Theorem [140] gives a necessary and sufficient criterion for the
existence of horseshoes for diffeomorphisms, namely that there are transversal intersec-
tions of stable and unstable manifolds of a periodic orbit. Application of this theorem
to return maps of a flow gives the same result there. When stable and unstable mani-
folds of periodic orbits can be calculated, this result gives a procedure for verifying the
existence of chaotic dynamics in a system. The Melnikov method [78, 132] gives crite-
ria for perturbations of nontransversal homoclinic orbits of periodic orbits to become
transversal as a system is deformed. Note, however, that many examples have inter-
sections of stable and unstable manifolds in which the angles of intersection are small,
making numerical verification of chaotic dynamics difficult [78]. This is especially true
in Hamiltonian systems [123] where Melnikov theory applied to resonant layers of nearly
integrable systems fails. Asymptotic analysis of these systems reveals that the angles
between stable and unstable manifolds in these layers is “beyond all orders” of the per-
turbation theory [135]. Simo and his collaborators have investigated carefully several
Hamiltonian systems arising in celestial mechanics, including the restricted three body
problem [139]. They have made significant strides in demonstrating the existence of
very small transversal intersections between stable and unstable manifolds of periodic
orbits.

Although numerical evidence is often used to substantiate claims of chaotic be-
havior, this evidence can be unreliable. One step numerical integration algorithms with
fixed time step h define maps that approximate the time h maps of flows. There is
a notable qualitative difference between these objects, namely that the trajectories of
flows are one dimensional curves while the trajectories of the numerical integrators are
sequences of points. Homoclinic orbits of an equilibrium point for a flow cannot be
transverse because the stable and unstable manifolds have complementary dimension
and any intersection has dimension at least one. The numerical method will have a
fixed point near the equilibrium with stable and unstable manifolds of the same dimen-
sions as those of the flow. However, their intersection can be zero dimensional since
the trajectories of the numerical method are sequences of points rather than curves.
Indeed, the Kupka-Smale Theorem states that for a generic set of maps, homoclinic
intersections of periodic points will be transverse [140]. Thus numerical integration can
be expected to introduce chaotic behavior to simulations of dynamical systems that
cannot have chaotic behavior. The canard example in the previous section displays
this property in a slightly different setting. The scale on which such chaos occurs is
frequently small, but claims for chaos in a dynamical system based upon observations
of a numerical simulation should be bolstered by additional analysis.

Conversely, chaotic dynamics is sometimes difficult to observe in simulations of
systems that are indeed believed to be chaotic. Guckenheimer, Kim and MacKay [103]
studied an example of this kind in a family of diffeomorphisms of the two dimensional

25



torus. Investigating resonances in these maps, they discovered the presence of codi-
mension two Takens-Bogdanov bifurcations. Generic two parameter families of maps
that undergo Takens-Bogdanov bifurcation have nearby parameters at which a saddle
has transversal intersections of its stable and unstable manifolds. In the example in-
vestigated by Guckenheimer et al., the region in which this behavior was found was
very, very small – a strip of width less than 10−10 in a problem for which the parameter
space is naturally the unit square. Moreover, the angle between the manifolds became
large only in very small neighborhoods of the periodic orbit. Without a systematic
search, the chaotic behavior in this family is difficult to find. Similar phenomena occur
in the analysis of unfoldings of bifurcations of flows. Two parameter families of flows
near codimension two bifurcations of equilibria with a zero eigenvalue and a pair of
pure-imaginary eigenvalues have chaotic dynamics in a persistent manner. However,
truncated normal forms of these bifurcations do not have chaotic dynamics and once
again the angles of transverse intersections of stable and unstable manifolds are initially
very small. Thus the failure to detect chaos in numerical simulations does not always
mean that it is not present. Compare the study of toral maps by Yorke et al. [71] with
the torus maps described above as an example where chaos is almost certainly present
but hard to stumble across.

The existence of chaotic attractors has been a subject of intense theoretical
investigation. Structurally stable chaotic attractors have uniform hyperbolic struc-
tures [140], but it is apparent that many examples which appear to have chaotic at-
tractors cannot have uniform hyperbolic structures on these attractors. The most
studied discrete system of this kind is the Henon attractor [89]. Beginning with the
theory of iterations of one dimensional mappings [36], an understanding of the prop-
erties of chaotic attractors that do not have uniform hyperbolic structures has begun
to emerge. Benedicks and Carleson [11] proved that there are families in which non-
uniformly hyperbolic attractors occur on parameter sets of positive measure. Their
theory and its extensions [12] lend credibility to the belief that chaotic dynamics ob-
served in numerical simulations does indicate that the underlying system has a chaotic
attractor.

One of the principal theoretical tools for investigating uniformly hyperbolic in-
variant sets has been the concept of Markov partitions [20]. These partitions lead im-
mediately to representations of these invariant sets as images of subshifts of finite type
by maps for which most points have a single preimage. From a statistical perspective,
the invariant sets behave like subshifts of finite type. Anosov diffeomorphisms are de-
fined to be diffeomorphisms with dense trajectories and uniform hyperbolic structures
on a compact manifold. For two dimensional Anosov diffeomorphisms, the elements
of Markov partitions are rectangles whose boundaries are smooth segments of stable
and unstable manifolds [3]. In odd dimensions, the boundaries of Markov partitions
of Anosov diffeomorphisms are always fractal [21, 26]. Algorithms to compute these
partitions have only recently been studied [100, 137]. The work thus far has been
restricted to linear Anosov diffeomorphism of the torus and is heavily dependent on
algebraic constructions.
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There are several phenomena that occur in other examples of chaotic attractors
that highlight the bewildering complexity of dynamical systems. One such phenomenon
is partial hyperbolicity. Higher dimensional attractors may exhibit partial hyperbolicity
in which the dimensions of the unstable manifolds of points are always positive, but
vary from point to point. Abraham and Smale [2] described an early example of this
phenomenon. More recently, Pugh and Shub [127] and others have devoted renewed
attention to the analysis of partial hyperbolicity. Numerical investigations of partial
hyperbolicity have hardly begun. A second complex phenomenon is riddled basins of
attraction [4] in which two or more invariant sets have positive measure “domains” of
attraction that are densely intertwined. Every open set that contains points tending
to one of these invariant sets also contains points tending to another invariant set. In
these circumstances, there appears to be an inherent unpredictability about the limit
behavior of initial conditions in large regions of phase space.

3.5 Statistical Analysis of Time Series

The numerical analysis of chaotic dynamics has dealt with the statistical properties
of invariant sets as well as with algorithms for locating the sets and describing their
basins of attraction. Most of the statistical methods are based upon ergodic theory
[99] and formulated in terms of invariant measures. From this perspective, the analog
of topological transitivity for invariant sets is ergodicity of invariant measures. Hyper-
bolic invariant sets support many ergodic invariant measures, including the measure
theoretic limits lim 1

N

∑N−1
i=0 δ(F i(x)) of atomic measures along trajectories tending to

the invariant set. These limit measures are frequently called the time averages of the
trajectories. They do not always exist, even for almost all initial conditions, as has
been demonstrated for one dimensional mappings [79]. For attractors, special emphasis
has been given to natural measures, defined as the limits attained from sets of initial
conditions having positive Lebesgue measure. For hyperbolic attractors, these natural
measures are the SBR (Sinai-Bowen-Ruelle) measures characterized by a variational
principle [58]. The convergence of trajectories to measure theoretic limits has been
investigated for various examples [14, 13].

Three important statistics of ergodic attractors are their entropy, Liapunov ex-
ponents and dimension [156, 157]. Computation of entropy has received relatively little
attention compared to computation of Liapunov exponents and dimension. Most algo-
rithms to compute these quantities use data from trajectories, and the methods have
been applied to observational data as well as simulations. Nonlinear time series analy-
sis based on these methods provides tools that help assess whether a system might be
modeled effectively by one with a low dimensional chaotic attractor. Reconstruction
of attractors and construction of models from a scalar time series is a topic that has
been extensively studied. The theoretical basis for methods of recovering attractors
from one dimensional data was studied by Takens [145] who formulated adaptations
of the Whitney Embedding Theorem [92]. This theorem states that generic mappings
of an n dimensional manifold into a manifold of dimension 2n + 1 are embeddings.
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Extensions of the theorem have been used to justify the view that the method of
time delays can be used to embed a chaotic attractor of dimension d into Rk when
k > 2d. The method begins with a scalar time series of observations yi that are as-
sumed to be values of the function y at points x(i∆) sampled along a trajectory of the
attractor. Vectors of the form (yi, yi+l, . . . , yi+lk) are used as observations of the map
Ek(x) = (y(x), y(x(l∆), . . . , y(x(lk∆)). Takens [145] demonstrates that for a generic
observable y, attractor of dimension d and k > 2d, Ek is a 1− 1 map of the attractor
into Rk. Procedures for choosing l and k to obtain reliable estimates of the dimen-
sion of an observed attractor have been extensively investigated. The accuracy of the
methods tends to degrade rapidly with the dimension of the attractor [74].

Liapunov exponents measure the exponential rates of growth of solutions of the
variational equations of a vector field. Oseledec [124] proves their existence as mea-
surable functions with respect to any invariant measure. Consequently, the Liapunov
exponents of an ergodic measure are invariants of the measure. If xt is a trajectory
of the vector field ẋ = f(x) in Euclidean space Rn, then the variational equations of
f along xt are ξ̇ = Dfxt(ξ), a nonautonomous system of linear differential equations.
Its fundamental solution Ξ(t) is the matrix solution with initial condition Ξ(0) = I,
the identity matrix. Denoting σi(t) the singular values of Ξ(t) in decreasing order,
the Liapunov exponents of xt are defined to be lim inf(1

t
log(σi(t))). Positive Liapunov

exponents indicate that there are nearby trajectories that diverge from xt at an expo-
nential rate. Computation of the largest Liapunov exponent is straightforward: σ1(t)
is comparable to ‖Ξ(t)‖. Determining smaller Liapunov exponents is more difficult
because, when the largest Liapunov exponent is simple, Ξ(t)/‖Ξ(t)‖ tends to a rank
one matrix and round-off errors interfere with the calculation of the smaller Liapunov
exponents. This problem has been addressed by reorthogonalization of the solutions
of the variational equation. The time interval [0, T ] is subdivided into k segments
of length δj, and Ξ(t) is written as a product Ξk · · ·Ξ1 of the fundamental solutions
for each of these segments. A series of QR factorizations is then calculated so that
Ξj · · ·Ξ1 = QjRj. At step j of this iteration, the QR factorization of the matrix
Ξj+1Qj is needed. The matrices Rj are products of right triangular matrices of moder-
ate size, so their singular values are expected to be more reliable estimates of σi than
those obtained from a singular value decomposition of the matrix obtained for Ξ(t) by
numerical integration. The continuous methods of Dieci et al. [46] provide an alternate
approach to this decomposition.

There are several distinct definitions of the dimension of an attractor. The two
that have been most used the most in analysis of numerical and observational data are
the pointwise dimension and the correlation dimension [59, 58]. Both of these concepts
implicitly rely upon an invariant measure of the attractor. The starting part for their
computation is a time series of a trajectory x(t) sampled at N discrete times ti. Ap-
pealing to the ergodic theorem, one assumes that the discrete measure 1

N

∑N−1
i=0 δ(x(ti))

approximates an invariant measure µ of the attractor. For any measurable set U , the
proportion of the points x(ti) that lie in U is then approximately µ(U). The calculation
of the pointwise dimension of µ and of the correlation dimension of the attractor use
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interpoint distances di,j = d(x(ti), x(tj)) with respect to a metric d on the phase space.
The pointwise dimension gives the rate at which the volumes of balls shrink as their
radius tends to zero. Denoting Bx(r) the ball of radius r centered at x, the point-wise
dimension of the measure µ is lim(log(µ(Bx(r)/ log(r)) as r → 0 for µ-almost all x
in the attractor [156]. To estimate the pointwise dimension, x is chosen to be one of
the points x(ti) in the time series and the sequence di,j, j 6= i, is sorted to produce an
increasing sequence rs. A proportion s/(N − 1) of the points x(ts) lie in the (closed)
ball Bx(rs), so µ(Bx(rs)) is estimated to be s/(N − 1). Extrapolating the slope of
log(s) vs log(rs) as rs → 0 yields an estimate of the pointwise dimension. There are
statistical fluctuations in this estimate that depend on N and the choice of x = xi [74].
Noise in data affects these calculations, so judgment must be exercised about the range
of scales above which deterministic dynamics dominates the location of the observed
points and below which noise dominates. If the points on a trajectory are regarded as
a random sample of points drawn from the measure µ, variance due to sampling can
be reduced by averaging the results for several choices of initial points xi. Estimating
the volume of small balls with feasible amounts of data is problematic for attractors
of large dimension α, since the volume decreases like rα. The correlation dimension is
computed with a similar calculation to the pointwise dimension, but instead of sorting
the sequence of N − 1 numbers di,j, j 6= i, all of the N(N − 1)/2 interpoint distances
di,j, j < i are used.

“Nonlinear” methods for the analysis of time series data have been extensively
investigated since the early 1980’s [149]. This research is an inverse problem to the
numerical analysis of dynamical systems models, in that it seeks to identify models
that fit data. The research began with the observation that linear time series analysis
methods did not readily distinguish characteristics of data produced from low dimen-
sional attractors from data produced by systems with large random fluctuations or from
systems with high dimensional attractors. The Ruelle-Takens theory of transition to
turbulence [130] motivated this research, prompting careful scrutiny of time series data
from fluid systems as flows evolved from steady states to turbulent flow [76, 22]. A rich
set of methods has been developed using many of the ideas described above, as well
as others such as multi-fractal analysis [6] There have been attempts to reconstruct
dynamical models directly from data [1]. The mathematical foundations for most of
this work is poor compared to the remainder of the material reviewed in this survey.
Nonetheless, from a practical standpoint, this area of research has great potential to
enhance industrial design and scientific study of systems that can be adequately rep-
resented by dynamical systems with low dimensional attractors. The methods are less
appropriate for systems that have high dimensional attractors because the amount of
data required to reconstruct attractors grows very rapidly with the dimension of the
attractors.
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4 Bifurcations

Bifurcation theory is the study of how phase portraits of families of dynamical systems
change qualitatively as parameters of the family vary. It is a subject filled with complex
detail. Singularity theory [67] is an analog to bifurcation theory, providing a frame-
work that has been partially transplanted to the setting of dynamical systems. These
efforts have produced a wealth of valuable information, but some of the mathemati-
cal completeness and elegance of singularity theory does not carry over to bifurcation
theory. The intricacy of dynamical phenomena act as a barrier to the formulation of
a theory that classifies all bifurcations that occur in generic families of dynamical sys-
tems. Nonetheless, the mathematical concepts adapted from differential topology and
singularity theory provide the foundations for successful algorithms. The focus here is
upon describing those concepts that are used in numerical methods. Less attention is
devoted to results concerning structural stability or genericity.

4.1 Bifurcation Theory

Let f : Rn × Rk → Rn be a k-parameter family of vector fields on Rn. Equilibrium
points (x, λ) of f are the solutions of f(x, λ) = 0. The goal of local bifurcation theory
is to analyze the set of equilibrium points and their stability, taking into account
the dependence upon the parameters [68]. We discuss the location of equilibrium
points first and then consider their stability. Near equilibrium points (x, λ) where
Dxf is regular or, equivalently, has full rank n, the Implicit Function Theorem states
that the solutions of the equilibrium equations form a k-dimensional submanifold of
Rn × Rk that can be parametrized as the graph of a function xe : Rk → Rn from the
parameter space to the phase space. Continuation methods implement the computation
of xe. By changing coordinate systems to mix parameters and phase space variables,
equilibrium point manifolds that are not graphs from phase space to parameter space
can be computed.

Local bifurcations include all points where Dxf is singular. To use equation
solvers that rely upon the regularity of the system being solved, we require refor-
mulation of the problem at bifurcation points. A fundamental example, saddle-node
bifurcation, introduces the methods used to do so. Saddle-node bifurcation occurs at
equilibrium points (x, λ) where Dxf has a simple eigenvalue zero. Thus (n+1) defining
equations in Rn ×Rk for saddle-node bifurcations are given by zeros of the map

F (x, λ) =

(
f(x, λ)
det(Dxf)(x, λ)

)

If the system of equations F = 0 is regular, then Newton’s method can be used to
locate the points of saddle-node bifurcation. Consider the case in which there is a
single parameter: k = 1. Assume that (x0, λ0) is an equilibrium point at which the
defining equations are satisfied. The derivative of DF is then a square (n+1)× (n+1)
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matrix with block structure

DF =

(
Dxf Dλf

Dx det(Dxf) Dλ det(Dxf)

)

and Dxf singular. In order for this matrix to have full rank, Dxf must have rank at
least n− 1 since the addition of a single row or column to a matrix increases its rank
by at most 1. Here, DF can be obtained from Dxf by the successive addition of one
column and one row, so the difference between the ranks of DF and Dxf is at most
2. If Dxf has rank (n − 1), then it has unique left and right eigenvectors wT , v ∈ Rn

up to scalar multiples. The regularity of DF implies that the products (wT 0)DF and
DF (v

0
) are non-zero, yielding that wDλf 6= 0 and Dx(det(Dxf))v 6= 0. The second

of these equations is satisfied if wDxxf(v, v) 6= 0. The inequalities wDλf 6= 0 and
wDxxf(v, v) 6= 0 are nondegeneracy conditions for saddle-node bifurcation. Together
with the assumption that Dxf has rank (n − 1), they give sufficient conditions that
the defining equations F = 0 for the saddle-node bifurcation are regular.

Regularity of the defining equations for saddle-node bifurcation are not quite
enough to characterize the dynamics of a family in the neighborhood of the bifurcation
point. However, if the nondegeneracy conditions are strengthened to the requirement
that the only eigenvalue on the imaginary axis at the bifurcation point is a simple zero
eigenvalue, then the local dynamics near the bifurcation are determined up to topologi-
cal equivalence and perturbations of the family will have topologically equivalent phase
portraits in the neighborhood of the bifurcation. The following theorem summarizes
this discussion.

Theorem 2 Let ẋ = f(x, λ) be a smooth n-dimensional vector field depending upon a
scalar parameter λ. Let (x0, λ0) be a solution of the system of equations

f(x, λ) = 0

det(Dxf)(x, λ) = 0

This system of equations is regular at (x0, λ0) if

1. Dxf has rank n− 1. Denote the left and right zero eigenvectors of zero by v and
w.

2. wDxxf(v, v) 6= 0

3. wDλf 6= 0

If properties (1)-(3) are satisfied, the curve γ of equilibrium points f(x, λ) = 0 is
smooth. Furthermore, if zero is a simple eigenvalue of Dxf and Dxf has no pure
imaginary eigenvalues, then there is a neighborhood U of (x0, λ0) such that all trajec-
tories that remain in U for all time are equilibrium points on γ.
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Singularity theory [7, 67] provides a set of tools for analyzing the variation of
equilibrium points with respect to parameters in generic families of vector fields. Before
tackling the general theory, consider one more example, the family of scalar vector fields
ẋ = λ1 +λ2x+x3. For fixed λ2 and varying λ1, this family fails to satisfy the condition
wDxxf(v, v) 6= 0 when λ2 = 0. However, as a two parameter family, the system of
equations

f(x, λ) = 0

Dxf(x, λ) = 0

Dxxf(x, λ) = 0

is regular. The curve on which saddle-node bifurcation occurs in this family is obtained
by eliminating x from the pair of equations λ1+λ2x+x3 = 0 and Df(x) = λ2+3x2 = 0.
Parametrically, the curve is given by λ2 = −3x2 and λ1 = 2x3. This implies that
(λ1

2
)2+(λ2

3
)3 = 0. Solutions of this equation form a cusp in the (λ1, λ2) parameter plane.

It is not smooth at the origin. The example illustrates that the locus of local bifurcation
in a generic multi-parameter family may not be a smooth manifold. Nonetheless,
singularity theory gives a set of geometric tools that can be used to formulate regular
systems of defining equations for local bifurcations. The theory is typically applied at
the level of germs [67], but the description here avoids this language.

Jets are objects that give coordinate-free expressions for the Taylor series of
smooth maps between manifolds. The r-jet extension of a map f associates to each
point of the domain of f the Taylor expansion of degree r, viewed as an object in a
suitable jet space. Thom’s transversality theorem [92] states that if P is a submanifold
of a jet space, then any smooth map can be perturbed so that its jet extension is
transverse to P . In the example of the cusp, the two-jet extension of the family of
maps g(x, λ1, λ2) = λ1 + λ2x+ x3 is given by J2g(x, λ1, λ2) = (g, g′, g′′) = (λ1 + λ2x+
x3, λ2 + 3x2, 6x) which vanishes at the origin. The Jacobian of J2g at the origin is the
non-singular matrix  0 1 0

0 0 1
6 0 0


Therefore, the cusp gives a family of maps whose two jet extension is transverse to the
zero dimensional manifold consisting of the origin. Local bifurcations determined by
smooth submanifolds of the jet spaces have regular systems of defining equations in
those jet spaces. The transversality theorem implies that solutions of these defining
equations yield smooth submanifolds of the product of parameter and phase spaces
in generic families of vector fields. The Thom-Boardman stratification in singularity
theory illustrates concretely how these procedures work.

The Thom-Boardman decomposition of a map g : Rm → Rn is constructed as fol-
lows. Partition Rm into the sets Σi on which Dg has rank min(m,n)−i or corank i. For
generic maps g, the sets Σi are submanifolds. The defining equations for Σi can be ex-
pressed (locally) in the space of 1-jets in terms of minors of Dg. Partition each of the Σi
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by restricting g to Σi and repeating the construction. This produces sets Σi,j on which
g|Σi has rank j. For non-increasing sequences of integers (i1, i2, · · · , ik), Thom defined
Σi1,i2,···,ik inductively as the set on which the derivative of g restricted to Σi1,i2,···,ik−1

has corank ik. Boardman proved that, for generic maps g, these sets are submanifolds
of Rm. The saddle-nodes and cusps described above correspond to the singularities Σ1

and Σ1,1. Interest in the Thom-Boardman stratification was motivated by its relation-
ship to the stability of mappings. The groups of diffeomorphisms of Rm and Rn act
on C∞(Rm, Rn) by composition on the left and right: (h, k) ∈ Diff∞(Rm)×Diff∞(Rn)
send g to hgk. If g is an interior point of its orbit with respect to this action, then it
is stable. The action clearly preserves the Thom-Boardman stratification, so transver-
sality with respect to this stratification is necessary for stability. In a seminal series
of papers [117, 119, 118, 120, 121, 116], Mather formulated necessary and sufficient
conditions for stability of a mapping. In some cases, transversality with respect to the
Thom-Boardman stratification is sufficient, but in other cases it is not.

Local bifurcation theory seeks stratifications of the jet spaces of families of dy-
namical systems that are analogous to the Thom-Boardman stratification. These strat-
ifications are expected to give necessary conditions for the structural stability of a
family, but they will give sufficient conditions in only a limited number of cases. The
definition of a stratification used here is naive: a stratification of a closed set V is a
sequence of closed subsets V = Vl ⊃ Vl−1 ⊃ · · · ⊃ V0 ⊃ V−1 = ∅ such that each differ-
ence Si = Vi − Vi−1 is a smooth manifold of dimension i, called a stratum, or empty.
The codimension of the stratum Si is k − i. Locally, there are regular systems of k − i
defining equations that define Si as a subset of Rk. These are defining equations for
the bifurcations in Si. Ideally, Si has a finite number of components, each consisting
of vector fields with similar properties near their bifurcation points. A k− i parameter
family that is transverse to Si is an unfolding. A particular choice of a point in Si
and an unfolding is a normal form. In the “best” circumstances, the normal forms are
structurally stable k − i parameter families. Even when this is true, it can be difficult
to prove and each case requires a separate analysis.

The analyses of local bifurcations has tended to follow a common pattern. The
first step is to identify submanifolds of the space of vector fields that fit into a strati-
fication. These submanifolds should be preserved by topological equivalence or other
equivalence relations that are used to describe when vector fields are qualitatively sim-
ilar to one another. Once the submanifolds are identified, the next step is to choose
normal forms for each submanifold. The choice of normal form is usually based upon
polynomial coordinate transformations that simplify the analytic expression of the vec-
tor field near the bifurcation. The third task in the analysis of local bifurcations is to
study the dynamics of the normal form families, seeking to establish their structural
stability. The unfoldings of a bifurcation of codimension j will contain in their param-
eter spaces submanifolds of bifurcations of codimension smaller than j. Many of these
lower codimension bifurcations are global bifurcations, making it awkward to main-
tain a separation between the theories of local and global bifurcation. The primary
distinction from a computational perspective is that the defining equations for local
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bifurcations are formulated directly in terms of the Taylor series of the vector field
rather than in terms of the flow of the vector field. Part of the bifurcation analysis
is to identify geometric properties of how strata of smaller codimension limit on the
codimension j bifurcation. When the normal forms do not produce structurally stable
families, there are two possible scenarios. The first possibility is that a more refined
analysis with normal forms of higher degree and additional nondegeneracy conditions
on the normal form leads to a structurally stable family. The second possibility is
that normal families defined by finite Taylor expansions never produce structurally
stable families. As in some cases of double Hopf bifurcation, there may be an infinite
number of families of bifurcations that intersect the neighborhood of a bifurcation of
codimension j and no simple decomposition of the bifurcation set as a stratified set is
possible.

Takens-Bogdanov bifurcation [144, 19] provides a good illustration of the analysis
of a local bifurcation of codimension two. This bifurcation occurs at equilibrium points
of a vector field for which zero is an eigenvalue of (algebraic) multiplicity two and no
eigenvalues are pure imaginary. The defining equations can be expressed easily in
terms of the characteristic polynomial of the Jacobian at an equilibrium. Near a point
of Takens-Bogdanov bifurcation, the Taylor expansion of degree two for an unfolding
can be transformed to

ẋ = y

ẏ = λ1 + ax2 + y(λ2 + bx)

in the plane corresponding to the generalized eigenspace of zero. This is a normal form
for Takens-Bogdanov bifurcation. The normal form is a structurally stable family and
the phase portraits near the bifurcation are determined if neither a or b is zero. In the
two dimensional parameter plane there are three bifurcation curves that meet at the
Takens-Bogdanov point: a curve of saddle-node bifurcations that passes through the
TB point, a curve of Hopf bifurcations that terminates at the TB point and a curve of
homoclinic bifurcations that terminates at the TB point. These three curves meet with
a quadratic tangency, and in the region of parameters between the Hopf and homoclinic
bifurcation curves, the vector field has a periodic orbit. This picture illustrates that
global bifurcations can appear in the neighborhood of local bifurcations.

The classification of local bifurcations up to topological equivalence of their un-
foldings is hardly complete, even for relatively low codimension. There are examples
beginning with codimension two bifurcations of three dimensional vector fields in which
chaotic dynamics appear in the unfoldings. These examples have an infinite number of
bifurcation curves that terminate at the codimension two point in the parameter space,
and the families are never structurally stable. Kuznetsov [106] gives a comprehensive
summary of information about codimension one and two local bifurcations. Dumortier,
Roussarie and Sotomayor [55, 56] have analyzed codimension three local bifurcations
of planar vector fields. Their work is the current frontier in attempts to systematically
classify local bifurcations of increasing codimension.
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Similar principles to the ones discussed above apply to global bifurcations, but the
defining equations are expressed in terms of the flow maps instead of directly in terms
of the vector field. Chapter XXX of this volume contains more specific information
about global codimension one and two bifurcations, including discussion of bifurcations
of homoclinic and heteroclinic orbits and the numerical methods implemented in the
HomCont package [27] that is part of the 1997 version of AUTO [50]. If flow maps
and their derivatives can be computed accurately with numerical integration, then
similar numerical methods can be used to compute bifurcations of periodic orbits.
There are aspects of global bifurcations that have no counterparts in the theory of local
bifurcation. One example is the breakdown of invariant tori. In generic two parameters
of vector fields, invariant two dimensional tori with fixed irrational winding number
may be present along curves in the parameter space. These parameter space curves
corresponding to invariant tori with an irrational winding number may have endpoints
beyond which the invariant torus “breaks down” into a Cantor set or a chaotic invariant
set. The singularity theory based methods described above are inadequate to analyze
the break down process. Renormalization methods that search for self-similar patterns
in these phenomena have been used [60].

4.2 Continuation Methods

Continuation methods solve underdetermined systems of equations

F = c; F : Rm → Rn

with m > n. They usually assume F is smooth and and regular; i.e., DF has rank n
on the level set of c. In these circumstances, the Implicit Function Theorem implies
that the level set is a smooth manifold of dimension m − n whose tangent spaces are
given by the null spaces of DF . Sard’s Theorem [92] implies that for almost all c
(with respect to Lebesgue measure in Rn), the level set is a manifold. Continuation
algorithms are best developed when m = n+ 1 and the solution manifolds are curves.
Multiparameter continuation with m > n+ 1 is not yet in widespread use, but remains
an active research area [23, 5]. The topological complexity of higher dimensional level
sets has not been fully incorporated into robust algorithms.

Single parameter continuation can be formulated as a combination of numerical
integration and root finding. The goal is to compute the level curve F = c. On the
set of regular points of F , one can define the line field that assigns to x the null space
of DF (x). This line field can be represented by vector fields in a variety of ways: for
example, as a unit vector field determined by an orientation of the null space or via
a parametrization of the level curve in the form y(x) where (x, y) are coordinates on
Rn+1 with DyF a regular n×n minor of DF and Dxy = −(DyF )−1DxF . The integral
curves of this vector field are level curves of F . Continuation methods exploit this
fact to choose predicted steps along a level curve, but they then utilize root finding
methods to refine these steps so that they once again satisfy F = c. Without this cycle
of prediction and correction, numerically integrated curves will likely drift away from
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the level curve on which they start. The use of the initial prediction step (typically an
Euler step that gives a tangent approximation to the level curve) helps pick seeds for
iterative root finders that are close to the desired solutions. This is important when
using a root finder like Newton’s method that is not globally convergent.

As with numerical integration, the choice of step length in a continuation method
is important. Large step lengths tend to make the root finding less reliable or slower.
Small step lengths take more steps to traverse a level set. Choosing unit vectors to
parametrize the level curves leads to pseudo-arclength continuation. Fixed step sizes
yield points along the curve that are approximately equidistant. If the level curve has
tight folds with areas of large curvature, then pseudo-arclength continuation is likely to
require very small steps. Therefore, adaptive strategies typically monitor the curvature
of the level curve and adjust the step length to control the estimated error from each
prediction step. The final choice that needs to be made in implementing a continuation
method is the choice of subspace in which to perform the root finding. To obtain a
“square” system, the original system of equations is constrained to a hypersurface on
which F is regular. Common choices are to fix one coordinate; i.e., use a subspace
parallel to a coordinate subspace, or to use the hypersurface that is orthogonal to the
continuation step.

Continuation methods have been extremely useful in the study of dynamical
systems. Here, we examine here use in computing information about local bifurcations.
Consider the system of differential equations

ẋ = f(x, λ)

with x ∈ Rn and λ ∈ Rk. Local bifurcations locate parameter values λ at which
equilibria of this dynamical system have qualitative changes. The Transversality The-
orem [92] implies that the equilibrium set of f is a smooth manifold for generic f . In
this case, continuation methods can be used to compute the equilibrium manifold. As
we compute the set of equilibria f = 0 with continuation, we expect to occasionally see
bifurcations along the branch. These occur when Dxf is singular or has eigenvalues
along the imaginary axis. Thus the problem of computing local bifurcations consists
of a continuation problem together with solving additional equations that explicitly
depend upon the derivatives of f .

Bifurcations of high codimension serve as “organizing centers” where multiple
types of lower codimension bifurcations meet. The branching patterns of many bifur-
cations of codimension 2, 3 and 4 have been analyzed by first computing their normal
forms and then studying the dynamics exhibited by the normal form families. Single
parameter continuation has been used to locate and identify high codimension bifur-
cations with the following strategy, implemented in CONTENT [107]. In computing
branches of equilibria for a generic dynamical system with one active parameter, one
expects to meet saddle-node and Hopf bifurcations. These are detected by evaluating
a function that changes sign at the bifurcation. When a bifurcation point is located, a
new continuation can be started to follow the bifurcation curves. The defining equa-
tion is added to the equilibrium equations and a second parameter is made active,
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producing n+1 equations in n+2 variables. At selected points along these bifurcation
curves, codimension two bifurcations may be encountered and detected by evaluation
of suitable functions. When this happens, a new continuation is established with a pair
of defining equations for the codimension two bifurcation and three active parameters.
This process can bootstrap from codimension j to codimension j + 1 bifurcations as
long as explicit defining equations for the bifurcations have been formulated and the
root finding converges. The package CONTENT implements computations of all local
codimension two bifurcations of vector fields and discrete maps (and much more as
well).

There are important cases in which we want to study systems whose equilibrium
sets are not manifolds. For example, systems that are equivariant with respect to a
symmetry group are common in varied applications. Equivariance can force the zero
level set of a vector field or family of vector fields to have singularities. This compli-
cates the computation of bifurcations substantially. The analysis of these systems is
framed in terms of group theoretic concepts. Dynamical analysis of the normal forms
of even moderately complex normal forms of symmetric systems is incomplete [61].
Computation of the equilibria and local bifurcations in these systems can require sub-
stantial amounts of algebra [153]. Gatermann [65] and Sanders [133] have made initial
steps towards the construction of general software for the computation and analysis of
normal forms of symmetric systems.

Continuation methods have been used to track curves of periodic orbits as well as
equilibria. AUTO [49] implements continuation methods superimposed on collocation
algorithms for periodic orbits. The basic advantages of using a continuation method to
compute periodic orbits is that initial conditions close to the desired orbit are used for
each point along the continuation path after the first. Thus, convergence of the method
to the desired orbit is much more likely than with random or fixed data to start each
periodic orbit calculation, and fewer calculations are required at each step along the
continuation path. There are circumstances in which the use of a global boundary value
solver like that employed in AUTO offers additional advantages when coupled with
continuation. First, unstable periodic orbits can be computed. As an iterative method,
the algorithm has stable fixed points corresponding to all approximate periodic orbits,
not only those that are attracting in the flow. With suitable procedures for choosing
dependent and independent parameters in the root finding, curves can be followed
around folds in which the periodic orbits do not vary smoothly with the parameters.
Second, in problems with multiple time scales, one finds families of stable periodic orbits
that cannot be computed readily with numerical integration. The canard example in
Section 3.1 shows periodic orbits that can be computed with boundary value solvers
but not with numerical integration.

4.3 Numerical Methods for Computing Bifurcations

Bifurcation theory provides a mathematical foundation for algorithms that locate bifur-
cations in specific families. Implementation of methods based upon singularity theory
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encounters three types of numerical issues:

1. Formulation of regular systems of defining equations

2. Accurate evaluation of defining equations that depend upon derivatives of a vector
field

3. Numerical condition number of the defining equations, especially for large systems
and systems with multiple time scales

These issues can be viewed from both theoretical and practical perspectives. Practi-
cally, the most desirable numerical methods are those that give accurate answers for
large classes of interesting systems. There are several important choices that enter the
construction of software for computing bifurcations, so the potential number of distinct
methods is large. Yet, different methods are seldom compared carefully with one an-
other. There have been few attempts to gather suites of test problems in this domain
as there has been for numerical integration [95]. Picking parameters in bifurcation
algorithms that make methods work well remains an art. Thus, opinions of different
methods tend to be very subjective, based upon the experience of users and the skill
they develop in adjusting algorithmic parameters when a method initially fails.

Regular systems of defining equations for saddle-node bifurcations are presented
above in terms of the determinant of the Jacobian of a vector field. This choice of
defining function is natural from a theoretical perspective, but may lead to numerical
problems. If the Jacobian has eigenvalues of large magnitude, then these eigenvalues
contribute to the condition number of the determinant and may make it difficult to
satisfy the defining equations to a desired tolerance. The larger the system, the worse
this problem becomes. Thus there are circumstances in which it is desirable to seek
alternate defining equations for saddle-node bifurcation that avoid calculation of the
determinant. The singular matrices do not form a smooth submanifold of the space
Rn×n of n × n matrices, so there is no regular function whose values measure the
distance of a matrix from being singular. However, the corank one matrices are a
smooth hypersurface in Rn×n. Saddle-node bifurcations occur at matrices of corank
one, and this fact can be used in the formulation of defining equations. The following
result about bordered matrices is the basis for one method.

Theorem 3 [70] Let A be an n × n matrix that has a single eigenvalue zero. For
most choices of n vectors B and C and scalar D the (n+ 1)× (n+ 1) block matrix

M =

[
A B
Ct D

]

is nonsingular. There are constants c1 > 0 and c2 and a neighborhood U of A so that
if Ā ∈ U with smallest singular value σ, then the unique solution (ut, v) of the system
of equations [

Ā B
Ct D

](
u
v

)
=

(
0
1

)
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satisfies c1σ < |v| < c2σ.

Applying the theorem with A the Jacobian of the vector field gives the quantity
v as a measure of the distance of the Jacobian from the set of singular matrices.
The system of linear equations can be solved using Gaussian elimination with partial
pivoting, an algorithm that is efficient and reliable for most systems. Moreover, when
v is zero, u is the right zero eigenvector of A, an object needed to compute the normal
form of the bifurcation. High dimensional vector fields often have sparse Jacobians.
For these, iterative methods can be used to compute the solution of the system of linear
equations, avoiding the need to calculate a full factorization of the matrix M . Thus,
this method is feasible for discretized systems of partial differential equations for which
computation of the determinant of the Jacobian can hardly be done.

A second approach to computing saddle-node bifurcations is to rely upon numer-
ical methods for computing low dimensional invariant subspaces of a matrix. Subspace
iteration and Arnoldi methods [142] are effective techniques for identifying invariant
subspaces that are associated with the eigenvalues of largest magnitude for a matrix.
Inverse iterations can be used in this framework to identify invariant subspaces asso-
ciated with eigenvalues close to the origin. Cayley transforms [64, 122] extend these
methods to compute invariant subspaces for any cluster of eigenvalues on the Riemann
sphere. This can be especially useful in finding Hopf bifurcations, but subspaces as-
sociated to eigenvalues of large magnitude on the imaginary axis cannot be readily
separated from subspaces associated with negative eigenvalues of large magnitude. If
appropriate invariant subspaces are computed, then the bifurcation calculations can be
reduced to these subspaces. On the remaining small problems, the choice of function
that vanishes on singular matrices matters less than it does for large problems.

Deriving explicit defining equations for bifurcations other than saddle-nodes re-
quires additional effort. For example, Hopf bifurcation occurs when the Jacobian at an
equilibrium has a pair of pure imaginary eigenvalues. There is no familiar function that
vanishes when a matrix has pure imaginary eigenvalues analogous to the determinant
for zero eigenvalues. Guckenheimer, Myers and Sturmfels [83] described algebraic pro-
cedures that produce single augmenting equations analogous to the determinant and
the bordered matrix equation for saddle-node bifurcation in Section 4.1. The algebraic
equation can be derived from the characteristic polynomial of the Jacobian. A deter-
minant, the Sylvester resultant of two polynomials constructed from the characteristic
polynomial, vanishes if and only if the Jacobian matrix has a pair of eigenvalues whose
sum is zero. There are two ways in which a real matrix can have a pair of eigenval-
ues whose sum is zero: they can be real or they can be pure imaginary. There is an
explicit algebraic inequality in the coefficients of the characteristic polynomial that dis-
tinguishes these two cases. While the formulas that arise from this analysis are suitable
for computations with low dimensional systems, they rapidly become unwieldy as the
dimension of a vector field grows. They suffer from all of the problems associated with
the use of the determinant as a defining equation for saddle-node bifurcations as well
as the additional difficulty that computations of the characteristic polynomial tend to
suffer from numerical instability [150].
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Tensor products yield a procedure for computing Hopf bifurcations without form-
ing the characteristic polynomial of a matrix. Given n × n matrices A and B, their
tensor product is an n2 × n2 matrix A⊗ B whose eigenvalues are the products of the
eigenvalues of A and B. Therefore, the eigenvalues of the matrix C = A ⊗ I + I ⊗ A
are sums of pairs of the eigenvalues of A. Moreover, C can be decomposed into a
symmetric part that is commutes with the involution u ⊗ v → v ⊗ u and a skewsym-
metric part that anticommutes with this involution. The skewsymmetric part is an
n(n − 1)/2 × n(n − 1)/2 matrix (called the biproduct of A) whose eigenvalues are the
sums of distinct eigenvalues of A. Therefore, A has a single pair of eigenvalues whose
sum is zero if and only if its biproduct has corank one. Applying the bordered matrix
construction described above to the biproduct gives a defining function for A to have a
single pair of eigenvalues whose sum is zero. Govaerts, Guckenheimer and Khibnik [69]
studied the Jordan decomposition of the biproduct of matrices with multiple pairs of
eigenvalues whose sum was zero and used a bordering construction to implement a
system of defining equations for double Hopf bifurcation.

The methods described above for computing saddle-node and Hopf bifurcations
construct minimal augmentations of the defining equations. There are alternative
methods that introduce additional independent variables and utilize larger systems of
defining equations. For example, in the case of Hopf bifurcation, many methods solve
for the pure imaginary Hopf eigenvalues and eigenvectors associated with these. In
addition to the equilibrium equations, one method solves the equations Dfv = ωw
and Dfw = −ωv for vectors v and w as well as the eigenvalue iω [128]. To make this
system of equations regular, additional equations that normalize v and w are required.
The complexity of the expressions appearing in these defining equations is reduced
compared to that of minimal augmentation methods. This advantage is offset by the
expense of having larger systems to solve with root finding and the necessity of finding
initial seeds for the auxiliary variables. Guckenheimer and Myers [82] give a list of
methods for computing Hopf bifurcations and a comparison between their method and
the one of Roose and Hvalacek [128].

The defining equations of local bifurcations include derivatives of f . In the
cases of some bifurcations of codimension two and larger, the expressions for these
defining equations are very complex and involve higher derivatives of f . Consequently,
accuracy and efficient evaluation of the defining equations is important. Automatic
differentiation [15] provides methods for the accurate evaluation of the derivatives
themselves that avoids truncation errors inherent in finite difference formulas. General
expressions for defining equations of some types of bifurcations have been derived only
recently, so only a small amount of testing has been done with computation of these
bifurcations [82].

The description of high codimension singularities of maps has proceeded farther
than the description of high codimension bifurcations of dynamical systems. The thesis
of Xiang [154] contains results that surmount a technical difficulty in implementing the
computation of Thom-Boardman singularities [18]. The problem is that the singulari-
ties are defined by equations on submanifolds of a domain: Σi1,i2,···,ik is the set on which
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the map restricted to Σi1,i2,···,ik−1 has corank ik. The corank conditions can be expressed
in terms of minors of the derivative of the restricted map, but numerical computations
only yield approximations to Σi1,i2,···,ik−1 . These approximations do not automatically
produce good approximations of tangent spaces and regular systems of defining equa-
tions. Xiang [154] altered the construction of defining equations to produce a regular
systems of equations for Σi1,i2,···,ik defined in neighborhoods of Σi1,i2,···,ik−1 . These meth-
ods were tested with seven dimensional stable maps containing Σ2,1 singularities, the
smallest example of stable maps in which this difficulty arises.

References

[1] H. Abarbanel, R. Brown, J. Sidorowich and L. Tsimring, The analysis of observed
chaotic data in physical systems. Rev. Modern Phys. 65: 1331-1392, 1993.

[2] R. Abraham and S. Smale, Nongenericity of ω-stability. In Global Analysis (Proc.
Sympos. Pure Math., Vol. XIV: Berkeley, Calif., 1968), pp. 5-8, Amer. Math. Soc.,
Providence, R.I., 1970.

[3] Roy L. Adler, Symbolic dynamics and Markov partitions. Bull. Amer. Math.
Soc. (N.S.), 35:1-56, 1998.

[4] J. Alexander, J. Yorke, Z. You and I. Kan, Riddled basins. Internat. J. Bifur.
Chaos Appl. Sci. Engrg. 2: 795-813, 1992.

[5] E. Allgower and K. Georg, Numerical Continuation Methods: An Introduction,
Springer Verlag 13, 1990.

[6] F. Argoul, A. Arneodo and G. Grasseau, Fractal dimensions and f(α) spectrum
for strange attractors. Z. Angew. Math. Mech. 68: 519-522, 1988.

[7] V. Arnold, Singularity Theory, Selected Papers. London Mathematical Society
Lecture Notes 53, 1981.

[8] D. G. Aronson, M. A. Chory, G. R. Hall, and R. P. McGehee, A discrete dynamical
system with subtly wild behavior. In New approaches to nonlinear problems in
dynamics (Proc. Conf., Pacific Grove, Calif., 1979), pp. 339-359, SIAM, Philadel-
phia, Pa., 1980.

[9] Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell, Numerical so-
lution of boundary value problems for ordinary differential equations. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. Corrected
reprint of the 1988 original.

[10] U. M. Ascher and L. R. Petzold, Computer methods for ordinary differential equa-
tions and differential-algebraic equations, SIAM, Philadelphia, PA, 1998.

41



[11] Michael Benedicks and Lennart Carleson, The dynamics of the Hénon map. Ann.
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