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Abstract. The FitzHugh-Nagumo equation has been investigated with a wide
array of different methods in the last three decades. Recently a version of
the equations with an applied current was analyzed by Champneys, Kirk,
Knobloch, Oldeman and Sneyd [5] using numerical continuation methods.
They obtained a complicated bifurcation diagram in parameter space featuring
a C-shaped curve of homoclinic bifurcations and a U-shaped curve of Hopf bi-
furcations. We use techniques from multiple time-scale dynamics to understand
the structures of this bifurcation diagram based on geometric singular pertur-
bation analysis of the FitzHugh-Nagumo equation. Numerical and analytical
techniques show that if the ratio of the time-scales in the FitzHugh-Nagumo
equation tends to zero, then our singular limit analysis correctly represents the
observed CU-structure. Geometric insight from the analysis can even be used

to compute bifurcation curves which are inaccessible via continuation methods.
The results of our analysis are summarized in a singular bifurcation diagram.

1. Introduction.

1.1. Fast-Slow Systems. Fast-slow systems of ordinary differential equations
(ODEs) have the general form:

ǫẋ = ǫ
dx

dτ
= f(x, y, ǫ) (1)

ẏ =
dy

dτ
= g(x, y, ǫ)

where x ∈ R
m, y ∈ R

n and 0 ≤ ǫ ≪ 1 represents the ratio of time scales. The func-
tions f and g are assumed to be sufficiently smooth. In the singular limit ǫ → 0 the
vector field (1) becomes a differential-algebraic equation. The algebraic constraint
f = 0 defines the critical manifold C0 = {(x, y) ∈ R

m ×R
n : f(x, y, 0) = 0}. Where

Dxf(p) is nonsingular, the implicit function theorem implies that there exists a map
h(x) = y parametrizing C0 as a graph. This yields the implicitly defined vector field
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ẏ = g(h(y), y, 0) on C0 called the slow flow.

We can change (1) to the fast time scale t = τ/ǫ and let ǫ → 0 to obtain the
second possible singular limit system

x′ =
dx

dt
= f(x, y, 0) (2)

y′ =
dy

dt
= 0

We call the vector field (2) parametrized by the slow variables y the fast subsystem
or the layer equations. The central idea of singular perturbation analysis is to use
information about the fast subsystem and the slow flow to understand the full sys-
tem (1). One of the main tools is Fenichel’s Theorem (see [16, 17, 18, 19]). It states
that for every ǫ sufficiently small and C0 normally hyperbolic there exists a family
of invariant manifolds Cǫ for the flow (1). The manifolds are at a distance O(ǫ)
from C0 and the flows on them converge to the slow flow on C0 as ǫ → 0. Points
p ∈ C0 where Dxf(p) is singular are referred to as fold points1.

Beyond Fenichel’s Theorem many other techniques have been developed. More
detailed introductions and results can be found in [12, 34, 24] from a geometric
viewpoint. Asymptotic methods are developed in [42, 23] whereas ideas from non-
standard analysis are introduced in [8]. While the theory is well developed for two-
dimensional fast-slow systems, higher-dimensional fast-slow systems are an active
area of current research. In the following we shall focus on the FitzHugh-Nagumo
equation viewed as a three-dimensional fast-slow system.

1.2. The FitzHugh-Nagumo Equation. The FitzHugh-Nagumo equation is a
simplification of the Hodgin-Huxley model for the membrane potential of a nerve
axon [30]. The first version was developed by FitzHugh [20] and is a two-dimensional
system of ODEs:

ǫu̇ = v − u3

3
+ u + p (3)

v̇ = −1

s
(v + γu − a)

A detailed summary of the bifurcations of (3) can be found in [44]. Nagumo et al.
[43] studied a related equation that adds a diffusion term for the conduction process
of action potentials along nerves:

{

uτ = ∆uxx + fa(u) − w + p
wτ = ǫ(u − γw)

(4)

where fa(u) = u(u−a)(1−u) and p, γ, ∆ and a are parameters. A good introduction
to the derivation and problems associated with (4) can be found in [28]. Suppose
we assume a traveling wave solution to (4) and set u(x, τ) = u(x + sτ) = u(t) and
w(x, τ) = w(x + sτ) = w(t), where s represents the wave speed. By the chain rule
we get uτ = su′, uxx = u′′ and wτ = sw′. Set v = u′ and substitute into (4) to

1The projection of C0 onto the x coordinates may have more degenerate singularities than fold
singularities at some of these points.



FHN EQUATION: THE SINGULAR LIMIT 853

obtain the system:

u′ = v

v′ =
1

∆
(sv − fa(u) + w − p) (5)

w′ =
ǫ

s
(u − γw)

System (5) is the FitzHugh-Nagumo equation studied in this paper. Observe that
a homoclinic orbit of (5) corresponds to a traveling pulse solution of (4). These
solutions are of special importance in neuroscience [28] and have been analyzed
using several different methods. For example, it has been proved that (5) admits
homoclinic orbits [29, 4] for small wave speeds (“slow waves”) and large wave speeds
(“fast waves”). Fast waves are stable [33] and slow waves are unstable [21]. It has
been shown that double-pulse homoclinic orbits [15] are possible. If (5) has two
equilibrium points and heteroclinic connections exist, bifurcation from a twisted
double heteroclinic connection implies the existence of multipulse traveling front
and back waves [6]. These results are based on the assumption of certain parameter
ranges for which we refer to the original papers. Geometric singular perturbation
theory has been used successfully to analyze (5). In [32] the fast pulse is constructed
using the exchange lemma [35, 31, 3]. The exchange lemma has also been used to
prove the existence of a codimension two connection between fast and slow waves
in (s, ǫ, a)-parameter space [38]. An extension of Fenichel’s theorem and Melnikov’s
method can be employed to prove the existence of heteroclinic connections for pa-
rameter regimes of (5) with two fixed points [45]. The general theory of relaxation
oscillations in fast-slow systems applies to (5) (see e.g. [42, 26]) as does - at least
partially - the theory of canards (see e.g. [46, 9, 11, 39]).

The equations (5) have been analyzed numerically by Champneys, Kirk, Knobloch,
Oldeman and Sneyd [5] using the numerical bifurcation software AUTO [13, 14].
They considered the following parameter values:

γ = 1, a =
1

10
, ∆ = 5

We shall fix those values to allow comparison of our results with theirs. Hence we
also write f1/10(u) = f(u). Changing from the fast time t to the slow time τ and
relabeling variables x1 = u, x2 = v and y = w we get:

ǫẋ1 = x2

ǫẋ2 =
1

5
(sx2 − x1(x1 − 1)(

1

10
− x1) + y − p) =

1

5
(sx2 − f(x1) + y − p) (6)

ẏ =
1

s
(x1 − y)

From now on we refer to (6) as “the” FitzHugh-Nagumo equation. Investigating
bifurcations in the (p, s) parameter space one finds C-shaped curves of homoclinic
orbits and a U-shaped curve of Hopf bifurcations; see Figure 1. Only part of the
bifurcation diagram is shown in Figure 1. There is another curve of homoclinic bi-
furcations on the right side of the U-shaped Hopf curve. Since (6) has the symmetry

x1 → 11

15
− x1, x2 → 11

15
− x2, y → −y, p → 11

15

(

1 − 33

225

)

− p (7)
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we shall examine only the left side of the U-curve. The homoclinic C-curve is dif-
ficult to compute numerically by continuation methods using AUTO [13, 14] or
MatCont [22]. The computations seem infeasible for small values of ǫ ≤ 10−3. Fur-
thermore multipulse homoclinic orbits can exist very close to single pulse ones and
distinguishing between them must necessarily encounter problems with numerical
precision [5]. The Hopf curve and the bifurcations of limit cycles shown in Figure
1 have been computed using MatCont. The curve of homoclinic bifurcations has
been computed by a new method to be described in Section 3.2.
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Figure 1. Bifurcation diagram of (6). Hopf bifurcations are shown
in green, saddle-node of limit cycles (SNLC) are shown in blue
and GH indicates a generalized Hopf (or Bautin) bifurcation. The
arrows indicate the side on which periodic orbits are generated at
the Hopf bifurcation. The red curve shows (possible) homoclinic
orbits; in fact, homoclinic orbits only exist to the left of the two
black dots (see Section 3.2). Only part of the parameter space is
shown because of the symmetry (7). The homoclinic curve has
been thickened to indicate that multipulse homoclinic orbits exist
very close to single pulse ones (see [15]).

Since the bifurcation structure shown in Figure 1 was also observed for other
excitable systems, Champneys et al. [5] introduced the term CU-system. Bifurca-
tion analysis from the viewpoint of geometric singular perturbation theory has been
carried out for examples with one fast and two slow variables [27, 2, 25, 41]. Since
the FitzHugh-Nagumo equation has one slow and two fast variables, the situation
is quite different and new techniques have to be developed. Our main goal is to
show that many features of the complicated 2-parameter bifurcation diagram shown
in Figure 1 can be derived with a combination of techniques from singular pertur-
bation theory, bifurcation theory and robust numerical methods. We accurately
locate where the system has canards and determine the orbit structure of the ho-
moclinic and periodic orbits associated to the C-shaped and U-shaped bifurcation
curves, without computing the canards themselves. We demonstrate that the basic
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CU-structure of the system can be computed with elementary methods that do not
use continuation methods based on collocation. The analysis of the slow and fast
subsystems yields a “singular bifurcation diagram” to which the basic CU structure
in Figure 1 converges as ǫ → 0.

Remark: We have also investigated the termination mechanism of the C-shaped
homoclinic curve described in [5]. Champneys et al. observed that the homoclinic
curve does not reach the U-shaped Hopf curve but turns around and folds back
close to itself. We compute accurate approximations of the homoclinic orbits for
smaller values of ǫ than seems possible with AUTO in this region. One aspect of
our analysis is a new algorithm for computing invariant slow manifolds of saddle
type in the full system. This work will be described elsewhere.

2. The singular limit. The first step in our analysis is to investigate the slow and
fast subsystems separately. Let ǫ → 0 in (6); this yields two algebraic constraints
that define the critical manifold:

C0 =

{

(x1, x2, y) ∈ R
3 : x2 = 0 y = x1(x1 − 1)(

1

10
− x1) + p = c(x1)

}

Therefore C0 is a cubic curve in the coordinate plane x2 = 0. The parameter p
moves the cubic up and down inside this plane. The critical points of the cubic are
solutions of c′(x1) = 0 and are given by:

x1,± =
1

30

(

11 ±
√

91
)

or numerically: x1,+ ≈ 0.6846, x1,− ≈ 0.0487

The points x1,± are fold points with |c′′(x1,±)| 6= 0 since C0 is a cubic polynomial
with distinct critical points. The fold points divide C0 into three segments

Cl = {x1 < x1,−} ∩C0, Cm = {x1,− ≤ x1 ≤ x1,+} ∩C0, Cr = {x1,+ < x1} ∩C0

We denote the associated slow manifolds by Cl,ǫ, Cm,ǫ and Cr,ǫ. There are two
possibilities to obtain the slow flow. One way is to solve c(x1) = y for x1 and
substitute the result into the equation ẏ = 1

s (x1 − y). Alternatively differentiating
y = c(x1) implicitly with respect to τ yields ẏ = ẋ1c

′(x1) and therefore

1

s
(x1 − y) = ẋ1c

′(x1) ⇒ ẋ1 =
1

sc′(x1)
(x1 − c(x1)) (8)

One can view this as a projection of the slow flow, which is constrained to the
critical manifold in R

3, onto the x1-axis. Observe that the slow flow is singular at
the fold points. Direct computation shows that the fixed point problem x1 = c(x1)
has only a single real solution. This implies that the critical manifold intersects the
diagonal y = x1 only in a single point x∗

1 which is the unique equilibrium of the
slow flow (8). Observe that q = (x∗

1, 0, x∗
1) is also the unique equilibrium of the full

system (6) and depends on p. Increasing p moves the equilibrium from left to right
on the critical manifold. The easiest practical way to determine the direction of the
slow flow on C0 is to look at the sign of (x1 − y). The situation is illustrated in
Figure 2.
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Figure 2. Sketch of the slow flow on the critical manifold C0

2.1. The Slow Flow. We are interested in the bifurcations of the slow flow de-
pending on the parameter p. The bifurcations occur when x∗

1 passes through the
fold points. The values of p can simply be found by solving the equations c′(x1) = 0
and c(x1) − x1 = 0 simultaneously. The result is:

p− ≈ 0.0511 and p+ ≈ 0.5584

where the subscripts indicate the fold point at which each equilibrium is located.

The singular time-rescaling τ̄ = sc′(x1)/τ of the slow flow yields the desingular-
ized slow flow

dx1

dτ̄
= x1 − c(x1) = x1 +

x1

10
(x1 − 1) (10x1 − 1) − p (9)

Time is reversed by this rescaling on Cl and Cr since s > 0 and c′(x1) is negative on
these branches. The desingularized slow flow (9) is smooth and has no bifurcations
as p is varied.

2.2. The Fast Subsystem. The key component of the fast-slow analysis for the
FitzHugh-Nagumo equation is the two-dimensional fast subsystem

x′
1 = x2

x′
2 =

1

5
(sx2 − x1(x1 − 1)(

1

10
− x1) + y − p) (10)

where p ≥ 0, s ≥ 0 are parameters and y is fixed. Since y and p have the same
effect as bifurcation parameters we set p−y = p̄. We consider several fixed y-values
and the effect of varying p (cf. Section 3.2) in each case. There are either one, two
or three equilibrium points for (10). Equilibrium points satisfy x2 = 0 and lie on
the critical manifold, i.e. we have to solve

0 = x1(x1 − 1)(
1

10
− x1) + p̄ (11)

for x1. We find that there are three equilibria for approximately p̄l = −0.1262 < p̄ <
0.0024 = p̄r, two equilibria on the boundary of this p interval and one equilibrium
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otherwise. The Jacobian of (10) at an equilibrium is

A(x1) =

(

0 1
1
50

(

1 − 22x1 + 30x2
1

)

s
5

)

Direct calculation yields that for p 6∈ [p̄l, p̄r] the single equilibrium is a saddle. In
the case of three equilibria, we have a source that lies between two saddles. Note
that this also describes the stability of the three branches of the critical mani-
fold Cl, Cm and Cr. For s > 0 the matrix A is singular of rank 1 if and only if
30x2

1−22x1+1 = 0 which occurs for the fold points x1,±. Hence the equilibria of the
fast subsystem undergo a fold (or saddle-node) bifurcation once they approach the
fold points of the critical manifold. This happens for parameter values p̄l and p̄r.
Note that by symmetry we can reduce to studying a single fold point. In the limit
s = 0 (corresponding to the case of a “standing wave”) the saddle-node bifurcation
point becomes more degenerate with A(x1) nilpotent.

Our next goal is to investigate global bifurcations of (10); we start with homo-
clinic orbits. For s = 0 it is easy to see that (10) is a Hamiltonian system:

x′
1 =

∂H

∂x2
= x2

x′
2 = − ∂H

∂x1
=

1

5
(−x1(x1 − 1)(

1

10
− x1) − p̄) (12)

with Hamiltonian function

H(x1, x2) =
1

2
x2

2 −
(x1)

2

100
+

11(x1)
3

150
− (x1)

4

20
+

x1p̄

5
(13)

We will use this Hamiltonian formulation later on to describe the geometry of ho-
moclinic orbits for slow wave speeds. Assume that p̄ is chosen so that (12) has a
homoclinic orbit x0(t). We are interested in perturbations with s > 0 and note that
in this case the divergence of (10) is s. Hence the vector field is area expanding
everywhere. The homoclinic orbit breaks for s > 0 and no periodic orbits are cre-
ated. Note that this scenario does not apply to the full three-dimensional system
as the equilibrium q has a pair of complex conjugate eigenvalues so that a Shilnikov
scenario can occur. This illustrates that the singular limit can be used to help locate
homoclinic orbits of the full system, but that some characteristics of these orbits
change in the singular limit.

We are interested next in finding curves in (p̄, s)-parameter space that represent
heteroclinic connections of the fast subsystem. The main motivation is the decom-
position of trajectories in the full system into slow and fast segments. Concatenating
fast heteroclinic segments and slow flow segments can yield homoclinic orbits of the
full system [28, 4, 32, 38]. We describe a numerical strategy to detect heteroclinic
connections in the fast subsystem and continue them in parameter space. Suppose
that p̄ ∈ (p̄l, p̄r) so that (10) has three hyperbolic equilibrium points xl, xm and
xr. We denote by Wu(xl) the unstable and by W s(xl) the stable manifold of xl.
The same notation is also used for xr and tangent spaces to W s(.) and Wu(.) are
denoted by T s(.) and T u(.). Recall that xm is a source and shall not be of interest
to us for now. Define the cross section Σ by

Σ = {(x1, x2) ∈ R
2 : x1 =

xl + xr

2
}.
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We use forward integration of initial conditions in T u(xl) and backward integration
of initial conditions in T s(xr) to obtain trajectories γ+ and γ− respectively. We
calculate their intersection with Σ and define

γl(p̄, s) := γ+ ∩ Σ, γr(p̄, s) := γ− ∩ Σ

We compute the functions γl and γr for different parameter values of (p̄, s) numer-
ically. Heteroclinic connections occur at zeros of the function

h(p̄, s) := γl(p̄, s) − γr(p̄, s)

Once we find a parameter pair (p̄0, s0) such that h(p̄0, s0) = 0, these parameters can
be continued along a curve of heteroclinic connections in (p̄, s) parameter space by
solving the root-finding problem h(p̄0 + δ1, s0 + δ2) = 0 for either δ1 or δ2 fixed and
small. We use this method later for different fixed values of y to compute heteroclinic
connections in the fast subsystem in (p, s) parameter space. The results of these
computations are illustrated in Figure 3. There are two distinct branches in Figure
3. The branches are asymptotic to p̄l and p̄r and approximately form a “V ”. From
Figure 3 we conjecture that there exists a double heteroclinic orbit for p̄ ≈ −0.0622.

−0.15 −0.1 −0.05 0 0.05
0

0.5

1

1.5

p̄

s

Figure 3. Heteroclinic connections for equation (10) in parameter space.

Remarks : If we fix p = 0 our initial change of variable becomes −y = p̄ and our
results for heteroclinic connections are for the FitzHugh-Nagumo equation without
an applied current. In this situation it has been shown that the heteroclinic connec-
tions of the fast subsystem can be used to prove the existence of homoclinic orbits
to the unique saddle equilibrium (0, 0, 0) (cf. [32]). Note that the existence of the
heteroclinics in the fast subsystem was proved in a special case analytically [1] but
Figure 3 is - to the best of our knowledge - the first explicit computation of where
fast subsystem heteroclinics are located. The paper [36] develops a method for
finding heteroclinic connections by the same basic approach we used, i.e. defining
a codimension one hyperplane H that separates equilibrium points.

Figure 3 suggests that there exists a double heteroclinic connection for s = 0.

Observe that the Hamiltonian in our case is H(x1, x2) = (x2)
2

2 + V (x1) where the
function V (x1) is:

V (x1) =
px1

5
− (x1)

2

100
+

11(x1)
3

150
− (x1)

4

20
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The solution curves of (12) are given by x2 = ±
√

2(const. − V (x1)). The structure
of the solution curves entails symmetry under reflection about the x1-axis. Suppose
p̄ ∈ [p̄l, p̄r] and recall that we denoted the two saddle points of (10) by xl and xr

and that their location depends on p̄. Therefore, we conclude that the two saddles
xl and xr must have a heteroclinic connection if they lie on the same energy level,
i.e. they satisfy V (xl) − V (xr) = 0. This equation can be solved numerically to
very high accuracy.

Proposition 1. The fast subsystem of the FitzHugh-Nagumo equation for s = 0
has a double heteroclinic connection for p̄ = p̄∗ ≈ −0.0619259. Given a particular
value y = y0 there exists a double heteroclinic connection for p = p̄∗ + y0 in the fast
subsystem lying in the plane y = y0.

2.3. Two Slow Variables, One Fast Variable. From continuation of periodic
orbits in the full system - to be described in Section 3.1 - we observe that near the
U-shaped curve of Hopf bifurcations the x2-coordinate is a faster variable than x1.
In particular, the small periodic orbits generated in the Hopf bifurcation lie almost
in the plane x2 = 0. Hence to analyze this region we set x̄2 = x2/ǫ to transform
the FitzHugh-Nagumo equation (6) into a system with 2 slow and 1 fast variable:

ẋ1 = x̄2

ǫ2 ˙̄x2 =
1

5
(sǫx̄2 − x1(x1 − 1)(

1

10
− x1) + y − p) (14)

ẏ =
1

s
(x1 − y)

Note that (14) corresponds to the FitzHugh-Nagumo equation in the form (cf. (4)):
{

uτ = 5ǫ2uxx + f(u) − w + p
wτ = ǫ(u − w)

(15)

Therefore the transformation x̄2 = x2/ǫ can be viewed as a rescaling of the diffusion
strength by ǫ2. We introduce a new independent small parameter δ̄ = ǫ2 and then
let δ̄ = ǫ2 → 0. This assumes that O(ǫ) terms do not vanish in this limit, yielding
the diffusion free system. Then the slow manifold S0 of (14) is:

S0 =

{

(x1, x̄2, y) ∈ R
3 : x̄2 =

1

sǫ
(f(x1) − y + p)

}

(16)

Proposition 2. Following time rescaling by s, the slow flow of system (14) on S0

in the variables (x1, y) is given by

ǫẋ1 = f(x1) − y + p

ẏ = x1 − y (17)

In the variables (x1, x̄2) the vector field (17) becomes

ẋ1 = x̄2

ǫ ˙̄x2 = − 1

s2
(x1 − f(x1) − p) +

x̄2

s
(f ′(x1) − ǫ) (18)

Remark: The reduction to equations (17)-(18) suggests that (14) is a three time-
scale system. Note however that (14) is not given in the three time-scale form
(ǫ2ż1, ǫż2, ż3) = (h1(z), h2(z), h3(z)) for z = (z1, z2, z3) ∈ R

3 and hi : R
3 → R

(i = 1, 2, 3). The time-scale separation in (17)-(18) results from the singular 1/ǫ
dependence of the critical manifold S0; see (16).
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Proof. (of Proposition 2) Use the defining equation for the slow manifold (16) and
substitute it into ẋ1 = x̄2. A rescaling of time by t → st under the assumption that
s > 0 yields the result (17). To derive (18) differentiate the defining equation of S0

with respect to time:

˙̄x2 =
1

sǫ
(ẋ1f

′(x1) − ẏ) =
1

sǫ
(x̄2f

′(x1) − ẏ)

The equations ẏ = 1
s (x1−y) and y = −sǫx̄2+f(x1)+p yield the equations (18).

Before we start with the analysis of (17) we note that bifurcation calculations
for (17) exist. For example, Rocsoreanu et al. [44] give a detailed overview on the
FitzHugh equation (17) and collect many relevant references. Therefore we shall
only state the relevant bifurcation results and focus on the fast-slow structure and
canards. Equation (17) has a critical manifold given by y = f(x1) + p = c(x1)
which coincides with the critical manifold of the full FitzHugh-Nagumo system (6).
Formally it is located in R

2 but we still denote it by C0. Recall that the fold points
are located at

x1,± =
1

30

(

11 ±
√

91
)

or numerically: x1,+ ≈ 0.6846, x1,− ≈ 0.0487

Also recall that the y-nullcline passes through the fold points at:

p− ≈ 0.0511 and p+ ≈ 0.5584

We easily find that supercritical Hopf bifurcations are located at the values

pH,±(ǫ) =
2057

6750
±
√

11728171

182250000
− 359ǫ

1350
+

509ǫ2

2700
− ǫ3

27
(19)

For the case ǫ = 0.01 we get pH,−(0.01) ≈ 0.05632 and pH,+(0.01) ≈ 0.55316.
The periodic orbits generated in the Hopf bifurcations exist for p ∈ (pH,−, pH,+).
Observe also that pH,±(0) = p±; so the Hopf bifurcations of (17) coincide in the
singular limit with the fold bifurcations in the one-dimensional slow flow (8). We
are also interested in canards in the system and calculate a first order asymptotic
expansion for the location of the maximal canard in (17) following [37]; recall that
trajectories lying in the intersection of attracting and repelling slow manifolds are
called maximal canards. We restrict to canards near the fold point (x1,−, c(x1,−)).

Proposition 3. Near the fold point (x1,−, c(x1,−)) the maximal canard in (p, ǫ)
parameter space is given by:

p(ǫ) = x1,− − c(x1,−) +
5

8
ǫ + O(ǫ3/2)

Proof. Let ȳ = y − p and consider the shifts

x1 → x1 + x1,−, ȳ → ȳ + c(x1,−), p → p + x1,− − c(x1,−)

to translate the equilibrium of (17) to the origin when p = 0. This gives

x′
1 = x2

1

(√
91

10
− x1

)

− ȳ = f̄(x1, ȳ)

y′ = ǫ(x1 − ȳ − p) = ǫ(ḡ(x1, ȳ) − p) (20)

Now apply Theorem 3.1 in [37] to find that the maximal canard of (20) is given by:

p(ǫ) =
5

8
ǫ + O(ǫ3/2)

Shifting the parameter p back to the original coordinates yields the result.
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If we substitute ǫ = 0.01 in the previous asymptotic result and neglect terms of
order O(ǫ3/2) then the maximal canard is predicted to occur for p ≈ 0.05731 which is
right after the first supercritical Hopf bifurcation at pH,− ≈ 0.05632. Therefore we
expect that there exist canard orbits evolving along the middle branch of the critical
manifold Cm,0.01 in the full FitzHugh-Nagumo equation. Maximal canards are part
of a process generally referred to as canard explosion [10, 39, 7]. In this situation
the small periodic orbits generated in the Hopf bifurcation at p = pH,− undergo a
transition to relaxation oscillations within a very small interval in parameter space.
A variational integral determines whether the canards are stable [39, 26].

Proposition 4. The canard cycles generated near the maximal canard point in
parameter space for equation (17) are stable.

Proof. Consider the differential equation (17) in its transformed form (20). Obvi-
ously this will not affect the stability analysis of any limit cycles. Let xl(h) and
xm(h) denote the two smallest x1-coordinates of the intersection between

C̄0 := {(x1, ȳ) ∈ R
2 : ȳ =

√
91

10
x2

1 − x3
1 = φ(x1)}

and the line ȳ = h. Geometrically xl represents a point on the left branch and xm

a point on the middle branch of the critical manifold C̄0. Theorem 3.4 in [39] tells
us that the canards are stable cycles if the function

R(h) =

∫ xm(h)

xl(h)

∂f̄

∂x1
(x1, φ(x1))

φ′(x1)

ḡ(x1, φ(x1))
dx1

is negative for all values h ∈ (0, φ(
√

91
15 )] where x1 =

√
91

15 is the second fold point of

C̄0 besides x1 = 0. In our case we have

R(h) =

∫ xm(h)

xl(h)

(
√

91
5 x1 − 3x2

1)
2

x −
√

91
10 x2

1 + x3
1

dx

with xl(h) ∈ [−
√

91
30 , 0) and xm(h) ∈ (0,

√
91

15 ]. Figure 4 shows a numerical plot of
the function R(h) for the relevant values of h which confirms the required result.

0.02 0.04 0.06 0.08 0.10 0.12
h

-0.10

-0.08

-0.06

-0.04

-0.02

R

Figure 4. Plot of the function R(h) for h ∈ (0, φ(
√

91
15 )].
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Remark: We have computed an explicit algebraic expression for R′(h) with a

computer algebra system. This expression yields R′(h) < 0 for h ∈ (0, φ(
√

91
15 )],

confirming that R(h) is decreasing.

As long as we stay on the critical manifold C0 of the full system, the analysis of
the bifurcations and geometry of (17) give good approximations to the dynamics
of the FitzHugh-Nagumo equation because the rescaling x2 = ǫx̄2 leaves the plane
x2 = 0 invariant. Next we use the dynamics of the x̄2-coordinate in system (18) to
obtain better insight into the dynamics when x2 6= 0. The critical manifold D0 of
(18) is:

D0 = {(x1, x̄2) ∈ R
2 : sx̄2c

′(x1) = x1 − c(x1)}
We are interested in the geometry of the periodic orbits shown in Figure 5 that
emerge from the Hopf bifurcation at pH,−. Observe that the amplitude of the
orbits in the x1 direction is much larger that than in the x2-direction. Therefore we
predict only a single small excursion in the x2 direction for p slightly larger than
pH,− as shown in Figures 5(a) and 5(c). The wave speed changes the amplitude
of this x2 excursion with a smaller wave speed implying a larger excursion. Hence
equation (17) is expected to be a very good approximation for periodic orbits in
the FitzHugh-Nagumo equation with fast wave speeds. Furthermore the periodic
orbits show two x2 excursions in the relaxation regime after the canard explosion;
see Figure 5(b).
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Figure 5. Geometry of periodic orbits in the (x1, x2)-variables of
the 2-variable slow subsystem (18). Note that here x2 = ǫx̄2 is
shown. Orbits have been obtained by direct forward integration
for ǫ = 0.01.

3. The full system.

3.1. Hopf Bifurcation. The characteristic polynomial of the linearization of the
FitzHugh-Nagumo equation (6) at its unique equilibrium point is

P (λ) =
ǫ

5s
+
(

− ǫ

s
− λ
)

(

− 1

50
+

11x∗
1

25
− 3(x∗

1)
2

5
− sλ

5
+ λ2

)

Denoting P (λ) = c0 + c1λ + c2λ
2 + c3λ

3, a necessary condition for P to have pure
imaginary roots is that c0 = c1c2. The solutions of this equation can be expressed
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parametrically as a curve (p(x∗
1), s(x

∗
1)):

s(x∗
1)

2 =
50ǫ(ǫ − 1)

1 + 10ǫ − 22x∗
1 + 30(x∗

1)
2

p(x∗
1) = (x∗

1)
3 − 1.1(x∗

1)
2 + 1.1 (21)

Proposition 5. In the singular limit ǫ → 0 the U-shaped bifurcation curves of
the FitzHugh-Nagumo equation have vertical asymptotes given by the points p− ≈
0.0510636 and p+ ≈ 0.558418 and a horizontal asymptote given by {(p, s) : p ∈
[p−, p+] and s = 0}. Note that at p± the equilibrium point passes through the
two fold points.

Proof. The expression for s(x∗
1)

2 in (21) is positive when 1+10ǫ−22x∗
1+30(x∗

1)
2 < 0.

For values of x∗
1 between the roots of 1− 22x∗

1 + 30(x∗
1)

2 = 0, s(x∗
1)

2 → 0 in (21) as
ǫ → 0. The values of p− and p+ in the proposition are approximations to the value
of p(x∗

1) in (21) at the roots of 1 − 22x∗
1 + 30(x∗

1)
2 = 0. As ǫ → 0, solutions of the

equation s(x∗
1)

2 = c > 0 in (21) yield values of x∗
1 that tend to one of the two roots

of 1 − 22x∗
1 + 30(x∗

1)
2 = 0. The result follows.

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

x
1

y

p=0.0598
C

0

p=0.0801

(a) Projection onto (x1, y)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

x
1

x 2

p=0.0598

p=0.0801

C
0

(b) Projection onto (x1, x2)

Figure 6. Hopf bifurcation at p ≈ 0.083, s = 1 and ǫ = 0.01.
The critical manifold C0 is shown in red and periodic orbits are
shown in blue. Only the first and the last critical manifold for the
continuation run are shown; not all periodic orbits obtained during
the continuation are displayed.

The analysis of the slow subsystems (17) and (18) gives a conjecture about the
shape of the periodic orbits in the FitzHugh-Nagumo equation. Consider the pa-
rameter regime close to a Hopf bifurcation point. From (17) we expect one part of
the small periodic orbits generated in the Hopf bifurcation to lie close to the slow
manifolds Cl,ǫ and Cm,ǫ. Using the results about equation (18) we anticipate the
second part to consist of an excursion in the x2 direction whose length is governed
by the wave speed s. Figure 6 shows a numerical continuation in MatCont [22] of
the periodic orbits generated in a Hopf bifurcation and confirms the singular limit
analysis for small amplitude orbits.

Furthermore we observe from comparison of the x1 and x2 coordinates of the
periodic orbits in Figure 6(b) that orbits tend to lie close to the plane defined by
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x2 = 0. More precisely, the x2 diameter of the periodic orbits is observed to be
O(ǫ) in this case. This indicates that the rescaling of Section 2.3 can help to de-
scribe the system close to the U-shaped Hopf curve. Note that it is difficult to
check whether this observation of an O(ǫ)-diameter in the x2-coordinate persists
for values of ǫ < 0.01 since numerical continuation of canard-type periodic orbits is
difficult to use for smaller ǫ.
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2

Figure 7. Tracking of two generalized Hopf points (GH) in
(p, s, ǫ)-parameter space. Each point in the figure corresponds to
a different value of ǫ. The point GHǫ

1 in 7(a) corresponds to the
point shown as a square in Figure 1 and the point GHǫ

2 in 7(b) is
further up on the left branch of the U-curve and is not displayed
in Figure 1.

In contrast to this, it is easily possible to compute the U-shaped Hopf curve us-
ing numerical continuation for very small values of ǫ. We have used this possibility
to track two generalized Hopf bifurcation points in three parameters (p, s, ǫ). The
U-shaped Hopf curve has been computed by numerical continuation for a mesh of
parameter values for ǫ between 10−2 and 10−7 using MatCont [22]. The two general-
ized Hopf points GHǫ

1,2 on the left half of the U-curve were detected as codimension
two points during each continuation run. The results of this “three-parameter con-
tinuation” are shown in Figure 7.

The two generalized Hopf points depend on ǫ and we find that their singular
limits in (p, s)-parameter space are approximately:

GH0
1 ≈ (p = 0.171, s = 0) and GH0

2 ≈ (p = 0.051, s = 3.927)

We have not found a way to recover these special points from the fast-slow de-
composition of the system. This suggests that codimension two bifurcations are
generally diffcult to recover from the singular limit of fast-slow systems.

Furthermore the Hopf bifurcations for the full system on the left half of the U-
curve are subcritical between GHǫ

1 and GHǫ
2 and supercritical otherwise. For the

transformed system (14) with two slow and one fast variable we observed that in
the singular limit (17) for ǫ2 → 0 the Hopf bifurcation is supercritical. In the case
of ǫ = 0.01 the periodic orbits for (6) and (17) exist in overlapping regions for the
parameter p between the p-values of GH0.01

1 and GH0.01
2 . This result indicates that
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(14) can be used to describe periodic orbits that will interact with the homoclinic
C-curve.

3.2. Homoclinic Orbits. In the following discussion we refer to “the” C-shaped
curve of homoclinic bifurcations of system (5) as the parameters yielding a “single-
pulse” homoclinic orbit. The literature as described in Section 1.2 shows that close
to single-pulse homoclinic orbits we can expect multipulse homoclinic orbits that
return close to the equilibrium point multiple times. Since the separation of slow
manifolds C·,ǫ is exponentially small, homoclinic orbits of different types will always
occur in exponentially thin bundles in parameter space. Values of ǫ < 0.005 are
small enough that the parameter region containing all the homoclinic orbits will be
indistinguishable numerically from “the” C-curve that we locate.

The history of proofs of the existence of homoclinic orbits in the FitzHugh-
Nagumo equation is quite extensive. The main step in their construction is the
existence of a “singular” homoclinic orbit γ0. We consider the case when the fast
subsystem has three equilibrium points which we denote by xl ∈ Cl, xm ∈ Cm and
xr ∈ Cr. Recall that xl coincides with the unique equilibrium q = (x∗

1, 0, x∗
1) of the

full system for p < p−. A singular homoclinic orbit is always constructed by first
following the unstable manifold of xl in the fast subsystem given by y = x∗

1.
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Figure 8. Homoclinic orbits as level curves of H(x1, x2) for equa-
tion (12) with y = x∗

1.

First assume that s = 0. In this case the Hamiltonian structure - see Section
2.2 and equation (12) - can be used to show the existence of a singular homoclinic
orbit. Figure 8 shows level curves H(x1, x2) = H(x∗

1, 0) for various values of p. The
double heteroclinic connection can be calculated directly using Proposition 1 and
solving x∗

1 + p̄∗ = p for p.
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Proposition 6. There exists a singular double heteroclinic connection in the
FitzHugh-Nagumo equation for s = 0 and p ≈ −0.246016 = p∗.

Techniques developed in [45] show that the singular homoclinic orbits existing
for s = 0 and p ∈ (p∗, p−) must persist for perturbations of small positive wave
speed and sufficiently small ǫ. These orbits are associated to the lower branch of
the C-curve. The expected geometry of the orbits is indicated by their shape in
the singular limit shown in Figure 8. The double heteroclinic connection is the
boundary case between the upper and lower half of the C-curve. It remains to
analyze the singular limit for the upper half. In this case, a singular homoclinic
orbit is again formed by following the unstable manifold of xl when it coincides with
the equilibrium q = (x∗

1, 0, x∗
1) but now we check whether it forms a heteroclinic

orbit with the stable manifold of xr. Then we follow the slow flow on Cr and return
on a heteroclinic connection to Cl for a different y-coordinate with y > x∗

1 and
y < c(x1,+) = f(x1) + p. From there we connect back via the slow flow. Using
the numerical method described in Section 2.2 we first set y = x∗

1; note that the
location of q depends on the value of the parameter p. The task is to check when
the system

x′
1 = x2

x′
2 =

1

5
(f(x1) + y − p) (22)

has heteroclinic orbits from Cl to Cr with y = x∗
1. The result of this computation

is shown in Figure 9 as the red curve. We have truncated the result at p = −0.01.
In fact, the curve in Figure 9 can be extended to p = p∗. Obviously we should view
this curve as an approximation to the upper part of the C-curve.
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Figure 9. Heteroclinic connections for equation (22) in parameter
space. The red curve indicates left-to-right connections for y = x∗

1

and the blue curves indicate right-to-left connections for y = x∗
1 +v

with v = 0.125, 0.12, 0.115 (from top to bottom).

If the connection from Cr back to Cl occurs with vertical coordinate x∗
1 + v, it is

a trajectory of system (22) with y = x∗
1 +v. Figure 9 shows values of (p, s) at which

these heteroclinic orbits exist for v = 0.125, 0.12, 0.115. An intersection between a
red and a blue curve indicates a singular homoclinic orbit. Further computations
show that increasing the value of v slowly beyond 0.125 yields intersections every-
where along the red curve in Figure 9. Thus the values of v on the homoclinic orbits
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are expected to grow as s increases along the upper branch of the C-curve. Since
there cannot be any singular homoclinic orbits for p ∈ (p−, p+) we have to find the
intersection of the red curve in Figure 9 with the vertical line p = p−. Using the
numerical method to detect heteroclinic connections gives:

Proposition 7. The singular homoclinic curve for positive wave speed terminates
at p = p− and s ≈ 1.50815 = s∗ on the right and at p = p∗ and s = 0 on the left.

In (p, s)-parameter space define the points:

A = (p∗, 0), B = (p−, 0), C = (p−, s∗) (23)

In Figure 10 we have computed the homoclinic C-curve for values of ǫ between
10−2 and 5 · 10−5. Together with the singular limit analysis above, this yields
strong numerical evidence for the following conjecture:

Conjecture 1. The C-shaped homoclinic bifurcation curves converge to the union
of the segments AB and AC as ǫ → 0.

Remark 1: Figure 4 of Krupa, Sandstede and Szmolyan [38] shows a “wedge” that
resembles the one shown in Figure 10. The system that they study sets p = 0 and
varies a with a ≈ 1/2. For a = 1/2 and p = 0, the equilibrium point q is located at
the origin and the fast subsystem with y = 0 has a double heteroclinic connection at
q to the saddle equilibrium (1, 0, 0) ∈ Cr. The techniques developed in [38] use this
double heteroclinic connection as a starting point. Generalizations of the results in
[38] might provide a strategy to prove Conjecture 1 rigorously, a possibility that we
have not yet considered. However, we think that 1-homoclinic orbits in the regime
we study come in pairs and that the surface of 1-homoclinic orbits in (p, s, ǫ) space
differs qualitatively from that described by Krupa, Sandstede and Szmolyan.
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Figure 10. Singular limit (ǫ = 0) of the C-curve is shown in blue
and parts of several C-curves for ǫ > 0 have been computed (red).
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Remark: 2 We have investigated the termination or turning mechanism of the
C-curve at its upper end. The termination points shown in Figure 1 have been
obtained by a different geometric method. It relies on the observation that, in ad-
dition to the two fast heteroclinic connections, we have to connect near Cl back to
the equilibrium point q to form a homoclinic orbit; the two heteroclinic connections
might persist as intersections of suitable invariant manifolds but we also have to
investigate how the flow near Cl,ǫ interacts with the stable manifold W s(q). These
results will be reported elsewhere, but we note here that pturn(ǫ) → p−.

The numerical calculations of the C-curves for ǫ ≤ 10−3 are new. Numeri-
cal continuation using the boundary value methods implemented in AUTO [14] or
MatCont [22] becomes very difficult for these small values of ǫ [5]. Even computing
with values ǫ = O(10−2) using boundary value methods is a numerically challeng-
ing problem. The method we have used does not compute the homoclinic orbits
themselves while it locates the homoclinic C-curve accurately in parameter space.
To motivate our approach consider Figure 11 which shows the unstable manifold
Wu(q) for different values of s and fixed p. We observe that homoclinic orbits can
only exist near two different wave speeds s1 and s2 which define the parameters
where Wu(q) ⊂ W s(Cl,ǫ) or Wu(q) ⊂ W s(Cr,ǫ). Figure 11 displays how Wu(q)
changes as s varies for the fixed value p = 0.05. If s differs from the points s1 and
s2 that define the lower and upper branches of the C-curve for the given value of
p, then |x1| increases rapidly on Wu(q) away from q. The changes in sign of x1 on
Wu(q) identify values of s with homoclinic orbits. The two splitting points that
mark these sign changes are visible in Figure 11. Since trajectories close to the slow
manifolds separate exponentially away from them, we are able to assess the sign of
x1 unambiguously on trajectories close to the slow manifold and find small intervals
(p, s1 ± 10−15) and (p, s2 ± 10−15) that contain the values of s for which there are
homoclinic orbits.
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Figure 11. Strong “splitting”, marked by an arrow, of the unsta-
ble manifold Wu(q) (red) used in the calculation of the homoclinic
C-curve for small values of ǫ. The critical manifold C0 is shown in
blue. The spacing in s is 0.05 for both figures.

The geometry of the orbits along the upper branch of the C-curve is obtained by
approximating it with two fast singular heteroclinic connections and parts of the
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slow manifolds Cr,ǫ and Cl,ǫ; this process has been described several times in the
literature when different methods were used to prove the existence of “fast waves”
(see e.g. [29, 4, 32]).

4. Conclusions. Our results are summarized in the singular bifurcation diagram
shown in Figure 12. This figure shows information obtained by a combination of
fast-slow decompositions, classical dynamical systems techniques and robust nu-
merical algorithms that work for very small values of ǫ. It recovers and extends
to smaller values of ǫ the CU-structure described in [5] for the FitzHugh-Nagumo
equation. The U-shaped Hopf curve was computed with an explicit formula, and
the homoclinic C-curve was determined by locating transitions between different
dynamical behaviors separated by the homoclinic orbits. All the results shown as
solid lines in Figure 12 have been obtained by considering a singular limit. The
lines AB and AC as well as the slow flow bifurcation follow from the singular limit
ǫ → 0 yielding the fast and slow subsystems of the FitzHugh-Nagumo equation (6).
The analysis of canards and periodic orbits have been obtained from equations (17)
and (18) where the singular limit ǫ2 → 0 was used (see Section 2.3). We have also
shown the C- and U-curves in Figure 12 as dotted lines to orient the reader how
the results from Proposition 5 and Conjecture 1 fit in.

We also observed that several dynamical phenomena are difficult to recover from
the singular limit fast-slow decomposition. In particular, the codimension two gen-
eralized Hopf bifurcation does not seem to be observable from the singular limit
analysis. Furthermore the homoclinic orbits can be constructed from the singular
limits but it cannot be determined directly from the fast and slow subsystems that
they are of Shilnikov-type.

The type of analysis pursued here seems to be very useful for other multiple time-
scale problems involving multiparameter bifurcation problems. In future work, we
shall give a geometric analysis of the folding/turning mechanism of the homoclinic
C-curve, a feature of this system we have not been able to determine directly from
our singular limit analysis. That work relies upon new methods for calculating Cl,ǫ

and Cr,ǫ which are invariant slow manifolds of “saddle-type” with both stable and
unstable manifolds.

We end with brief historical remarks. The references cited in this paper dis-
cuss mathematical challenges posed by the FitzHugh-Nagumo equation, how these
challenges have been analyzed and their relationship to general questions about
multiple time-scale systems. Along the line AB in Figure 12 we encounter a per-
turbation problem regarding the persistence of homoclinic orbits that can be solved
using Fenichel theory [45]. The point A marks the connection between fast and
slow waves in (p, s)-parameter space which has been investigated in (ǫ, s)-parameter
space in [38]. We view this codimension 2 connectivity as one of the key features
of the FitzHugh-Nagumo system. The perturbation problem for homoclinic orbits
close to the line AC was solved using several methods and was put into the context
of multiple time-scale systems in [31, 32], where the Exchange Lemma overcame
difficulties in tracking Wu(q) when it starts jumping away from Cr,ǫ. This theory
provides rigorous foundations that support our numerical computations and their
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Figure 12. Sketch of the singular bifurcation diagram for the FitzHugh-Nagumo equation (6). The points A, B and C
are defined in (23). The part of the diagram obtained from equations (17),(18) corresponds to the case “ǫ2 = 0 and ǫ 6= 0
and small”. In this scenario the canards to the right of p = p− are stable (see Proposition 4). The phase portrait in
the upper right for equation (17) shows the geometry of a small periodic orbit generated in the Hopf bifurcation of (17).
The two phase portraits below it show the geometry of these periodic orbits further away from the Hopf bifurcation for
(17),(18). Excursions of the periodic orbits/canards for p > p− decrease for larger values of s. Note also that we have
indicated as dotted lines the C-curve and the U-curve for positive ǫ to allow a qualitative comparison with Figure 1.
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interpretation.
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