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Abstract. In a previous paper [11] we presented algorithms for detecting Hopf bifurcations in
two-parameter families of vector fields based on classical algebraic constructions. In addition to their
utility as augmented systems for use with standard Newton-type continuation methods, they were
shown to be particularly well-adapted for solution by computer algebra techniques for vector fields
of small or moderate dimension. The present study examines the performance of these methods on
test problems selected from models of current research interest in neurophysiology. Implementation
issues are examined and the numerical properties of the proposed methods are compared with several
alternative algorithms for Hopf pathfollowing that appear in the literature.
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1. Introduction. The onset of small amplitude oscillations in dynamical sys-
tems occurs at Hopf bifurcations. The simplest version of the Hopf Theorem is the
following:

Theorem 1.1. Let

ẋ = f(x, µ) f : IRn × IRk → IRn(1)

be a smooth n-dimensional vector field depending upon k parameters with the property
that (x0, µ0) is an equilibrium point at which the Jacobian matrix Dxf has no zero
eigenvalues and a single, simple pair of pure imaginary eigenvalues λ, λ̄. Assume
further that λ, λ̄ cross the imaginary axis transversally as the parameters µ are varied.
Then there is a smooth submanifold P of dimension k + 1 containing (x0, µ0) that is
a union of periodic orbits and equilibrium points of f .

We are concerned with the numerical detection of Hopf bifurcation points. This
constitutes location of values (x, µ) at which f(x, µ) = 0 and Df(x, µ) has a pair of
pure imaginary eigenvalues. Several methods for computing such points have been
proposed and implemented by various authors (For recent reviews, see [18, 24]).

To motivate the discussion that follows, we begin by considering the following
planar vector field:

ẋ = γ
(

x+ y − x3/3 + ξ
)

(2)

ẏ = −(x− α+ βy)/γ

This model for the propagation of electrical impulses along a nerve axon was proposed
by Fitzhugh [6] as a tractable simplification of the more complicated Hodgkin-Huxley
equations discussed as the first example in Section 2. Equilibrium points for equations
(2) are points which satisfy ẋ = ẏ = 0. Hopf bifurcation points are determined by the
Jacobian at the equilibrium. They occur where the trace β/γ − γ(1− x2) is zero and
the determinant 1−β(1−x2) is positive. Thus the determination of Hopf bifurcation
points for Equation (2) described above can be written as the following problem:
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Problem (P1):

Find: (x̂, ŷ) and (α, β, γ, ξ)

Satisfying:




γ
(

x+ y − x3/3 + ξ
)

− (x− α+ βy)
β/γ − γ(1 − x2)



 = 0

Subject To:
1 − β(1 − x2) > 0

We seek to extend the approach to detecting Hopf bifurcations in this example to
vector fields of higher dimension. We need a non-linear system of equations comprised
of the equilibrium condition of Equation (1) and the algebraic criteria that determine
when the Jacobian matrix has a single pair of pure imaginary, conjugate eigenvalues
in its spectrum. In [11] we discuss classical algebraic constructions for determining
matrices of arbitrary dimension with pure imaginary eigenvalues. A single equality
condition and an inequality in the coefficients of the characteristic polynomial are
formulated in terms of resultants, determinants of special matrices whose elements
are functions of the characteristic polynomial coefficients. The equality condition is
also derived directly from the Jacobian as the determinant of a bialternate product
(biproduct) matrix constructed from the Jacobian entries. The biproduct matrix is
generally sparse and block-structured. Thus, in arbitrary dimensions the non-linear
rootfinding problem corresponding to that of (P1) can be expressed in terms of the
defining equations for the vector field and the Jacobian elements alone. We note that
there is some overlap in our approach with work of previous authors. In particular,
the program LINLBF by Khibnik and his coworkers [15] incorporates a method for
following curves of Hopf bifurcations based on the resultant of two polynomials which
is similar to that used here. In [11] we extend their work by examining several
variations of the resultant methods which have differing numerical properties and
derive the inequality condition that makes identification of the Hopf points possible.
The biproduct formulation is new as is the formulation of conditions under which
regularity holds.

Here we discuss the implementation of our new methods, describe their appli-
cation to three examples from neurophysiology and make comparisons with other
approaches to computing Hopf bifurcations. Each of the examples that we describe
comes from a neurophysiological model for the electrical activity of a neuron and each
illustrates a different aspect of the methods. In some other problems of modest size
or special structure, computer algebra programs produce curves of Hopf bifurcations
analytically. However, given an arbitrary nonlinear vector field, solving for the roots
of the required system of equations is generally infeasible in closed-form. One can
attempt to solve (P1) numerically and to follow curves of Hopf bifurcation points
in two-parameter families of vector fields. In [11] we showed that these augmented
systems do, indeed, satisfy the properties required for use in Newton-type numerical
continuation.

Our goal in examining these algorithms has been to develop computational meth-
ods that facilitate the comparison of biologically-based neural models with experimen-
tal data. In the first example of Section 2, we illustrate the application of symbolic
methods to the detection of Hopf bifurcations in the classical Hodgkin-Huxley model
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for action potentials of a squid giant axon. We also use the Hodgkin-Huxley exam-
ple to compare the accuracy of numerical calculations of derivatives using ‘automatic
differentiation’ with finite difference techniques and analytic evaluation. The second
example shows the performance of the resultant approach on a more complex model
for the electrical activity of a bursting neuron. This model contains a point of dou-
ble Hopf bifurcation in its parameter space. We make a detailed comparison of our
algorithms with other strategies for detecting Hopf bifurcations for this model. The
third example is a still larger and stiffer system of differential equations formulated
as a model for electrical activity of a stomatogastric neuron of the crab, Cancer bore-
alis. We examine the problems caused in the detection of Hopf bifurcations by large
eigenvalues in the linearization of this model.

The paper is organized into two sections. The first section is a review of methods
for detecting Hopf bifurcations, including those discussed in [11]. The second section
presents results obtained for the three examples, beginning with a brief description of
the biological origins of each model. We conclude with a summary of our experiments
and discuss directions for future work.

2. Review of Hopf Bifurcation Algorithms.

2.1. Minimally Augmented Systems. In this section we review strategies for
detecting curves of Hopf bifurcation points in two parameter families of vector fields.
We consider first methods based on the algebra of polynomial resultants in families
of autonomous vector fields of the form

ẋ = f(x, α;β)(3)

where f : D ⊂ IRn× IR×I → IRn and β ∈ I ⊂ IR. For simplicity, we distinguish
the second parameter by considering both x(β) and α(β) to be functions of β. The
Jacobian matrix of the vector field is given by

J ≡ J(x, α;β) =
∂f

∂x
(x, α;β) .

J defines a map from the product space of phase and parameter variables to the space
of n-square matrices, denoted by M.

Direct methods for computing curves of Hopf bifurcation for Equation (3) involve
appending a determining equation that vanishes when J has pure imaginary eigenval-
ues to the equilibrium equations f(x, α;β) = 0. Thus, we seek a C2−smooth function
g : IRn×IR×IR → IRn+1 so that the augmented system:

F (x, α;β) =

(

f(x, α;β)
g(x, α;β)

)

(4)

vanishes at a point of Hopf bifurcation. Furthermore, we require that a point of Hopf
bifurcation (x∗, α∗;β∗) be a regular solution of Equation (4).
If the characteristic polynomial of J is given by

p(λ) = c
0
+ c

1
λ+ · · · + c

n−1
λ

n−1

+ λ
n

.

then p has the non-zero root pair {λ,−λ} if and only if λ is a common root of the

two equations p(λ) + p(−λ) and p(λ) − p(−λ). Making the substitution z = λ
2

and
rearranging, we construct two new polynomials. If n is even, let
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(5a)
re(z) = c0 + c2z + c4z

2 + · · · + cn−2z
n−2

2 + z
n
2

ro(z) = c1 + c3z + c5z
2 + · · · + cn−1z

n−2
2

while if n is odd, set

(5b)
re(z) = c0 + c2z + c4z

2 + · · · + cn−3z
n−3

2 + cn−1z
n−1

2

ro(z) = c1 + c3z + c5z
2 + · · · + cn−2z

n−3
2 + z

n−1
2

Then p has a non-zero root pair {λ,−λ} if there exists a z that satisfies:

(

re(z)
ro(z)

)

= 0 .

Two polynomials have a common root if and only if they share a common factor.
There are several equivalent ways of determining whether two univariate polynomials
have a common root. First, the Euclidean algorithm yields a sequence of polynomials
of decreasing degree that are in the ideal generated by re(z) and ro(z). The last term
in this sequence can be expressed as a determinant constructed from the coefficients
of two polynomials. We describe one way to do so.

The Bezout resultant is a determinant that indicates whether re and ro have a
common root. For n even, consider the two polynomials specified by Equation (5a).
We define the brackets

[i, j] = det

[

c2i c2j

c2i + 1 c2j + 1

]

where 0 ≤ i, j ≤ n
2 and we take cn = 1, cn+1 = 0. The Bezout matrix, B, cor-

responding to the polynomial pair (re, ro) is an n
2 -dimensional square, symmetric

matrix with entries constructed as sums of brackets in the coefficients ci as follows:
For 1 ≤ i ≤ j ≤ n

2 set

kmin = max(0, i+ j − n/2− 1)

kmax = i− 1(6)

(B)ij =

kmax
∑

k=kmin

[i+ j − k − 1, k] = (B)ji .(7)

The only modification required in this definition for the case of n odd is that cn

has the value prescribed by the characteristic polynomial, p, and cn+1 is taken to be
unity. We also define the Bezout subresultants B0 and B1 as the determinants of the
matrices obtained from B by deleting the first column and the ith row of B. The
following theorem is proved in [11].

Theorem 2.1. Let B be the Bezout matrix for the polynomials re and ro in
Equation (2). Then J has precisely one pair of pure imaginary eigenvalues if

det(B) = 0 and det(B0) · det(B1) > 0.

If det(B) 6= 0 or det(B0) · det(B1) < 0, then p(λ) has no pure imaginary roots.
Table 1 provides a list of the resultant equality and subresultant inequality con-

ditions, as functions of the polynomial coefficients, for vector fields of dimension two
to six.
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Table 1

Resultant equality and subresultant inequality conditions required for Hopf bifurcation for vector
fields of dimension two through six.

n
det(B)

det(S0) · det(S1)

2
c1

c0

3
c0 − c1c2

c1

4
c0c

2
3 − c1c2c3 + c21

c1c3

5
(c2 − c3c4)(c1c2 − c0c3) + c1c4(c1c4 − 2c0) + c20

(c2 − c3c4) · (c0 − c1c4)

6

c0c
2
5(c0c5 − c2c3) + c1c

2
5(c

2
2 − c0c4) + c1(c

2
1 + c0c3c5)+

c1c5(c0c3 − 2c1c2) + (c4c5 − c3)(c0c
2
3 − c0c1c5 + c21c4 − c1c2c3)

(c1c3 + c0c
2
5 − c1c4c5) · (c23 − c1c5 + c2c

2
5 − c3c4c5)

To circumvent possible difficulties in explicitly determining the characteristic
polynomial coefficients of J, we described a method for determining whether a square
matrix has a pair of eigenvalues with zero sum directly from the entries in the Jacobian
matrix.

Definition: Let A and B be n×n matrices with entries (aij) and (bij), respectively,
1 ≤ i, j ≤ n. Set m = n

2 (n−1). Then the bialternate product (or biproduct) of A and
B, denoted A�B, is anm×mmatrix whose rows are labeled pq for (p = 2, 3, · · · , n; q =
1, 2, · · · , p−1) and columns labeled rs, (r = 2, 3, · · · , n; s = 1, 2, · · · , r−1) with entries

(A �B){pq,rs} =
1

2

{∣

∣

∣

∣

apr aps

bqr bqs

∣

∣

∣

∣

+

∣

∣

∣

∣

bpr bps

aqr aqs

∣

∣

∣

∣

}

.

Theorem 2.2. Let A be an (n×n) matrix with eigenvalues (λ1, · · · , λn). Then

(i) A�A has eigenvalues λi ·λj , and
(ii) 2A� In has eigenvalues λi+λj

where In is the n-square identity matrix and 1≤j<i≤n.
Substituting In into the definition of the bialternate product and solving for the

elements yields a simple formula for the entries. For the n
2 (n−1)-square matrix 2A�In

with rows, pq, and columns, rs, the entries are given by the formula,
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(2A� In){pq,rs} =































−(A)ps if r = q
(A)pr if r 6= p and s = q

(A)pp + (A)qq if r = p and s = q
(A)qs if r = p and s 6= q
−(A)qr if s = p

0 otherwise

(8)

From the algebraic theory of symmetric matrix products described above we have
a simple necessary condition for a Hopf point: If the point (x∗, λ∗) is a Hopf bifurcation
point for ẋ = f(x, α), then the (n+ 1)-dimensional system

F (x∗, α∗) =





f(x∗, α∗)

det

(

Dxf�In
(x∗,α∗)

)



(9)

vanishes. However, we have not found a condition that distinguishes pure imaginary
eigenvalues from real pairs with zero sum directly from the Jacobian and its bialternate
products in analogy to the subresultant criteria described earlier.

Both the determinant of the biproduct and the resultant provide augmentation
functions g that can be used in detecting Hopf bifurcations in one parameter families
of vector fields or in applying continuation methods for the computation of curves of
Hopf bifurcations in two parameter families. The regularity theorem of [11] guarantees
that the matrix of partial derivatives of the augmented system F = 0 has maximum
rank n + 1 at points of simple Hopf bifurcation. In Section 2, we discuss several
aspects of standard root finding and continuation methods that can be improved by
taking into account the nature of the augmenting function g.

2.2. Other Methods Based on the Characteristic Polynomial. Kubiček
has previously described two direct methods for computing Hopf bifurcation points
which require explicitly the coefficients of a matrix characteristic polynomial [16, 17].
Both methods result in (n+2)-dimensional systems of algebraic equations which may
be solved by conventional continuation techniques. Performance of these algorithms
has been evaluated on a variety of testcases, including panel flutter and non-adiabatic
tubular reactions [24], continuous-stirred tank reactions [13] and parabolic reaction-
diffusion equations [23] with favorable results.
The two methods of Kubiček are based on the direct determination of the pure imag-
inary eigenvalues, say λ∗1,2 = ±√

ωi, of the Jacobian characteristic polynomial, p.
Suppose such an eigenvalue pair exists. Then there is a polynomial, q, of degree
(n−2) such that

p(λ) = (λ2 + ω)q(λ)

= (λ2 + ω)

n−2
∑

k=0

bkλ
n−k−2 +Aλ+B

where the bi are given recursively by the formula bi = ci −ωbi−2 for 1 ≤ i ≤ n−2 with
b−1 = 0. We require the constant and linear coefficients, A and B to be zero; that is,

(

A(x, α)
B(x, α)

)

=

(

cn−1 − ωbn−3

cn − ωbn−2

)

= 0(10)
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where the dependence of A and B on (x, α) has been emphasized. Thus, Equation
(10) yields a 2-dimensional augmented system which must vanish at a Hopf bifurcation
point:

F (x, α, ω) =





f(x, α)
cn−1 − ωbn−3

cn − ωbn−2



 (K1)

Kubiček’s second method depends on the observation that if (x∗, α∗) is a point of
Hopf bifurcation with imaginary eigenvalues ±√

ωi, then the matrix J2 has a real
eigenvalue, −ω, with multiplicity equal to two. Suppose the characteristic polynomial
of J2 has r eigenvalues distinct from −ω; that is, we take the spectrum of J2 to be
{−ω, λ1, · · · , λr}, with respective multiplicities {mω,m1, · · · ,mr} where (mω +m1 +
· · ·mr) = n. Then q may be written,

q(λ) = (λ+ ω)mω

r
∏

k=0

(λ− λk)mk .(11)

Differentiating with respect to λ we obtain,

dq

dλ
= mω(λ+ ω)mω−1

r
∏

k=0

(λ− λk)mk + (λ+ ω)mω
d

dλ

r
∏

k=0

(λ − λk)mk

For −ω to be a double real root,

q(−ω) = 0 =
dq

dω
(−ω)

which leads to the augmented system,

F (x, α, ω) =







f(x, α)
q(−ω)

dq
dω

(−ω)






. (K2)

2.3. Other Methods Not Based on the Characteristic Polynomial. Here
we review methods for computing Hopf bifurcations which do not require the coeffi-
cients of the Jacobian characteristic polynomial. Most of the methods in this category
use variants of two distinct defining equations. Our discussion summarizes the main
features of these methods; for more details see Roose [22].
Suppose (x∗, α∗) is a Hopf bifurcation point for Equation (2) with pure imaginary
eigenvalues ±ωi and associated eigenvector u+ vi. Denote E = span(u, v), which is
two-dimensional if J is non-singular. The defining relation,

(Dxf − ωI) (u+ vi) = 0

leads to the augmented system

F1(x, α, u, v, ω) =









f(x, α)
[Dxf ]u− ωv
[Dxf ] v + ωu

N (u, v)









.
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If the same construction is applied to the matrix J2 = [Dxf ]
2
, we obtain the inflation

F2(x, α, u, ω) =





f(x, α)

[Dxf ]2 u+ ω2u
N (u)



 .

The operator N : X → IR2, where X is either IRn× IRn or IRn, is used to normalize
the vectors u and v and typically requires a fixed vector l. Precisely how l is selected
is a matter of implementation, but it must be chosen so that l 6∈ E. Two choices
for N have been discussed extensively in the literature. Griewank and Reddien [9]
suggested the use of

N1 =

(

< l, u >
< l, v > −1

)

in conjunction with F1 and showed that both Hopf and simple quadratic turning points
are regular, isolated solutions to the system of equations. An alternative proposed by
Roose and Hlavacek [22] is to take

N2 =

(

< l, u >
< v, v > −1

)

which, for l chosen as prescribed above, does not admit turning points as isolated
solutions.

Each of the four possible choices available by this construction can be used with
standard continuation techniques to track curves of Hopf bifurcation in two-parameter
families. For example, if we set y = (x, α, u, v, ω), then the kth Newton step taken to
find a local root F1(y) = 0 will require the solution of the linearized system,

yk+1 = yk − [DyF1(yk)]−1 F1(yk) .

While it is possible to ignore the special structure of DyF (yk) and solve for the
updated step with LU decomposition, much faster algorithms may be obtained by ex-
ploiting the block structure of the Jacobian for the augmented system. Computer soft-
ware designed to implement general-purpose numerical bifurcation techniques must
be specially modified to accommodate these special Newton-step solution methods.

3. Three Examples.

3.1. Hodgkin/Huxley Equations. The space-clamped Hodgkin/Huxley equa-
tions are a system of four nonlinear ordinary differential equations that describe the
electrical response of the giant nerve axon from the squid Loligo to an externally-
applied current [14]. The typical response of the axon to a step in the stimulus
current, I , is characterized by an abrupt spike in the electrical potential difference,
v, between the intracellular fluid and the extracellular medium called an action po-
tential. In the Hodgkin/Huxley model this depolarization is induced primarily by an
inward flux of sodium (Na+) followed by an outward flow of potassium (K+) ions.
Other ions contribute to a “leak” current across the axon membrane. The sodium
and potassium currents are controlled by three gating variables denoted m, n and h,
together with parameters, ḡNa, ḡK and ḡl that measure the maximum conductances
of the channels. The resulting vector field is given by:
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Table 2

Summary of the defining equations for the direct methods discussed in the paper for use with
pathfollowing numerical codes. Labels are used in the sequel to distinguish the various algorithms.

Label g : IRn×IRm×IR×IR → IRl m l

RS,RB g(x, α;β) = det(B)(x, α;β) 0 1

BP g(x, α;β) = det ([Dxf ] � In) 0 1

JGR g(x, v, w, ω, α;β) =









[Dxf ] v − ωw
[Dxf ]w + ωv
< v,w > −1
< l, v >









2n+ 1 2n+ 2

RH g(x,w, ω, α;β) =





[Dxf ]
2
w − ω2w

< w,w > −1
< l, w >



 n+ 1 n+ 2

K1 g(x, ω, α;β) =

(

cn−1 − ωbn−3

cn − ωbn−2

)

1 2

K2 g(x, ω, α;β) =

(

q(−ω)

dq
dω

(−ω)

)

1 2

v̇ = −G(v,m, n, h) − I
ṁ = Φ(T ) [(1 −m)αm(v) −mβm(v)]
ṅ = Φ(T ) [(1 − n)αn(v) − nβn(v)]

ḣ = Φ(T ) [(1 − h)αh(v) − hβh(v)]

(12)

where ẋ stands for dx/dt and Φ is given by Φ(T ) = 3(T−6.3)/10. The other functions
involved are

G(v,m, n, h) = ḡnam
3h(v − v̄na) + ḡkn

4(v − v̄k) + ḡl(v − v̄l)

and the equations modeling the variation of membrane permeability:

αm(v) = Ψ((v + 25)/10) βm(v) = 4ev/18

αn(v) = 1
10Ψ((v + 10)/10) βn(v) = 0.125ev/80

αh(v) = 0.07ev/20 βh(v) =
(

1 + e(v+30)/10
)−1

Ψ(x) = x/(ex − 1)

We use the temperature T = 6.3◦C and parameter values for ḡion and v̄ion used
by Hodgkin and Huxley [14]:

ḡna = 120mS/cm2 ḡk = 36mS/cm2 ḡl = 0.3mS/cm2

v̄na = −115mV v̄k = 12mV v̄l = 10.599mV
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The space-clamped Hodgkin-Huxley equations exhibit periodic solutions that
arise through Hopf bifurcation with varying (vk, I) [21]. In general, one does not
expect to be able to find explicit analytic expressions for the solutions to multi-
dimensional systems of equations, but the special structure of the Hopf bifurcation
points allows us to do so. All the Hopf data reported in the discussion which follows
was computed using the Maple c© symbolic algebra package, reproduced using the same
approach in Mathematica c© and verified by standard numerical continuation using the
augmented systems (GR1) and (R1) described in Section 3.2.

The Jacobian matrix corresponding to Equations (12), tedious to derive by hand,
is found easily in Maple c©. The corresponding characteristic polynomial

p(λ) = λ4 +

3
∑

i=0

ci(v,m, n, h; vk, I) · λi

may be formed and the expressions required by Theorem 2.1 follow by inspection:

det(B) = c0c
2
3 − c1c2c3 + c21 (13a)

det(B0) · det(B1) = c1 · c3 (13b)

The locus of Hopf bifurcation points in the (vk, I) plane will be computed as a curve
parameterized by v∗, the equilibrium values of v. Suppose that, for a prescribed
vk and I , the point (v∗,m∗, n∗, h∗) is an equilibrium for Equations (12). Since the
equations for ṁ, ṅ and ḣ depend linearly on m,n and h,

m∗ =
αm(v∗)

αm(v∗) + βm(v∗)

n∗ =
αn(v∗)

αn(v∗) + βn(v∗)
(14)

h∗ =
αh(v∗)

αh(v∗) + βh(v∗)

Observe that Equations (14) are independent of I and vk and have non-zero denom-
inators. Therefore, we obtain equilibrium values of m∗, n∗ and h∗ to be used in
calculating I and vk. The Jacobian of Equations (12) is independent of I and Equa-
tion (13a) depends quadratically on vk. Therefore, we can solve Equation (13a) for
values v±k (v∗) yielding Hopf bifurcation at the equilibrium (v∗,m∗, n∗, h∗). Finally,
substitution of the equilibrium coordinates and the values v±k (v∗) into Equations (12),
gives the value of I = −G at the point of Hopf bifurcation. Algorithm 1 summarizes
the steps required to compute Hopf bifurcation points in the (vk, I) parameter plane.

For nominal values of the other system parameters, there is a single, connected
curve of Hopf bifurcation points in the rectangular region [−45, 130] mV × [−150, 400]
mA of the (vk, I) plane. Table 3 lists the phase and parameter space coordinates
of nineteen selected points used for comparison in the discussion that follows. In
particular, points one and nineteen are chosen near Takens-Bogdanov bifurcations
which lie at either terminus of the Hopf curve. The curve of Hopf points exhibits a
narrow turning point with respect to the stimulus current, I , near one end. Points
one through ten resolve the turning point of the Hopf curve.

We give a brief comparison of methods for computing the partial derivatives of
augmenting functions using this example. For what follows, let y = (v,m, n, h, vk)
denote the vector of phase space variables augmented with the parameter vk and
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procedure hh hopf

3.0 Choose v∗.

3.1 Evaluate m∗, n∗ and h∗ symbolically.

3.2 Substitute m∗, n∗ and h∗ expressions into Hopf

determining conditions and simplify to form v±k (v∗).

3.3 Check the sign of the subresultant condition.

3.4 Evaluate G±(v∗) and solve for I = −G(v∗,m∗, n∗, h∗).

return {v∗i ,m∗
i , n

∗
i , h

∗
i }

Algorithm 1

Procedure for computing Hopf bifurcation points in Maple given a value for the external current,
I.

Table 3

Phase and parameter space coordinates for the selected points in the Hopf curve. Points one
through ten lie near a Takens-Bogdanov point at one end of the Hopf curve. The last column shows
the computed magnitude of the pure imaginary eigenvalue.

Pt v m n h vk I Im(λ)

1 -23.072 0.44955 0.65670 0.06213 -30.34 -100.80 0.0097
2 -23.122 0.45089 0.65729 0.06178 -30.42 -101.35 0.0664
3 -23.179 0.45239 0.65795 0.06140 -30.50 -101.88 0.0985
4 -23.257 0.45445 0.65886 0.06088 -30.58 -102.41 0.1338
5 -23.340 0.45666 0.65983 0.06033 -30.61 -102.65 0.1679
6 -23.457 0.45977 0.66118 0.05957 -30.55 -102.15 0.2153
7 -23.499 0.46089 0.66167 0.05929 -30.47 -101.62 0.2332
8 -23.529 0.46168 0.66201 0.05910 -30.40 -101.09 0.2465
9 -23.556 0.46239 0.66232 0.05893 -30.31 -100.48 0.2589
10 -23.573 0.4628 0.6625 0.0588 -30.243 -100.0 0.2673
11 -23.700 0.4662 0.6640 0.0580 -23.112 -50.0 0.5497
12 -23.422 0.4588 0.6608 0.0598 -15.660 0.0 0.6974
13 -23.042 0.4487 0.6563 0.0623 -7.764 50.0 0.8197
14 -22.590 0.4368 0.6510 0.6550 0.6947 100.0 0.9316
15 -19.798 0.3641 0.6165 0.0894 45.629 300.0 1.3894
16 -12.032 0.1923 0.5068 0.2124 119.294 300.0 1.9024
17 -7.056 0.1169 0.4290 0.3494 76.506 100.0 1.3727
18 -6.036 0.1048 0.4128 0.3829 42.543 50.0 1.0091
19 -4.225 0.0860 0.3839 0.4453 -5.1060 0.0 0.0612

g(·) the function for Hopf detection. We consider here the augmenting function (BP)
of Table 2, given by g(y; I) = det (2J� In). Recall that the standard Newton-type
corrector step requires the solution of a linear system, the matrix of which contains
partial derivatives of the form ∂

∂yl
g(y). As in most examples, we cannot determine

exactly the values of the relevant partial derivatives at arbitrary points along the
Hopf branch. Our objective here is to compare the common techniques for comput-
ing derivatives as applied to the Hodgkin/Huxley equation, and comment on their
distinguishing characteristics. The Hodgkin/Huxley equations are well-suited to this
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comparison because expressions for the higher-order derivatives of the defining equa-
tions, although lengthy, may be easily formed. For example, values for the partial
derivatives ∂

∂v (2J� I4) may be computed using the adjoint formula given in [11].
Table 4 shows a compilation of these partial derivatives, computed for point 14 of
Table 3. In our experiments, the adjoint matrix was formed in a general fashion,
using determinants computed using LU factorization of appropriate submatrices.

Table 4

Values of partial derivatives ∂g
∂v

and ∂g
∂m

where g = det(2J � I4). Data is presented for par-
tials computed by automatic differentiation (AD), the adjoint formula of Section 2.4 (AF), forward
differencing (FD) and central differencing (CD). Each entry associated to a difference formula is
followed by the mantissa of the stepsize.

Meth v m

AD -54.2506431900141592 -7728.29850144535158
AF -54.250643190015 -7728.298501445353
CD -54.2506432 (-4) -7728.2985015 (-6)
FD -54.25063 (-6) -7728.29853 (-8)

Automatic differentiation provides an alternative to difference formulas for the
calculation of derivative data. Neither symbolic algebra nor numerical differencing,
derivatives are computed, essentially, by algorithmic application of the chain rule to
a reduced (optimized) representation of the operation sequence. Several implemen-
tations are available and the approach has been successfully tested on a variety of
problems in engineering and operations research. Data presented in Table 4 was pro-
duced with the package ADOL-C [10] using double precision (53 significand bits, 15-17
decimal digits). The partial derivative values computed by automatic differentiation
agree with those calculated using the adjoint formula to fourteen decimal digits, as
indicated by the underscore beneath the first differing digit. These results are espe-
cially interesting because no formula for second derivative data is required, merely a
slightly modified version of the routine which evaluates the expression for g(·). In our
tests, a 16.4 Kbyte temporary storage buffer was required by the ADOL-C package
for the partial derivative calculation. This appears to be the primary disadvantage
to automatic differentiation: The storage requirements for the derivative calculations
can be quite substantial, even for relatively simple functions.

A general-purpose package for numerical pathfollowing of equilibria typically con-
tains a facility for computing the augmented Jacobian using finite-differencing. Here
the usual caveats concerning numerical differentiation apply. Finite difference approx-
imation is unreliable, especially applied to functions where accumulated roundoff error
is large. High-order formulae require multiple function evaluations. The difference
stepsize must be chosen to properly balance the effects of roundoff and truncation
error. Table 4 shows a compilation of the partial derivatives, ∂

∂vdet (2J � In) and
∂

∂mdet (2J� In), computed using both forward (FD) and central (CD) difference for-
mulae for the selected Hopf point. Next to each entry (in parenthesis) is the exponent
of the stepsize h which produces the numerical derivative closest to that computed
by automatic differentiation. The computed error from stepsize choices substantially
larger than h are due to truncation error; stepsizes significantly smaller exhibit round-
off error and, finally, catastrophic cancellation.

3.2. A Model of a Bursting Neuron. The second example we study is a
dynamical system used to describe the electrical activity of the Anterior Burster (AB)
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neuron in the stomatogastric ganglion of the lobster Panulirus interruptus. Based
on work of Plant [19] and Rinzel and Lee [20], the model is similar in structure
to the Hodgkin-Huxley equations, but more complex. Under certain physiological
conditions the AB cell produces complicated, rhythmic patterns of action potentials.
Guckenheimer, et al. [12] have shown that some of this behavior is well-described by
a 6-dimensional system of ordinary differential equations, referred to in what follows
as the RLA (Rinzel-Lee/A-current) model for the AB neuron. The model is obtained
from that of Rinzel and Lee [20] by a change of time scale and the incorporation of
an additional potassium ion current, called the A-current.

Let x = (x1, · · · , x6) ∈ IR6, denote the vector of independent variables. Com-
ponents of this vector correspond to the physical model as follows: x1 is the voltage
difference across the cell membrane; x2 is a dimensionless quantity describing the
activity of intracellular free calcium; x3 controls the activation of the delayed-rectifier
potassium channel; x4 controls the inactivation of the sodium channel; x5 controls
the activation of the calcium channel; x6 controls the inactivation of the A-current
channel. It is convenient to define the model in terms of exponential functions that
we denote by:

φ± (x1;α, β)
def
=
(

1 ± e
α+βx1

)−1

The vector field describing the electrical state of the semipermeable membrane is
then given by:

ẋ1= −gNaϕ
3
2 (x1)x4 (x1 − vna) − 2gCax5

(x1 − vca)
(1 + 2x2)

− gKx
4
3 (x1 − vk)−

2gKCax2
(x1 − vk)
(1 + 2x2)

− gAψ
3
2 (x1)x6 (x1 − vk) − gl (x1 − vl)

ẋ2= −0.003

[

x2 − kcax5
(x1 − vca)
(1 + 2x2)

]

ẋ3= 0.8
[

(1 − x3)ϕ3 (x1) − x3ψ3 (x1)
]

ẋ4= 0.8
[

(1 − x4)ϕ4 (x1) − x4ψ4 (x1)
]

ẋ5= −.042553
[

x1 − φ+ (x1;α5, β5)
]

ẋ6= φ+ (x1; γ5, δ5) − x6

where,
ϕ1 (x1) = − (α1 + β1x1)φ− (x1;α1, β1) ψ1 (x1) = 4eγ1+δ1x1

ϕ2 (x1) =
ϕ1(x1)

(

ϕ1(x1) + ψ1(x1)
) ψ2 (x1) = φ+ (x1; γ2, δ2)

ϕ3 (x1) = −0.1 (α3 + β3x1)φ− (x1;α3, β3) ψ3 (x1) = 0.125eγ3+δ3x1

ϕ4 (x1) = 0.07eα4+β4x1 ψ4 (x1) = φ+ (x1; γ4, δ4)

The constants which enter these expressions through the functions φ± were matched
with the observed rates of activation and inactivation of ion channels in voltage-clamp
experiments from other biological systems. Table 5 displays the values used in the
numerical tests presented here. In addition, the model contains eleven physiological
parameters which describe the various channel conductances and ion-reversal poten-
tials. For our purposes, all parameters but (gKCa, gA) remain fixed at the nominal
values shown in Table 5.
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Table 5

Experimentally derived constants used in the AB cell model equations.

Subscript α β γ δ

1 −2.8714 −0.12095 −2.9841 −0.06196

2 − − −0.46154 −0.46154

3 −2.3714 −0.12095 −0.42143 −0.015119

4 −2.6857 −0.060476 −2.3714 −0.12095

5 −7.5 −0.15 10.333 0.16667

gNa 15.0 µS vna 30.0 mV gca 0.04 µS

gA 8.0 µS vk -75.0 mV gl 0.0854 µS

kca 0.0078 mV −1 vca 140.0 mV vl -40.0 mV

Numerical experiments for the RLA example were performed using a simple pre-
dictor/corrector algorithm implemented in the MATLAB c© computation environment.
Given an initial point at (or near) a solution, a sequence of points is advanced along
the Hopf curve in a two-phase process: First, an Euler predictor step is taken using
tangent data computed at a previous solution. Then a series of Newton corrector
steps is used to return the computed point on the bifurcation set. The length of the
step taken between two successive solutions is determined by an algorithm of Georg
[7], which seeks to maintain the initial rate of progress (contraction of the objective
function values) exhibited by the sequence of corrector steps at a prescribed constant.
The program design is very similar to that described by Allgower and Georg [1], suit-
ably adapted for the current problem and MATLAB implementation. To avoid the
problems inherent in following Hopf curves which have turning points, we use pseudo-
arclength continuation throughout. Using the notation introduced in Equation (4),
if y= (x, gKCa, gA) is the vector of independent variables parameterized by τ , y(τi)
is the ith Hopf solution point, h= τi+1−τi is the desired steplength and g is one of
the defining equations shown in Table 2, then numerical continuation was performed
using the augmented system,

F (x, gKCa, gA; τ) =





f(x, gKCa, gA)
g(x, gKCa, gA)

vt(τi)·[y(τ)−y(τi)]−h





where v(τi) is the (fixed) unit tangent vector computed at the ith solution.
Figure 1 shows the Hopf bifurcation curve computed using the Bezout resultant,

g=det(B), as the augmenting equation. Eight points have been selected and enumer-
ated for comparative purposes. The first labeled point is the initial condition used to
start the continuation algorithm, chosen very near the Takens-Bogdanov point which
terminates the branch. Points four and six are turning points in the Hopf solution
curve with respect to the parameter gKCa, and point five marks a self-crossing of the
Hopf branch that gives rise to a double-Hopf bifurcation point. The insert provides
a more detailed plot of the region near this degenerate point. Table 6 displays the
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phase space coordinates of the selected points while Table 7 shows the parameter
space coordinates of each selected point together with the magnitudes of the real and
imaginary components of the critical eigenvalues.

Table 6

Phase space coordinate data for each selected point shown in Figure 1.

Pt x1 x2 x3 x4 x5 x6

1 -57.51974 0.25087 0.02357 0.93874 0.24452 0.32154
2 -56.95448 0.26247 0.02506 0.93262 0.26054 0.30134
3 -55.88832 0.28476 0.02810 0.91951 0.29251 0.26530
4 -53.51959 0.33524 0.03610 0.88184 0.37100 0.19570
5 -35.18183 0.57398 0.19477 0.23292 0.90227 0.01132
6 -34.47902 0.57615 0.20525 0.21286 0.91118 0.01008
7 -35.15696 0.57406 0.19513 0.23218 0.90260 0.01128
8 -34.95203 0.57473 0.19816 0.22620 0.90527 0.01090

Table 7

Parameter space coordinates (gKCa, gA) for each selected point shown in Figure 1. Also shown
are the magnitudes of the imaginary parts for the critical eigenvalues.

Pt gKCa gA |Re(λ)| |Im(λ)|
1 -0.114740 5.207732 <10−13 0.00125
2 0.154625 3.416376 <10−13 0.00694
3 0.373380 1.753603 <10−14 0.00942
4 0.468639 0.552728 <10−14 0.01049

5 0.248306 1.797327
<10−11

<10−4
0.01241
0.06766

6 0.235546 2.269719 <10−7 0.02252
7 0.270302 0.949501 <10−11 0.10536
8 0.286695 2.805522 <10−11 0.12937

The loop associated with the double point labeled five in the computed Hopf
curve is a bit paradoxical. At the double point, there are two pairs of pure imaginary
eigenvalues and continuation around the loop must transform one of these pairs into
the other. The mechanism for this transformation involves the geometry of how
eigenvalues and eigenvectors depend upon matrices. The set of real n×nmatrices with
simple eigenvalues is not simply connected. When following a homotopically nontrivial
loop in this set, eigenvalues of a matrix may be permuted. Such an interchange
happens in this example. There is a point in the (gKCa, gA) plane inside the loop of
the Hopf curve at which the system has a complex pair of double eigenvalues.

Our numerical experiments using the Bezout augmenting equation with the RLA
model indicate that the numerical computation of the coefficients for the Jacobian
characteristic polynomial p(λ) =

∑5
k=0 ckλ

k using reduction from the Hessenberg to
Frobenius form by simple elimination [26] is reliable and accurate. To explore this ob-
servation further, we make the following ansatz: Since the form of the RLA equations
permit the explicit symbolic computation of the coefficients {ck}5

0 as functions of the
Jacobian entries, we presume that these expressions, evaluated in extended floating
point arithmetic at an equilibrium point, are exact. Moreover, we assume that the
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eigenvalues and eigenvectors computed using the unsymmetric QR algorithm are exact
as well. Using these data we may evaluate how well conditioned the Hopf continuation
task is both as an eigenvalue problem and, separately, as a polynomial rootfinding
problem. The condition of the eigenproblem is equivalent to the sensitivity of the
spectrum of the Jacobian to small perturbations of its elements, (J + εE), reflected
in the spectral condition number

s(λ) =
yH ·x

||y||2||x||2

where y and x are left and right eigenvectors of J, respectively, of the eigenvalue
λ. We expect that, for ε small, the perturbation of the eigenvalues will be less than
δλ = ε||B||2/s(λ) and we consider the eigenproblem well-conditioned if s(λ) is near
one. The first column of Table 8 presents the spectral condition number for the
critical eigenvalues of the Jacobian at each selected point solution. Clearly, the data
show that methods based on explicit determination of the spectrum (JGR) or their
sums (BP) directly from the Jacobian entries should be relatively insensitive to small
perturbations to the elements of J.

Table 8

Condition numbers (κ2) for the Jacobian (J = Dxf), the corresponding companion matrix, and
the spectral condition number, sλ, associated with the pure imaginary eigenvalues.

Pt sλ κ2(Dxf) κ2(C)

1 1.0×10−2 2.8×106 5.8×108

2 1.7×10−2 2.5×105 1.7×107

3 1.5×10−2 2.1×105 8.6×106

4 1.4×10−2 1.9×105 6.8×106

5
2.0×10−3

4.1×10−3 6.4×106 2.4×107

6 9.0×10−4 2.9×107 2.9×107

7 9.0×10−3 1.6×106 9.7×106

8 1.2×10−2 4.8×105 6.2×106

Table 8 also shows 2-norm condition estimates for the Jacobian matrix and its
associated companion matrix as computed by Algorithm 1 at the selected points; in
each case the reduction results in an inflation of the condition number, but the increase
is mild (at most three orders of magnitude). Thus, the main source of instability in
the computation of the characteristic polynomial coefficients – the use of non-unitary
similarity transformations in the reduction of the Hessenberg form – is well-behaved
along the branch of Hopf points. We examine further the classical error estimates
of the eigenvalues to the perturbation problem (C + εE) where C is the companion
matrix associated with J and E is the matrix that contains a single nonzero entry in
its nth column (which we take to be one). Now suppose λi is a simple root of the
characteristic polynomial charpoly(C) = p(λ) = charpoly(J) for 1≤ i≤ n. A small
perturbation in the kth coefficient of p,

p(λ) + ελk = λ6 + (ck + ε)λk +
∑

i6=k

ciλ
i
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may be related to the resulting perturbed root by the linear estimate,

λi + δ ≈ λi − ε
λk

i
∏

j 6=i

(λi − λj)
.

Thus, the relative sensitivity of each simple eigenvalue of J (equivalently, each simple
root of p), to small perturbations in the coefficients of the characteristic polynomial
are estimated by the magnitudes of the n factors, sk, given by

sk (λi)
∆
=

∣

∣

∣

∣

∣

∣

∣

∣

λk
i

∏

j 6=i

(λi − λj)

∣

∣

∣

∣

∣

∣

∣

∣

.

The first three columns of Table 9 show, for each selected point, the subscript (k),
value (ck) and factor (sk) for the coefficient of p upon which the critical eigenvalue
is most sensitively dependent. For example, in the case of the last (8th) point, a
perturbation of 1% in the value of c4 will produce a change of approximately 0.5% in
the computed critical eigenvalue. These data support the conclusion that relatively
small errors in the numerically computed values of the characteristic polynomial coeffi-
cients produce only mild perturbations in the roots of p, or equivalently, the computed
eigenvalues of J. Thus, construction of the residual polynomials in the first method
of Kubiček (K1) may be expected to be well-behaved.

Table 9

Characteristic polynomial coefficients of maximal sensitivity for each selected point shown in
Figure 1. Data is shown for each of three problems: p(λ)=0, re(z)=0 and ro(z)=0 where z=λ2.

p(λ) re(z) ro(z)

Pt k ck sk(λ) k ck sk(λ) k ck sk(λ)

1 2 7.0e-3 8.9e-2 2 7.0e-3 2.2e-4 3 1.4e-1 2.5e-5
2 2 6.8e-3 5.1e-1 2 6.8e-3 7.1e-3 3 1.3e-1 7.3e-4
3 2 6.5e-3 7.2e-1 2 6.5e-3 1.4e-2 3 1.2e-1 1.3e-3
4 2 5.9e-3 9.0e-1 2 5.9e-3 1.9e-2 3 1.1e-1 1.6e-3

5 2 7.4e-4
8.9

43.7
2 7.4e-4

2.2e-1
6.8

3 6.0e-3
3.5e-2

1.0
6 2 2.2e-4 53.6 2 2.2e-4 4.2 1 -3.5e-6 163.6
7 1 3.8e-5 676.5 4 1.9e-1 6.9e-2 3 1.7e-2 1.3
8 4 1.9e-1 3.3e-1 4 1.9e-1 1.1e-1 3 1.2 2.1e-2

From Section 2.1, the resultant methods are based on a specific rootfinding prob-
lem; that is, to find z = λ2 which simultaneously satisfies

{

re(z)
ro(z)

}

=

{

z3 + c4z
2 + c2z + c0

c5z
2 + c3z + c1

}

= 0 .

Thus, sensitivity of the shared root to perturbations in the coefficients of the two
separate polynomials is of interest, and the sensitivity estimates computed above for
p may be extended as well to the polynomial pair (re, ro) associated with p. The last
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six columns of Table 9 display, for each selected point, the values of sk for the shared
root corresponding to the coefficient of maximal sensitivity.

It is usual, in the discussion of Hopf pathfollowing using direct methods, to assume
that a solution (x∗, α∗;β∗) on a branch is known and then to proceed to describe how
subsequent solutions may be computed beginning with data from this point. How-
ever, practical experience suggests that frequently the task of finding one (or more)
initial points is by far the most time-consuming part of a numerical bifurcation study,
especially as the dimension of the phase and parameter spaces increases. We present a
comparison of the root-finding convergence regions for the augmented systems based
on the Bezout resultant (RB) and the iterative eigensubspace method (JGR) for
the RLA model. The Bezout resultant is well-defined at any point in the product
space IR6× IR2, and all the information required to begin a corrector sequence at
(x0, g

0
KCa, g

0
A) may be derived from the linearization of the vector field at that point.

This is not the case for the (JGR) system, which requires estimates for a basis {v, w}
of the eigenspace associated with the pure imaginary eigenvalue ±ωi, and a vector l
not in span {v, w}. The intuitive choice is to use seed values v0, w0, ω0 and l based on
the complex elements of spec(J) with the smallest real part. However, this eigenpair
may not become critical for nearby values of (gKCa, gA), and an incorrect choice can
bias the starting conditions away from the solution manifold, requiring many Newton
steps to compute a solution, if convergence is achieved at all.

We explore this possibility in a small region of the (gKCa, gA) parameter space
to the right of the double Hopf point in Figure 1. Two segments of Hopf bifurcation
(referred to as the upper and lower branches in what follows) intersect at the double
Hopf point. The RLA vector field has a single equilibrium for each choice of (gKCa, gA)
in this region; moreover, the spectrum of the Jacobian for each such choice contains
at least one complex eigenvalue pair. Since the rate at which the two pairs of complex
eigenvalues cross the imaginary axis is very different, the intuitive choice is “correct”
only in a thin band above the lower Hopf branch. If a Newton corrector is applied
to choices for (gKCa, gA) in this parameter region, the results reflect the underlying
structure in the spectrum of the equilibria, as shown in Figure 2. The lower plot shows
data collected using the augmented system, (JGR). A 75×75 point grid was established
over the 2-parameter regime. For each point in the grid, the unique equilibrium was
found and the complete spectrum was computed. The complex eigenpair closest to
the imaginary axis was used to compute starting values for the augmented variables
and Newton’s method was used to solve the nonlinear systems with g(·) chosen as in
the (JGR) system of Table 2. The convergence criterion used was ||DF ||∞ < TOL,
where D was a constant diagonal scaling matrix chosen to equilibrate the disparate
magnitudes of the various components in the objective function. If convergence was
not achieved within 30 Newton steps, the trial was considered a failure. Successful
trials are labeled with a triangle if they converged to the upper branch, a circle if to
the lower branch. Thus, the plot shows the ultimate fate of a choice (gKCa, gA) given
perfect information for the Jacobian at the starting conditions.

As expected, the set of converged initial conditions divides the parameter grid
into roughly two parts, those which converge to the upper branch and those to the
lower branch. Below the lower branch, the Jacobian has one complex eigenpair and
computing the initial augmented variables based on the spectrum at the gridpoint is
usually successful. In between, the dividing line occurs along the locus of intersection
for the real parts of the two eigenpairs. Since this locus occurs very close to the lower
branch, a disproportionate fraction of successful trials starting near the lower branch
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leave the neighborhood of the nearest Hopf bifurcations, U . Instead of correcting
the errant starting conditions for v0, w0, ω0, the Newton sequence “corrects” the
phase and parameter coordinates. In this example, computing v0, w0, ω0 for starting
conditions very near the lower branch using the “wrong” eigenpair still frequently
results in a converged solution. In the general case, there is no reason why the
delusive eigenpair need cross the imaginary axis at all; indeed, such a situation would
typically be expected to result in convergence failure.

The analogous experiment was performed using the Bezout resultant, g = det(B);
the results are displayed in the upper plot of Figure 2. Again, the parameter region
is divided by points which converge to the upper and lower Hopf branches. In this
case, however, the distribution is more even. In particular, the lower branch exhibits
a robust convergence neighborhood. A band of initial conditions which do not result
in successful Newton sequences appears between the two Hopf branches, a zone out-
side the region of local convergence for Newton’s method for any point in Γ. Such
a failure zone is expected for any choice of augmenting functions, and occurs where
the quadratic model for the objective function, F , ceases to be sufficient to ensure
adequate descent. A natural algorithmic improvement is to employ globally conver-
gent variants of Newton’s method to improve the behavior far from the solution set.
In this context, a properly-constructed quasi-Newton method must involve two steps:
First, the full Newton step must be computed, and appropriate criteria for sufficient
decrease in F evaluated. If the Newton step results in satisfactory progress, the full
step is taken; otherwise, a modified step is computed. A common criterion is to guar-
antee that the result of the candidate step be a (sizable) fraction of the predicted
improvement based on the gradient of F at the current point. More precisely, if yk

is the kth step of a corrector sequence and δy is the Newton step, then the algorithm
accepts the full step if

F (yk + δy) < F (yk) + ε[∇F (yk)]
t
δy(15)

for some 0 < ε < 1. Typically, ε is chosen quite small, but it is significant that the
obvious selection ε = 0 is insufficient to ensure global convergence; some positive
improvement in the objective function is required.

Figure 3 shows the result of applying the criterion (15) to the convergence ex-
periment described above. At each step in the corrector sequence, the acceptance
criterion was evaluated with ε = 0; the point was deemed a failure if the inequality
was not satisfied. Points which survive as successful trials not only converged to a
Hopf bifurcation point, but also made monotonic progress toward the solution at each
corrector step. Thus, if a steplength adjustment (e.g., line search or dogleg) algorithm
were used to improve global convergence behavior based on the acceptance criteria
above (for α = 0), the full Newton step would be accepted at each step. The results
for the augmented function g = det(B) indicate that points near the border of the
non-convergence zone of Figure 2 are characterized by Newton steps which, early in
the corrector sequence, do not strictly improve the objective function. However, apart
from this band, most initial conditions are within the local convergence neighborhood.
For the (JGR) augmenting function, nearly 50% of the trials which converge to a Hopf
point without the monotonicity condition are rejected according to step acceptance
criteria. This may be compared to a 23% reduction for the resultant method.

We regard the questions of accuracy and convergence considered above as more
important than the speed of algorithms that detect Hopf detection in examples of
moderate size. Nonetheless, we present some brief comparative data for our imple-
mentations of three algorithms within Matlab c©. For each of the Bezout resultant,
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biproduct matrix and JGR methods from Table 2, we computed 20 points along a
Hopf bifurcation curve shown in Figure 1 starting at a point along the curve and
proceeding with an identical continuation algorithm. The floating point operation
counts were comparable for the Bezout (664777 flops) and JGR methods (701244
flops) while the biproduct calculation was substantially slower (2786163 flops). Note,
however, that the biproduct calculations did not exploit the sparsity of the biproduct
matrix in computing its determinant. The biproduct method seems to offer the best
opportunity to exploit the calculation of low dimensional invariant subspaces in high
dimensional problems.

3.3. A Larger Neural Model. Based on extensive experimental results,
Golowasch [8] proposed a fourteen-dimensional system of ordinary differential equa-
tions as a model for the LP neuron in the stomatogastric ganglion of the crab, Cancer
borealis, that incorporates the effects of eight separate ionic currents. The parameters
which govern the activation kinetics for the associated conductance channels were de-
rived from space-clamped experimental data. Buchholtz [4] later amended this model;
our third example is a twelve-dimensional variation of these equations.
Despite the complexity of this system, analytic Jacobian derivatives were derived
using Maple c©. Using,

ψ(u, v, α) = e

(u−v)
α

φ (u, v, α) = (1 + ψ(u, v, α))
−1

.

the model equations for the LP neuron are given by:

ẋ1 = −c10(gca1x9x11 + gca2x10)(x2 − ϕ4(x1)) + c20(c8 − x1)

ẋ2 = (c1 − ((gca1x9x11 + gca2x10)(x2 − ϕ4(x1)) + gl(x2 − el) +

gdx
4
4(x2 − ek) + gKCax5x6(x2 − ek) + gax8x

3
7(x2 − ek) +

ghx12(x2 − eh) − c11(
1

2
c2(ϕ5(x2, x3) − ϕ6(x2, x3)))))/c11

ẋ3 = kh [c6(1 − x3)ψ(x2, c44, c27) − x3φ(x2, c50, c33)]

ẋ4 = c12φ(x2, c52, c35) ((φ(x2, c54, c37) − x4)

ẋ5 = koa(ϕ7(x1, x2) − x5)

ẋ6 = c21

(

c4
(c5 + x1)

− x6

)

ẋ7 = c16(φ(x2, c41, c24) − x7)

ẋ8 = c15(φ(x2, c48, c31) − x8)

ẋ9 = c17(φ(x2, c42, c25) − x9)

ẋ10 = c18(φ(x2, c43, c26) − x10)

ẋ11 = c19(φ(x2, c49, c32) − x11)

ẋ12 =
c13(φ(x2, vr, c38) − x12)

φ(x2, c53, c36)

ϕ1(x2) =
c7(x2 − c45)

1 − ψ(x2, c45, c28)

ϕ2(x2) =
ϕ1(x2)

ϕ1(x1) + c8ψ(x1, c50, c33)
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ϕ3(x1) = log [ψ(x1,
1

100
, 3

100
) + ψ(x1,− 1

100
,− 3

100
)]

ϕ4(x1) = c56 − c57 log [ 2

300
ϕ4(x1) + 1

3
(100x1 − 1) + 1

100
]

ϕ5(x2, x3) =
1

c2

(

gNax3ϕ
3
2(x2)(ena − x2)

c11
− c1

)

ϕ6(x2, x3) = log
(

e
ϕ5(x2, x3) + e

−ϕ5(x2, x3)
)

ϕ7(x1, x2) =
x1

(c3 + x1)
φ(x2, c46 − c14x1, c29)φ(x2, c47 − c14x1, c30)

Table 10 lists the nominal values and units of the parameters.

Table 10

Values for the experimentally-determined constants appearing in the LP model equations.

c1 60000 c16 142.857 c31 6 c46 0 el −50
c2 6000 c17 50 c32 8 c47 16 gd 0.35
c3 2.5 c18 10 c33 −5 c48 −70 gKCa 3.2
c4 0.7 c19 16 c34 −13 c49 −50 ga 1.7
c5 0.65 c20 360 c35 −22 c50 −40 gCa1 0.21
c6 0.08 c21 35 c36 −13 c51 −34 gCa2 0.047
c7 0.11 c22 166.6 c37 −17 c52 10 gh 0.037
c8 0.05 c23 −12 c38 7 c53 −110 gNa 2300
c9 15 c24 −26 c39 15 c54 −25 gl 0.1
c10 300 c25 −7 c40 −40 c55 −7 koa 1
c11 0.0017 c26 −7 c41 −12 c56 115.47 kh 600
c12 180 c27 −8 c42 −11 c57 12.19 vr 500
c13 0.33 c28 −20 c43 22 I 0 ek −80
c14 0.6 c29 −23 c44 −39 eh −10
c15 20 c30 −5 c45 −6 ena 50

The LP equations illustrate a difficulty that arises in using the determinant as an
indicator of matrix singularity for methods based on polynomial resultants or biprod-
ucts. Bounds imposed by the magnitude of det(B) or 2J�I on numerical continuation
and failures that arise as a result of (implicitly) treating det(·) as a matrix condition
number. These remarks pertain, not only to the use of det(B) or 2J � I in Hopf
path following, but also other applications which use the determinant as an objective
function in root finding or optimization (detection of saddle-node bifurcations, for ex-
ample). Thus, progress in addressing these issues in the context of Hopf continuation
has implications to other applications, and vice versa.
The bifurcation diagram of the LP equations in the (Iext, gNa) plane has a fold in
the surface of equilibrium points that produces a curve of saddle-node bifurcations.
A cusp occurs along the fold, dividing the saddle-node bifurcation set into upper and
lower branch segments. Along the upper branch, one of the fixed points annihilated
in the saddle-node interaction undergoes a change of stability, producing a curve of
Hopf points proximal to the saddle-node curve. The Hopf branch arises at a Takens-
Bogdanov point and leaves the parameter regime of physiological interest.
Table 11 shows parameter coordinates for four selected points along the Hopf branch
described above. Also listed are values for the phase space variables and the com-
plete spectrum. Notice that the critical eigenvalues begin with zero magnitude but
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become the eigenvalues of largest magnitude at point four along the branch of Hopf
bifurcations and that there are several additional eigenvalues of large magnitude.

Table 11

Phase space and parameter coordinates for three selected points along the Hopf curve for the
LP equation. Also shown is the complete spectrum for each selected point.

1 2 3 4

Iext -0.2099885 0.089912 5.557706 5.496061
gNa 2268.22 1678.89 525.271 3347.40
x1 0.146623 0.162821 0.196959 0.400147
x2 -42.979 -39.121 -13.076429 3.657527
x3 0.270205 0.129938 0.003136 0.000387
x4 0.257771 0.303509 0.668495 0.843663
x5 3.41·10−5 9.383·10−5 0.017156 0.073446
x6 0.878709 0.861198 0.826486 0.666574
x7 0.232991 0.260550 0.489651 0.646162
x8 0.010949 0.005786 7.581·10−5 4.66·10−6

x9 0.010268 0.017684 0.426381 0.890031
x10 9.30·10−5 0.000161 0.006621 0.067840
x11 0.293669 0.204259 0.009801 0.001221
x12 2.90·10−4 0.000167 4.05·10−6 3.71·10−7

λ1 -599.58 -598.88 -569.96 10−8 + 936.86i
λ2 -375.99 -377.33 -369.14 10−8 − 936.86i
λ3 -152.47 -203.60 10−9 + 278.76i -586.36
λ4 -137.87 -141.86 10−9 + 278.76i -383.02
λ5 -62.76 -60.72 -143.02 -142.86
λ6 -35.09 -35.23 -131.49 -90.53
λ7 -20.26 -20.10 -48.64 -50.28
λ8 -15.47 -16.57 -32.69 -36.86
λ9 -9.95 -9.95 -20.00 -20.00
λ10 -2.09 10−5 + 8.99i -13.73 -15.93
λ11 10−4 + 0.01i 10−5 − 8.99i -11.01 -11.13
λ12 10−4 + 0.01i -0.33 -0.33 -0.33

One difficulty is immediately apparent from these data: If λi = λ̄i+1 is the crit-
ical eigenpair and the remaining real eigenvalues are arranged in descending or-
der, λj ≥ λj+1 for j 6= i, i + 1, then to achieve a prescribed solution tolerance
||F (x∗, I∗ext, g

∗
Na)||∞ < ε requires

Re(λi) <
ε

2















12
∏

k = 3
k 6= i, i+ 1

λk−3
k

(

λ2
k + |λi|

)















−1

using the rough estimate that (λi + λj) ≈ max(λi, λj) for eigenvalue pairs that do
not approach zero in a neighborhood of a solution. For large systems, or even small
systems with a few large eigenvalues, this explosion in the magnitude of the biproduct
determinant or resultant severely restricts the size of the neighborhood about the
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solution manifold where the computed value contains any significant digits. In the
LP equations, the effect is prohibitive.
To apply the algebraic Hopf methods previously described to problems of this type
requires a strategy for eliminating the disabling effects of the unwanted large eigen-
values, so long as they do not participate in the bifurcation. One possible approach
involves substituting an alternative method for determining when 2J � In or det(B)
is singular. For example, if a true condition estimate was substituted for det(·), such
as

g(x, Iext, gNa) = || (2J� In)
−1 ||−1

F(16)

where || · ||F is the Frobenius norm, the required differentiability properties are re-
tained. Another alternative, suggested by Allgower, et al. [2] in the context of using
multi-dimensional resultants to compute real polynomial roots, is the function:

g(x, Iext, gNa) = min
||u||=1

|| [2J� In]u||22 .(17)

Notice that this is equivalent to iteratively driving the smallest singular value σn to
zero and, thus, uses the square of the 2-norm condition number as the augmenting
equation. This choice is especially attractive since σn is widely considered the most
reliable estimate of matrix condition, and several different methods for its compu-
tation might be adapted to the problem of Hopf pathfollowing. In the continuation
framework it may also be possible to make use of spectral information computed at
wide intervals and updated cheaply at intermediate solution points. For example, sup-
pose that at (or near) a solution (x0, I0

ext, g
0
Na), the full set of eigenvalues λ1, · · · , λn

and corresponding eigenvectors v1, · · · , vn are computed. Then, by the elementary
properties of the biproduct matrix, a vector in the nullspace of J� In can be formed:
Using the lexicographic ordering scheme introduced in Section 2.3, if vi

p is used to

denote the ith component of the pth eigenvector, we can construct an eigenvector, V ,
corresponding to the eigenvalue λi + λj of 2J� In according to the formula:

V
{pq}
{ij} = det

[

vp
i vp

j

vq
i vq

j

]

(18)

where 1≤ j, p≤ n − 1 and 2≤ i, q≤ n. This vector may be stored and used to start
a conjugate gradient algorithm (for example), constrained to the unit sphere, as an
estimate for u in Equation (17) to compute subsequent corrector steps. (See [2] for a
discussion of the conjugate gradient method applicable to this situation).
An important special case arises when some of the large eigenvalues are associated
with an invariant subspace which evolves slowly as the parameters are varied. More
precisely, suppose at a point (x0, I0

ext, g
0
Na) near a Hopf bifurcation the range of the

(non-singular) Jacobian matrix J0 may be split into a direct sum of eigenspaces Wc⊕
Wh, with dim(Wc) = m and dim(Wh) = n−m, such that:

1. Locally, Wh contains the 2-dimensional subspace corresponding to the Hopf
bifurcation;

2. Wc contains some of the large eigenvalues in the spectrum of J0, and
3. Wc remains nearly invariant as J is perturbed away from J0.

Then we may eliminate the unwanted effects of Wc altogether by deflating the
Jacobian to form a new matrix that has only the eigenvalues associated with Wh.
The literature on matrix deflation in the context of eigenvalue determination is vast;
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explicit techniques are central to iterative methods and implicit use of deflation is
integral to various Lanczos schemes. In our preliminary experiments we used a simple
algorithm based on similarity transformations. Suppose an n×m rectangular matrix
U can be obtained with linearly independent columns so that range(U) = Wc. Then
applying Gaussian elimination we form the product, Σ, of elementary matrices that
triangularize U:

ΣU ≡ QPU =





T
−−−

0





where T is upper triangular and reference to the permutation matrix P is made
explicit to emphasize the use of partial pivoting to stabilize the transformation. Ap-
plying QP to J produces a block-structured equation involving the Jacobian:

ΣJ =





J11 J12

E J22



Σ

where J11 is an m × m matrix. It follows easily that if U is chosen as above, U
commutes with J if and only if E = 0 and, if so, spec (J22) displays the same set
of eigenvalues as does J on Wh (See Wilkinson [27, Chapter 9, Sections 21-24] for a
discussion).
Given a candidate splittingWc⊕Wh, the sensitivity of the deflating subspace range(U)
to perturbations in the Jacobian matrix is properly expressed in terms of the separa-
tion of the matrices J11 and J22, measured by:

sep (J11,J22) = min
X 6= 0

||J11X −XJ22||
||X||

where X ranges over the subspace of p × (n − p) matrices. The sep(·, ·) function is
difficult to compute, in general, but bounds exist based on the spectra of the matrix
arguments (when J is diagonalizable):

sl (J11,J22) =
min |spec(J11) − spec(J22)|

κ2 (Q1)κ2 (Q2)

≤ sep (J11,J22)

≤ min |spec(J11) − spec(J22)| = su (J11,J22)

where Q1 and Q2 are chosen to diagonalize J11 and J22, respectively. Equality holds
on the right when J is normal but, in general, the separation of J11 and J22 may
be much less than the minimum distance between the respective spectra. Procedures
for the numerical estimation of sep(·, ·) have been proposed [5], similar in form to
well-known methods of matrix condition estimation. Table 12 shows values for sl(·, ·),
sep(·, ·) and su(·, ·) for six choices of Wc of increasing dimension, m, for the LP model
Jacobian. Each case corresponds to a choice for Wc that contains the m-largest real
eigenvalues of J evaluated at the second point of Table 11.
A simple strategy for incorporating deflation of the Jacobian into numerical Hopf
pathfollowing is the following: Suppose the complete eigenstructure for J is computed
at the initial solution point on the Hopf branch (by any method), m is determined by
sep() estimates and the columns of U are chosen to be the appropriate eigenvectors
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Table 12

Separation function values and bounds for deflations of dimension 2 to 7 for the LP model equa-
tions. Each p-dimensional deflating subspace contains the p-largest real eigenvalues of the Jacobian
matrix at the initial branch point.

p su() sep() sl()

2 174 36 2
3 62 3 6·10−2

4 81 7.0 8·10−2

5 26 2.5 2·10−2

6 15 4·10−1 2·10−3

7 4 3·10−1 4·10−4

of J. At each subsequent corrector step ||E||F is computed and, if sufficiently large,
the columns of U are updated using a small number of inverse iteration steps. Notice
that each column may be adjusted independently, so if m >> (n − m) and n is of
moderate size, this step can be performed in parallel. Numerical continuation was
begun at selected point 2 of Table 11 using gNa as the continuation parameter, and
proceeded toward the Takens-Bogdanov point at the beginning of the branch (near
point 1). The 7-dimensional deflating subspace of Table 12 was used and updated
at each corrector step. The residual real part of the critical eigenpair is below 10−12

near the beginning of the curve and remains below 10−9 as the solutions approach
the Takens-Bogdanov bifurcation.

4. Concluding Remarks. We have examined the application of minimal aug-
mentation methods for computing Hopf bifurcations to three examples of vector fields
that describe the electrical activity of axons and neurons. There are several conclu-
sions we draw from this work.

1. The derivation of symbolic expressions for the detection of Hopf bifurcations
in families of vector fields of moderate complexity is feasible. The usefulness of these
symbolic expressions is dependent upon the complexity of expressions for the Jacobian
of a vector field and upon the effectiveness of root finding algorithms.

2. Automatic differentiation algorithms work. They give far more accurate val-
ues for derivatives than are obtainable with the simplest finite difference methods of
computing derivatives.

3. Continuation applied to minimal augmentation methods for finding Hopf bifur-
cations appear to work at the singularities associated with double Hopf bifurcations
in two parameter families of vector fields. The root finding problem has a singularity
of corank 1 at these points, but the method appears to follow the smooth branches of
solutions passing through this point with little difficulty. This success calls for further
theoretical justification.

4. In at least some circumstances, the minimal augmentation methods are prefer-
able to direct methods that require the computation of eigenvectors. In the example
we present, iterative root finding algorithms that start with natural choices for their
initial seeds converge more reliably and have larger regions of convergence for the
minimal augmentation methods than for the direct methods that solve for eigenvec-
tors.

5. In problems that are large or stiff, straightforward implementation of the mini-
mal augmentation methods lead to root finding problems that are poorly conditioned.
The difficulty lies in the determination of when a large matrix with eigenvalues of large
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magnitude is singular. By using the extensive numerical linear algebra theories for
calculating the condition number of a matrix, the algorithms for detecting Hopf bi-
furcations can be significantly improved. Implementations based on calculations of
the smallest singular value of a matrix appear to be an attractive target for further
work in this area.

6. Despite the growth in the size of the linear algebra problems that are asso-
ciated with the definition of the biproduct matrix as a strategy for computing Hopf
bifurcations, the impact of this growth can be ameliorated by the intelligent use of
standard algorithms for linear algebra problems. These increase the sparsity of the
biproducts whose condition number must be calculated or localize these calculations
to smaller matrices calculated from the biproduct.
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Figure 1: Curve of Hopf bifurcation points in the two-parameter plane (gKCa, gA)
for the RLA neuron model computed using the Bezout resultant augmenting function
(RB). Eight selected points corresponding to the entries in Table 6 are distinguished
along the curve. The segment of the solution curve shown in the insert has been
transformed by a simple rotation to make the closed loop visible at these scales.

Figure 2: Convergence data for Newton’s method in a neighborhood of Hopf branches
in the (gKCa, gA) parameter plane. The upper plot shows data for the Bezout re-
sultant (RB) as the augmented function; the lower plot shows data for the method
of Jepson/Griewank/Reddien (JGR). Triangle symbols show initial condition which
ultimately converge to the upper Hopf branch while circles indicate convergence to a
lower branch point.

Figure 3: Convergence data for Newton’s method in a neighborhood of Hopf branches
in the (gKCa, gA) parameter plane including a monotonicity condition on the se-
quence of corrector steps. The upper plot shows data for the Bezout resultant
(RB) as the augmented function; the lower plot shows data for the method of Jep-
son/Griewank/Reddien (JGR). Triangle symbols show initial condition which ulti-
mately converge to the upper Hopf branch while circles indicate convergence to a
lower branch point.
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