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A Robust Hybrid Stabilization Strategy for Equilibria 

John Guckenheimer 

Abstract-For an equilibrium of a general dynamical system, the 
domain of stability of a linear feedback controller is enlarged by the use 
of a general "hybrid" or "switching" strategy. The strategy is illustrated 
for numerical simulations of an inverted double pendulum on a cart. 

Linear control strategies provide a means for the stabilization 
of equilibria under general hypotheses. When applied to nonlinear 
systems, the effectiveness of these strategies depends upon the size of 
the domain of stability that is produced for the stabilized equilib~jum. 
If this domain is small compared to the accuracy of the measurements 
or the size of disturbances within the system, then the linear controller 
is likely to fail within a short period. Failure of the system can 
be catastrophic, with the system wandering far from the desired 
equilibrium. We present here a general procedure to recapture stability 
of a linear controller when a trajectory leaves it region of stability. 
By using a hybrid strategy based upon discrete switching events 
within the state space of the plant, the system returns to the region 
of stability for the linear controller from a much larger domain. 
The control procedure is robust and remains effective under large 
classes of perturbations of the underlying system. We illustrate the 
effectiveness of our technique by applying it to the control of an 
inverted double pendulum. 

The stabilization of unstable equilibria is a fundamental problem 
for the control of engineering systems. A sufficient condition for 
stability of an equilibrium point of a smooth dynamical system is 
that the eigenvalues of its linearization lie in the left-half plane. 
This is easily proved by several means, for example, by defining 
a quadratic Lyapunov function in a neighborhood of the equilibrium. 
Control theory addresses the questions of when stabilization is 
possible with the modifications (controller) that can be built into 
the underlying system (plant). Over the past 50 years, an extensive 
theory of "linear control" has developed comprehensive procedures 
for determining when the stabilization problem is solvable and for 
the design of controllers that implement stabilization. This theory 
is widely employed in engineering for the design of controllers 
in communication systems, chemical process control, avionics, etc. 
However, linear feedback control is not a complete panacea for all 
control problems, even ones of stabilizing equilibria when complete 
state-space information is available at all times. One difficulty that 
is encountered in some applications is that the domain of attraction 
of a controlled equilibrium may be small. This leads to unacceptable 
constraints on system performance. Small random disturbances in 
the environment or the inability of the actual physical system to 
implement its model idealization lead to failures of the controller. 
The results of the failure can be catastrophic in terms of the design 
objectives. For example, in the double pendulum example we describe 
below, the failure of a linear controller leads to large motions of the 

pendulum, and in the presence of damping, the pendulum eventually 
falls to rest at its naturally stable hanging position. 

The goal of this work is to provide a simple, effective means 
of recovery from the failure of a linear controller. We want to 
design a "safety net" around the (small) domain of attraction of a 
linear controller, so that if a disturbance moves a system outside 
this domain of attraction, it will be guided back into the domain 
by the application of a different control strategy. The strategy that 
we describe is very general. It can be applied to any system that 
meets conditions of controllability and accessibility. Moreover, the 
computations that are required for the design of a controller are 
based on the linearization of the system at its equilibrium, just as 
with linear controllers. Verification of the effectiveness of a particular 
design requires more extensive simulation, but the design guidelines 
are based upon accessible information. 

The framework in which our control strategy is implemented 
has precursors in the literature [ 2 ] ,  [3], [ I l l ,  [12], [15]. The terms 
"switching" system, "variable structure" system, and "hybrid system 
have all been used to describe piecewise smooth vector fields in 
the context of control, but there does not yet seem to be an 
effective, systematic theory of such systems. We shall use the terms 
switching system and hybrid system interchangeably. One of the 
essential aspects of our work is the presence of "hysteresis" in a 
piecewise smooth system: there is a discrete component of the state 
of the system used by the controller in addition to its location in 
the underlying state space of the physical system. We recall the 
description of hybrid systems that we have used previously [ l ]  and 
adopt here. 

The problem domain is a disjoint union of open, connected 
subsets of R ,  called charts. Each chart has associated with it a 
vector field. Inside each chart is a patch-an open subset with 
closure contained inside the patch. The patch boundaries are assumed 
piecewise smooth. The evolution of the system is implemented as a 
sequence of trajectory segments where the endpoint of one segment 
is connected to the initial point of the next by a transformation, 
although the transformations are trivial in the examples studied in 
this note. However, states of a system have both a continuous and 
discrete part, and switches that change the discrete part of the system 
state do occur. Time is divided into contiguous periods separated by 
instances where a state transformation is applied at times referred to 
as events. 

We end this section with a few "philosophical" comments un- 
derlying our approach to nonlinear control. Structural stability is a 
useful concept for dynamical systems, stating that perturbations of 
a system remain equivalent to the reference system by continuous 
changes of coordinates. In implementing hybrid control for stabilizing 
equilibria, we have sought to maintain this type of robustness to 
perturbations of the system itself. Nothing in the controller should 
be subject to the choice of exact values of any parameters. In 
particular, we have avoided the use of sliding modes or switches 
that must be implemented exactly to be effective. To a large extent, 
this strategy involves trade-offs to attempts to achieve optimization 
of some cost function in the control because that is likely to push 
one to select parameter values in a system that are borderline for 
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This section discusses a strategy for maintaining the motion of a 
trajectory in a bounded region of an unstable equilibrium point with 
a piecewise constant control. Consider the following linear system 
as a model example: 

In (I), c represents a "control" that moves the equilibrium point 
of the systems along a line. While we have chosen a particular 
form for this system, most planar vector fields with real eigenvalues 
can be transformed to this representation by a linear change of 
coordinates. Such a transformation to a "normal form" exists if the 
system is controllable. Necessary and sufficient conditions for this 
are that I) the eigenvalues are distinct and 2) the control moves the 
equilibrium along a line that is not an eigendirection. We assume that 
X I  > A2 > 0, SO that equilibrium point is a source. 

The goal is to define a feedback control r(.r) so that the motion of 
the system remains within a moderate-sized bounded neighborhood 
of the origin. We approach this by defining a hybrid system with 
two patches that are half-planes H+ and H- defined by y > .r - e ,  
y < .r + P ,  respectively. The boundaries of H+ and H- are the lines 
L* defined by y = .r 7 r .  These lines are parallel to the control line. 
In each of the two patches, the control c( .r)  takes a constant value 
c*. The values of c are chosen with the object of making trajectories 
in the overlap strip H+ fl H -  stay in a bounded region of the origin. 
This defines a hybrid system with parameters C* and c .  The goal is 
now clear: to choose values of these parameters to create a trapping 
region surrounding the origin. 

We can compute readily that the trajectories of the system (1) are 
defined by 

.,.I ( f )  = c + exp (fXl )(.rl  ( 0 )  - C )  

. ~ . , ( f )  = c +  exp(fX2)( . rL(0)  - c ) .  

Given r ,  we would like to find c+ that creates a trapping region 
around the origin in the strip -r 5 .r2 - .r1 < c. Along a segment 
of the right boundary L+ of the strip, we would like the vector field 
associated with H+ to point to the left, toward the interior of the 
strip. Similarly, we would like the vector field associated with H- 
to point to the right on a segment of the left boundary L- of H-.  
These segments are to be chosen so that the flow carries one into the 
other. See Fig. 1. To choose c* with the desired properties, we argue 
as follows. For simplicity, we shall assume that c+ = -c- so that 
the system has a symmetry. The symmetry streamlines the analysis, 
but is not essential to the argument that we give. 

Regard the value of c as fixed for the moment. We shall determine 
the conditions we would like it to satisfy. Along L+, define the point 
I)+ to be the point where the vector field has slope 1. The point ]I+ 
is obtained by solving the equations 

whose solution is 

Above I)+ on L+, the vector field points to the right of L+. Below 
I)+ on L+, the vector field points to the left of L+. The trajectory 
starting at ]I+ should lie above the trapping region in the strip. For 
example, we might want the intersection of the .r2 - axis with the 
strip to lie in the trapping region. For this to occur, it suffices that 
the trajectory with initial condition p+ intersect the strip at a point 

Fig. 1. The baniers L* and region in which trajectories switch back and 
forth between the boundaries. The curves segments show trajectories, with 
arrows located where they encounter a patch boundary. 

TABLE I 

with a nonnegative value of .r1. A lower bound for c+ satisfying 
this criterion is given by the value of c for which the trajectory with 
initial condition ]I+ passes through the point ( 0 ,  e ) .  This yields an 
implicit equation for c / r  in terms of the ratio X = X l / X 2  

Representative values of the solution of this equation are given in 
Table I to three-digit accuracy. This discussion leads to the following 
theorem. 

Theorem 2.1: Let c+/e be larger than the solution of the equation 

and set c- = -c+. Denote by IT-* the trajectories of the vector 
fields defined by 

.?I = X,(.r2 - c*) 

passing through the points ( 0 .  & r ) .  Assume X 2  < X I .  On the lines 
1* defined by .r.2 = .rl e ,  consider the segment s* with endpoints 
at (0. F P )  and the intersections of T i >  with I*.  Then trajectories of 
S+ with initial conditions on 1+ intersect I - ,  and trajectories of S- 
with initial conditions on I -  intersect I + .  

To prove this theorem, we still need to verify that the trajectory of 
I- with initial condition at (0. r )  intersects the segment s+. From 
S-, we obtain the equation 

madhu
Highlight
\dot{x}_2

madhu
Highlight
s_+

madhu
Highlight
s_-

madhu
Note
Unmarked set by madhu



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 2, FEBRUARY 1995 323 

Equation (2) gives the trajectory of 4;- with initial condition (0 .  e )  
in a form parameterized by s l :  

We want to estimate du 1 /duo from this equation. From the equivalent 
equation 

with X = X 2 / X 1 .  Similarly, the trajectory of S+ with initial condition 
(0,  P )  is given by 

These two trajectories intersect at one point in the right-half plane if 
the trajectory of S- passes below the point (c .  c ) .  Setting 71 = .rl/c 
and b = c/e, we want to determine when 

This equation is readily solved for b in terms of 11 

At the solution to this equation, we want to have -1 + ( 1  + b ) ( l  + 
rr )' - 21 + b > 0, so that the intersection point of the two trajectories 
lies above the line l+. This yields the requirement that 

Substituting the value forb at the intersection point into this inequality 
and simplifying leads to the requirement that 

This inequality holds throughout the unit square in the (11. I )  plane, 
which is the domain of interest. We conclude that the intersection of 
the trajectories of S+ and 1- with common initial point (0 ,  e )  lies 
above the line I+ since we assumed X < 1. 

Recall that our hybrid system S applies a mode switch from S- 
to I+ when a trajectory hits I+ from the left and, similarly, a mode 
switch from S+ to S- when a trajectory hits 1-  from the right. The 
theorem implies the following corollary. 

Corollary 2.1: With the notations introduced above, define R to 
be the region bounded by I T 7 * ,  the trajectories of Xi with initial 
conditions at (0 .  F e )  and .s*. Then trajectories with initial conditions 
in R remain in R for all forward time. 

Less formally, we say that R is a trapping region for the hybrid 
system 1. We can say more still about the dynamics of S in R. There 
are passage maps B* that map trajectories with initial conditions on 
. s i  to their intersections with ST.  The maps B% are monotone, so the 
composition 8- o H+ is a monotone map of the interval s+ into ~tself. 
It follows that this retum map has a stable fixed point, representing a 
stable periodic orbit for the hybrid system. Additional computations 
lead to the conclusion that the return map is a contradiction and has 
only a single fixed point. To carry forward these computations, we 
use the coordinates which scale c to 1, writing 11 = .rl/c and b = a l e  
as in the proof of the theorem. The trajectory starting on the line 1- 
with initial value 11 = 710 is given by 

The intersection of the trajectory occurs at a value of 11 = 111 

satisfying 

we deduce that du1 /duo < 1. The right-hand side of the last equation 
defines a function of 11 1 which intersects the function of 710 on the left- 
hand side crossing from above to below while decreasing. Therefore, 
implicitly differentiating the last equation gives dtc 1 /duo < 1. From 
this, we conclude that the retum map of our hybrid system has 
derivative smaller that 1 and is a contraction. 

Theorem 2.2: With the same hypotheses of the previous theorem 
and corollary, there is a stable limit cycle for the hybrid system that is 
globally attracting for all initial conditions in the trapping region R. 

Remarks: 

1) Due to the symmetry of the hybrid system, the stable limit cycle 
is symmetric with respect to the origin. 

2) In systems with equilibria that are saddle points with two- 
dimensional unstable manifolds, the procedure described above can 
be applied with switching surfaces that are hyperplanes tangent to the 
directions spanned by the stable manifold of the equilibrium and the 
tangent to the control curve. We have not investigated systems with 
unstable manifolds of dimension larger than two, but the strategy 
might work there as well. In that case, one can try to use switching 
surfaces that are tangent to the directions spanned by the tangent to 
the control curve and all but the largest two eigendirections. 

The results of the previous section can be extended and improved 
in a number of ways. We describe two. 

The bamers described in the previous section can be combined 
with linear controllers. If one knows a region around the equilibrium 
that lies in the domain for a linear controller, then one can define a 
hybrid system with three patches: the system described in the previous 
section, and a domain cut from these two patches in which the linear 
controller will be applied. If the stable limit cycle of the switching 
system intersects the domain in which the linear controller is applied, 
then the barriers and switching system serve to guide the system to 
the domain of the linear controller from initial conditions between 
the two barriers. To prevent the system from exiting the domain of 
the linear controller, distinct boundaries can be defined to switch the 
linear controller on and off. 

The second extension of the controller described in the previous 
section is to place multiple barriers in the system parallel to one 
another. Consider, for example, a planar system with six barriers 
that are parallel lines I,. i = 1.. . . , G .  The lines 1, divide the 
plane into seven closed "strips" S,. i = 1. . . . . 7 .  S1 and S; are 
half-planes. From the S,, we form six overlapping patches D, = 
S, U S, + 1. In each of these patches, define a constant control 
that increases in magnitude as one moves away from the control 
line. The transition conditions are defined so that if one crosses a 
patch boundary moving away from the control line, then the control 
setting of larger magnitude is applied. If one crosses a patch boundary 
moving toward the control line, then the control value changes to 
one of smaller magnitude. The effect of these barriers is to guide a 
trajectory back toward the origin from farther away from the origin, 
while at the same time decreasing the amplitude of the control when 
feasible. Combining these multiple barriers with a linear controller in 
a neighborhood of the origin allows one to recover from disturbances 
of large size that move the system outside the region of stability 
for the linear controller. See Fig. 2 for an illustration of the patches 
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Fig. 2. The geometry of the state space for the system with three sets of 
barriers and a region in which linear feedback control is used. 

associated with a system that has three pairs of barriers and a domain 
where the linear controller will be applied. 

IV. AN EXAMPLE: THE DOUBLE PENDULUM ON A CART 

We describe an example-a frictionless double pendulum on a 
zero mass cart whose acceleration along a track can be controlled. 
The object is to keep the pendulum in the fully upright position. The 
control of a pendulum on a cart has been a frequently studied problem 
[4]-[lo], [13], [14]. This example provides a good illustration of the 
effectiveness of our stabilization strategy on a nonlinear system. 

The double pendulum consists of two point masses I I I  I and 1 1 1 ~  

with body 1 attached to a fulcrum and body 1 attached to body 2 by 
massless rigid rods of lengths 11 and 12. We want to include within 
the system of equations the additional effect of applying a horizontal 
acceleration. See Fig. 3. Choose units for which the acceleration of 
gravity is 1, let the magnitude of the acceleration be n, and set 
/I = 1 + r l t  I / I I I ~ .  Then the equations of motion are given by the 
following vector field S as shown in the equation at the bottom of 
the page. Here, ql.  (1.2 are angular coordinates and 111. 112 are the 
conjugate momenta. The angles ql.  42 are measured with respect 
to vertical rays pointing down, so the stable equilibrium with the 
pendulum hanging down is given by ql = (12 = 111 = p2 = 0. 
The vertically upright position that we want to stabilize is given by 
(11 = (19 = i~ and ~ J I  = 112 = 0. 

Fig. 3. A double pendulum on a cart. 

The vertically upright position is an equilibrium of the pendulum 
equations (without horizontal acceleration) that has a two-dimensional 
stable manifold and a two-dimensional unstable manifold. Therefore, 
we are in a situation for which the theory described earlier can be 
applied. To do so, we need to construct a linear controller, a region 
in which the linear controller will be applied, barriers parallel to the 
hyperplanes spanned by the control line and the stable manifold at 
the vertical equilibrium, and control values for each of the patches to 
be used by the controller outside the patch of the linear controller. 

The linear controller is defined by making the acceleration of 
the pendulum fulcrum a linear function of the location of the 
pendulum in phase space. For convenience, we shall use coordinates 
(-sin (q1 ). -sin (a ) .  111. 11% ) near the upright equilibrium. We seek 
a vector 1 = (y l .  g.2. !/:I. 1/4) SO that setting rr = y ~ q 1  + (lzqr + 
!/:,p~ + g 1 1 ~  makes the upright equilibrium stable. Controllability 
of the system linearized at the upright equilibrium implies that we 
can find 7 to place the eigenvalues of the linearly controlled system 
anywhere in the complex plane. We describe one approach to solving 
this problem. Treating the eigenvalues of the linearization as functions 
of the control coefficients g, gives a system of equations that can be 
solved for the g , .  Let A,.  i = 1 . . . 4  be the desired eigenvalues for 
the controlled system. Denoting the Jacobian matrix of the vector 
field by -4 and I ,  = ~!I.4/Clrr, we seek vectors w, # 0 and 1 so that 

If .4 + A,  I is invertible. rewrite this equation as 

It follows that i t , ,  is a multiple of (-4 - A , I ) - '  I ,  and 

As i varies in (1. 2. 3. 41, this yields a system of linear equations 
for ;. If the system is nonsingular, then it uniquely determines ; in 
terms of the eigenvalues A , .  

We have investigated a numerical example with parameters 
I I  = 1 I = 3 I = 2, r t t l  = 1, and 

. sin (q2) cos ( q ~  - q2) - 11 sin ( q ~  ) - (121)$ + Ill,? cos ( q ~  - q2 1)  sin ( q l  - q2) 111 = 
I , ( / /  - c0s2(q1 - q2))  
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3 25 
Fig. 4. Continued. 

Fig. 4. A typical hybrid trajectory converging to the upright position, with 
magnifications showing increasing detail near the equilibrium position. The 
initial point of the trajectory is (2.5,3.6), near the left side of (a). 

{XI. X2. A?. X4) = (-0.4. -0.5. - 0 5 .  -0.7). This gives 
(exactly) : = (-3.395, 2.116. -1.1. 1.2595). Using these 
parameter values, we investigated numerically a model of the double 
pendulum with the hybrid, switching control strategy described in 
the last section. The only modification of the strategy was to define 
two neighborhoods of the vertical pendulum on which switches to 
and from the linear controller were applied. This was done because 
many of the linearly controlled trajectories do not approach the 
equilibrium with monotonically decreasing distance. 

To test the effectiveness of this controller, trajectories were com- 
puted on a grid of initial conditions in the plane 111 = p2 = 0. 
The domain of stability of the linear controller in this plane contains 

a small elongated region around the equilibrium diagonal ql = qz 
whose length along the diagonal is approximately 0.5, and whose 
width is approximately 0.07. For the switching system, we used level 
sets of the function h = ( q l  - n ) / 4  - (q2 - x ) / 4  +111/12 - 112/G 
as the switching surfaces. The function 1, was computed so  that 
it is parallel to the hyperplane spanned by the control direction 
(0. 0. 2. 0 )  and the stable eigenvalue at the fully upright equilibrium. 
With switching surfaces given by 11 = -0.5, h = -0.3, 11 = -0.1, 
h = 0.1, h = 0.3, and h = 0.5 with corresponding values for 
n of 5. 3. 1. -1. 3. 5, there is a much larger domain of attraction 
for the upright pendulum. In the plane 111 = 112 = 0, it appears 
that the square with vertices at the points (ql .  qa) = (2.5. 2.5) 
and ((11. (12) = (3.7. 3.7) is completely contained in the domain of 
attraction for the upright pendulum. See Fig. 4(a) for a projection 
of a typically trajectory into the plane 111 = 112 = 0. Fig. 4(b) 
and (c) shows magnifications of this trajectory close to the upright 
equilibrium. The width of this square is an order of magnitude larger 
than the width of the domain of stability for the linear controller in 
the plane 111 = 112 = 0. If the linear controller is not used, then 
the asymptotic state is the limit cycle described in the first section. 
Switching to and from the linear controller when the square of the 
distance to the upright equilibrium is 0.002 and 0.005, respectively, 
appears to robustly stabilize the pendulum at the precise upright state. 
Note that 0.005 E (0.07)' so that the disk for switching the linear 
controller off could not be chosen smaller and still remain in the 
basin of attraction of the vertical equilibrium for the linear controller. 
Addition of stochastic perturbations to the vector field does not appear 
to significantly diminish the size of the domain of attraction for the 
upright equilibrium. 

As illustrated by this example, the hybrid or switching strategy 
that we have presented for the stabilization of equilibria appears to 
be robust. All aspects of the strategy seem to be "structurally stable" 
and persistent with respect to very general types of perturbations. 
It augments linear control for stabilizing equilibria by guiding a 
trajectory back into the domain of attraction for a linear controller 
from a much larger region. 
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Adaptive Control of Systems 
with Unknown Output Backlash 

Gang Tao and Petar V. Kokotovit 

Abstract-Adaptive control schemes for systems with unknown back- 
lash at the plant output are developed. In the case of known backlash, 
a backlash inverse controller guarantees exact output tracking. When 
the backlash characteristics are unknown, adaptive laws are designed to 
update the controller parameters and to guarantee bounded input-output 
stability. Simulations show significant improvements of the system per- 
formance achieved by such adaptive backlash inverse controllers. 

Backlash is common in many components of control systems, 
such as actuators, sensors, and mechanical connections. A typical 
backlash example is the mechanical motion due to the imperfect 
contact of two gears. From the early days of classical control theory, 
the backlash nonlinearity has been recognized as one of the factors 
severely limiting the performance of feedback systems by causing 
delays, oscillations, and inaccuracy. 

The backlash characteristic is a nondifferentiable nonlinearity 
which is often poorly known. Therefore, the control of systems with 
unknown backlash is an open theoretical problem of major relevance 
to applications. In [ I ]  and [2], we proposed an adaptive control 
scheme for systems with unknown backlash at input of the plant, 
that is, in the actuator. In this note, we address the problem with 
unknown backlash at the plant output, that is, in the sensor, as shown 
in Fig. 1. Perhaps the most common example is a position servo: the 
block G ( D )  represents the power amplifier motor, and the backlash 
is in the position sensor such as a potentiometer connected to the 
motor shaft through a gear box. 

A contribution of this note is the construction of new adaptive con- 
troller structures for the output backlash problem which is essentially 
different from the actuator backlash problem. Our new controller 
structures can be initialized to achieve exact output matching when 
the plant is known. They lead to a linear parameterization of the 
closed-loop plant when the backlash is unknown. Such a linear 
parameterization is crucial for the development of an adaptive scheme 
to deal with the unknown backlash. Our approach is to develop an 
adaptive backlash inverse to cancel the unknown backlash effect. 
A feedback-feedforward controller structure is then combined with 
such an adaptive backlash inverse to achieve the desired tracking 
performance. 

The note is organized as follows. In Section 11, we present the 
model of the backlash at the output of a linear part and formulate the 
control problem. In Section 111, assuming that the backlash is known, 
we present a backlash inverse and introduce the idea of backlash 
inverse control. In Section IV, we develop two adaptive backlash 
inverse controller structures when the backlash is unknown: one for 
the linear part known, and the other for the linear part unknown. 
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