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Abstract
We develop a general technique for proving the existence of chaotic attractors
for three-dimensional vector fields with two time scales. Our results connect
two important areas of dynamical systems: the theory of chaotic attractors for
discrete two-dimensional Henon-like maps and geometric singular perturbation
theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on
non-invertible one-dimensional maps. Wang and Young formulated hypotheses
that suffice to prove the existence of chaotic attractors in these families. Three-
dimensional singularly perturbed vector fields have return maps that are also
two-dimensional diffeomorphisms limiting on one-dimensional maps. We
describe a generic mechanism that produces folds in these return maps and
demonstrate that the Wang–Young hypotheses are satisfied. Our analysis
requires a careful study of the convergence of the return maps to their singular
limits in the Ck topology for k � 3. The theoretical results are illustrated with
a numerical study of a variant of the forced van der Pol oscillator.

Mathematics Subject Classification: 34C26, 34E15, 37D45, 37E10

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of chaotic attractors for low dimensional dynamical systems was a major
achievement of dynamical systems theory during the twentieth century. There are many
numerical simulations and observations which suggest concrete systems of differential
equations have chaotic attractors, but there are few analytical results establishing their
existence4. The mathematical theory is most tractable for uniformly hyperbolic attractors,

4 The Lorenz system [16] is a notable exception in which theory and simulation have been connected with verified
computation in the study of differential equation attractors.
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but typical numerical examples arising from applications are not uniformly hyperbolic. This
paper addresses the problem of locating chaotic attractors in specific families of differential
equations by connecting two substantial theories that have been developed recently: (i) the study
of Henon-like families of planar diffeomorphisms and (ii) geometric singular perturbation
theory. We show how Henon-like families arise in a generic way within the context of
periodically forced relaxation oscillations. Relaxation oscillations were introduced and studied
by van der Pol [21] in the 1920s and continue to be used as models for diverse phenomena.
Thus this work gives a mathematical analysis of how chaotic attractors arise in the context of
a familiar class of models for physical systems.

The study of Henon-like families of planar diffeomorphisms with strong contraction is
framed in terms of perturbations from one-dimensional mappings with folds. While still
complicated, one-dimensional theory is considerably better understood than two-dimensional
theory. Wang and Young [23–26] have formulated a set of geometric hypotheses that suffices to
prove the existence of chaotic attractors with Henon-like characteristics in families of strongly
dissipative maps. Their hypotheses relate largely to properties of the limiting one-dimensional
family.

The collapse of two-dimensional diffeomorphisms to one-dimensional mappings is a
phenomenon that occurs naturally in the context of slow–fast systems of differential equations.
These singular perturbation problems are systems of differential equations of the form

εẋ = f (x, z),

ż = g(x, z),
(1)

where ε � 0 is a small parameter determining the ratio of time scales. In this paper, x ∈ IR and
z ∈ S1 ×IR; f and g are C∞ functions. The singular limit, ε = 0, gives a system of differential
algebraic equations in which motion is constrained to the critical manifold, f = 0. However,
to represent fully the behaviour of system (1) in the singular limit, we must allow ‘jumps’
of trajectories from one sheet of the critical manifold to another that follow the direction of
trajectories when ε > 0. In the examples which we study, jumps parallel to the x-axis occur at
folds, where the tangent plane to the critical manifold includes this direction. As we will show,
the above geometric picture gives rise to a singular limit that reproduces the setting studied
in the theory of Henon-like maps, in which return maps for the flow are two-dimensional
diffeomorphisms for ε > 0 that converge to one-dimensional maps for ε = 0. Moreover, the
limit maps can have critical points, a central feature of the theory of Henon-like maps.

This paper is organized as follows: in sections 2 and 3, we identify some properties of the
system in (1) that lead potentially to Henon-like attractors. In section 4, the precise conditions
in Wang and Young [23–26] are reviewed. In section 5, we verify these conditions for a
specific family of forced relaxation oscillations. Part of this verification is numerical and is
non-rigorous.

2. A class of forced relaxation oscillators

This section introduces the class of dynamical systems which we will study. They are slow–fast
systems of the form

εẋ = f (x, y, θ),

ẏ = g(x, y, θ),

θ̇ = ω,

(2)

where (x, y, θ) ∈ IR× IR×S1, f and g are C∞ functions, ω > 0 is the slow driving frequency
and ε � 1 is the singular perturbation parameter. A few geometric assumptions will be
imposed on this family; they are described below.
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Figure 1. The critical manifold S and fold-curves L±.

Our first assumption is that the critical manifold, S, defined by f = 0, is a ‘cubic’ shaped
surface with a pair of folds (see figure 1):

Assumption 1. The critical manifold S = S−
a ∪ L− ∪ Sr ∪ L+ ∪ S+

a , where S+
a ∪ S−

a :=
{(x, y, θ) ∈ S : fx(x, y, θ) < 0} are attracting upper and lower branches, Sr := {(x, y, θ) ∈
S : fx(x, y, θ) > 0} is a repelling branch and L+ ∪ L− := {(x, y, θ) ∈ S : fx(x, y, θ) = 0}
are fold-curves (circles). Furthermore, we assume fxx(x, y, θ) �= 0 on L± and fy(x, y, θ) �= 0
on all S. The latter implies that the cubic-shaped manifold S is the graph of a function
y = ϕ(x, θ), θ ∈ S1 and x ∈ IR.

We use the representation y = ϕ(x, θ) to define a projection of the system (2) onto S.
Differentiating y = ϕ(x, θ) with respect to time and using the implicit function theorem gives
the relationship fxẋ = −(fyg + fθω). This equation for ẋ is singular on the folds; so we
rescale the system to obtain the reduced flow on the critical manifold:

ẋ = (fyg + fθω),

θ̇ = −ωfx.
(3)

This system has the same phase portrait as the singular limit of (2), but the orientation of
trajectories is reversed on Sr .

Our second assumption is that all trajectories flow into the folds for the slow flow.

Assumption 2. All points p ∈ L± of the fold-curves L± are jump points, i.e. the normal
switching condition [15]

(fyg + fθω)|p∈L± �= 0 (4)

is satisfied and the reduced flow near the fold-curves L± is directed towards the fold-curves L±.

In the singular limit of the system of (2), trajectories arrive at the folds from both Sa and
Sr and the existence of trajectories breaks down. When ε > 0 is small, the trajectories of
(2) execute fast ‘jumps’ when they reach the vicinity of the fold-curves. We would like to
capture this behaviour and extend the definition of the slow flow from the critical manifold



704 J Guckenheimer et al

to all IR × IR × S1 in a way that embodies the limiting behaviour of trajectories for (2). On
the complement of S, the limiting direction of (2) is parallel to the x-axis. We define the map
P : IR×IR×S1−S → Sa by projection along the x-axis. For many points z ∈ IR×IR×S1−S,
the line parallel to the x-axis through z meets Sa in exactly one point; so there is no ambiguity
in how P(z) is defined. Where the above line meets Sa twice, P is defined so that the segment
joining z and P(z) does not intersect Sr . Thus z and P(z) lie on the same side of Sr on
a line parallel to the x-axis. Note that L± is not regarded as part of Sa and P(L±) ⊂ S∓

a

(see figure 1). Heuristically, the fast trajectory segments that connect points to their images
under P are instantaneous on the slow time scale. More formally, we use Benoit’s concept of
candidates [4, 20] to define trajectories of the reduced system.

Definition 1. A trajectory of the reduced system consists of a continuous curve, γ , of the form
γ0 ∪ α1 ∪ β1 ∪ α2 ∪ β2 ∪ · · · where

• γ0 is a segment (perhaps trivial) of a line parallel to the x-axis that does not intersect Sr

and terminates on Sa ,
• αi is a trajectory of the slow flow on the critical manifold terminating at a fold-curve

L± and
• βi is a segment of a line parallel to the x-axis connecting a point on L± to a point of the

critical manifold, S∓
a .

It is readily seen that there is a unique trajectory of the reduced system from any point in
IR × IR ×S1 −S. Points off the critical manifold S move to S along γ0. Points on S follow the
slow flow until they reach the fold-curves. When they do, they jump along a segment βi to the
opposite sheet of Sa . While each point is the initial point of a unique trajectory, the trajectories
depend discontinuously on initial conditions lying in Sr , reflecting the fact that trajectories
of (2) separate on the fast time scale. The termination points of the curves, βi , will play an
important role in our analysis.

The third assumption we make about the slow flow is that all the trajectories with initial
conditions in neighbourhoods of P(L±) ⊂ S∓

a reach the fold-curves.

Assumption 3. There exist neighbourhoods, N± ⊂ S±
a of P(L∓), with the property that all

trajectories of the slow flow with initial conditions in N± ⊂ S±
a reach the fold-curve L± (in

finite time). The associated maps P(L∓) ⊂ N± 	→ L± are well defined and are surjective.

Note that assumption 3 implies that there are no equilibrium points of the slow flow on S±
a

between N± and the fold-curves and that assumption 2 implies that there are no equilibrium
points on the fold-curves5. Figure 1 depicts a reduced system that satisfies assumptions 1–3.

To analyse how the dynamics of (2) approach those of the reduced system as ε → 0,
we introduce Poincaré return maps for the two systems. We want cross-sections that remain
uniformly transverse to the reduced system as ε → 0. Since the vector field points in opposite
directions along the x-axis on the two sides of the critical manifold, we pick cross-sections
that do not intersect S. Specifically, we choose two cross-sections, �±, orthogonal to the
x-axis, so that when ε is sufficiently small, all trajectories which leave from L+ intersect �+

before reaching S−
a and all trajectories which leave from L− intersect �− before reaching

S+
a . We assume further that these cross-sections have distances that are O(1) from the critical

manifold, S (see figure 2). For ε > 0, we define the maps H +
ε : �+ → �− and H−

ε : �− → �+

5 Isolated points on the fold-curves which violate the normal switching condition (4) are called folded singularities.
The folded singularities are equilibrium points of the slow flow (3). Canard trajectories that follow portions of the
unstable critical manifold, Sr , emanate from generic folded saddles and folded nodes [4, 6, 19].
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Figure 2. Poincaré section �− of the map 	 : �− → �− and auxiliary sections �+ and �1.

as the transition maps following trajectories of the ε-flow; that is to say, H±
ε (z) is the first point

of intersection of the trajectory of the ε-flow with initial condition z with the cross-section
�∓. The corresponding singular limit maps H±

0 are defined on �± by jumping to the slow
manifold S, i.e. applying the map P , then following trajectories of the reduced system, and so
on. The Poincaré return map from the cross-section �− to itself is given by 	ε = H−

ε ◦ H +
ε ,

ε � 0. We will omit the subscript, ε, in H±
ε and 	ε in statements that apply to all ε � 0.

Theorem 1. [15,20] Consider system (2) satisfying assumptions 1–3. Then the Poincaré map
	 : �− → �− induced by the flow of system (2) on a suitable transverse section �− to the
fast vector field is well defined for sufficiently small ε. The map is given by

	

(
y

θ

)
=

(
R(y, θ, ε)

G(y, θ, ε)

)
, (5)

where G(y, θ, ε) = G0(y, θ) + O(ε2/3). There is a constant c > 0 so that |R(y, θ, ε)| <

exp(−c/ε) and the function G0(y, θ) describes the return map induced by the reduced flow (3).

If assumptions 1–3 are satisfied, the projections of the fold-curves P(L±) can be
represented as graphs x = ψ±

1 (θ), θ ∈ S1, for system (3). The reduced flow is transversal to
the projection-curves P(L±) if the (transversality) condition

l∗(p) :=
(

1
ψ ′

1

)
·
(

fyg + ωfθ

−ω

)∣∣∣∣
p∈P(L±)

�= 0 (6)

is satisfied.
Systems for which the transversality condition (6) holds at all points of P(L±) were

studied by Szmolyan and Wechselberger in [20]. They showed that the the derivative,
‖(∂/∂θ)G0(y, θ)‖, has a positive lower bound (independent of ε) and that the Poincaré map
of these systems possesses an invariant slow manifold with associated stable foliation.

Proposition 2.1. Consider system (2) satisfying assumptions 1–3. Further assume that (6)
holds at all points of P(L±). Then system (2) possesses a unique invariant torus. The
associated Poincaré map (5) possesses a unique invariant slow manifold with associated
stable foliation.
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It follows from proposition 2.1 that the dynamics of system (2) can be analysed by studying
the circle diffeomorphism θ 	→ G0(0, θ). The dynamics of these driven relaxation oscillators
is determined by the properties of these circle diffeomorphisms; in particular their attractors
are periodic orbits or two-dimensional quasi-periodic invariant tori. The forced van der Pol
oscillator [6] with forcing amplitude a < 1 is a prominent example which possesses an invariant
torus.

The dynamics of systems for which the transversality condition (6) fails at some points of
P(L±) is more complicated. Assumption 3 allows trajectories of the reduced flow to intersect
P(L±) more than once and to have tangencies with these curves, as long as they reach L∓ in
finite time. In this case, as ε → 0, the Poincaré map (5) converges to a circle map that may
not be a diffeomorphism. This is precisely the type of behaviour we analyse in this paper.

Assumption 4. There exist isolated critical points, p∗
i ∈ P(L±), i � 1, which violate the

transversality condition (6), i.e.

l∗(p∗
i ) = 0. (7)

Furthermore, these critical points p∗
i are non-degenerate, i.e.

l∗′
(p∗

i ) := d

dθ
l∗(p∗

i ) �= 0 . (8)

The reduced flow is tangent to P(L±) at the critical points p∗
i . The non-degeneracy

condition (8) guarantees that the circle map, G0, has turning points at trajectories that pass
through p∗

i . Trajectories close to these turning points intersect P(L±) more than once. This
produces folds in the Poincaré map, 	0; see figures 3 and 5. For small ε > 0, the strong
contraction of the flow near S±

a pulls the sheets of these folds ‘exponentially close’ to each
other. The folding of the Poincaré map 	ε precludes the existence of an invariant manifold
with associated stable foliation as the orientation of strong stable manifolds is reversed on the
two sheets on the opposite sides of a fold. Therefore system (2) under assumptions 1–4 does
not possess an invariant torus.

The folding behaviour of the Poincaré map 	ε is typical for Henon-like maps. That is
why if 	ε is sufficiently stretching in the θ -direction, one may expect to find horseshoes and
strange attractors.

3. Convergence to singular limit

To apply the theory of Wang and Young [23–25] to the systems described in section 2, we need
to prove the convergence of 	ε to 	0 in the C3 topology of the space of two-dimensional maps.
Since the asymptotic form of 	 in theorem 1 is singular in ε, this convergence is not apparent.
We have been unsuccessful in locating a suitable reference for the convergence properties we
require, even for the hyperbolic portion of the flow along the critical manifold.

Recall that 	ε = H +
ε ◦H−

ε where H−
ε : �− → �+ and H +

ε : �+ → �−. For concreteness,
we consider H−; the arguments for H + are identical. This section is devoted to proving the
following theorem.

Theorem 2. For any integer k > 0, the maps H±
ε converge to their rank-one singular limits

H±
0 in the Ck topology as ε → 0.

We first choose normalizing coordinates (u, v, θ) = (û(x, y, θ), v̂(y, θ), θ) near the fold-
curve of system (2) so that L+ becomes the curve u = v = 0 and the critical manifold near L+
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Figure 3. A trajectory of the slow flow for the example studied in section 5. The slow flow on
S+

a is projected onto the (θ, x) plane; θ is a periodic variable with period 1. The fold curve L+

(see figure 1) corresponds to the circle x = 1; P(L−) corresponds to x = 2. To understand the
geometry of the map 	0, we look at the Poincaré map Ĥ from x = 2 to x = 1 following the
slow flow: Ĥ has two critical points located where the slow vector field is tangent to x = 2; they
are marked by large dots on the figure. The trajectory with initial condition at the left-hand dot is
plotted until it reaches x = 1. All points of intersection of this trajectory with x = 2 have the same
image under Ĥ ; see figure 5.

is given by v = u2 [1]. After a time rescaling, system (2) has the representation

εu′ = v − u2,

v′ = f̂ (u, v, θ, ε),

θ ′ = ĝ(u, v, θ, ε).

(9)

By virtue of the normal switching condition, we may assume f̂ (0, 0, θ, 0) < 0 in this
neighbourhood. We will work in these coordinates for the rest of the proof.

To study the convergence properties of H−
ε , we decompose the map into four segments

by introducing three additional cross-sections near L+:

– �1 is defined by v = δ for a small number δ > 0 independent of ε (see figure 2);
– �2 and �3 are ε-dependent cross-sections just before and after the jump at L+; they are

defined by v = c2ε
2/3, c2 > 0 and u = −c3ε

1/3, c3 > 0, respectively.

The Poincaré map from �− to �1 is denoted by H−,1; the one from �1 to �2 is denoted by
H 1,2, and so on. We analyse each phase of the motion separately, using normalizing systems
of coordinates adapted to the different phases.

To prove the Ck convergence of H−
ε , one can prove the Ck convergence of each of the

four maps to be composed. Alternatively, one can prove (i) H−
ε → H−

0 in the C0 topology and
(ii) {H−

ε , ε > 0} is uniformly bounded in the Ck+1 norm. This is sufficient because any Ck+1

bounded set is compact in Ck and, from (i), every limit point of every subsequence of H−
ε in

the Ck metric must in fact be H−
0 . We will elaborate, but C0 convergence is in fact relatively
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simple; it follows largely from Gronwall’s inequality. Much of the work to follow is about Ck

convergence or boundedness for k � 1.

I. The normally hyperbolic phase H−,1 : �− → �1

Proposition 3.1. For any integer k � 0, H−,1
ε → H

−,1
0 in the Ck topology as ε → 0.

Our starting point is the existence theorem for invariant slow manifolds of a slow–
fast system and their stable and unstable manifolds, frequently referred to as ‘Fenichel
theory’ [5, 14]. In the current context, this theory states the following.

Theorem 3. Assume that system (2) satisfies assumption 1. Let r be a positive integer and
S̄0 ⊂ Sa be a closed domain in the stable part of its critical manifold. Then there is a Cr family
of manifolds Sε defined for ε � 0 sufficiently small so that Sε is an overflowing invariant
manifold.

Here, Sε is a manifold with boundary and overflowing means that trajectories entering or
leaving Sε do so through its boundary. The set, S̄0, relevant to the proof of proposition 3.1 is
the region in Sa from �1 to N+ (see figure 2).

Using this theorem, we make an ε-dependent Ck coordinate change to (w, v, θ, ε) =
(ŵ(u, v, θ, ε), v, θ, ε) so that in the relevant region the subspace w = 0 is an invariant slow
manifold for all small ε � 0. This can be done by taking ŵ(u, v, θ, ε) = u−γ (v, θ, ε) where
the graph of (v, θ) 	→ γ (v, θ, ε) is Sε. Clearly, �1 is not affected by this change of coordinates.
Using a bump function, it is easy to arrange it so that �− is also unchanged. It suffices to
prove the Ck convergence of H−,1

ε in these coordinates. The assertion in the proposition then
follows since the slow manifolds of the ε-flow converge in Ck to Sa by theorem 3.

Since the flow is normally hyperbolic along the portion of S+
a in question, we conclude

that εẇ = wh(w, z, θ, ε) with h < 0. We may thus rescale time by −h to obtain a system of
the form

εw′ = −w,

v′ = f̄ (w, v, θ, ε),

θ ′ = ḡ(w, v, θ, ε),

(10)

without affecting the map H−,1
ε . Equation (10) yields

w(t) = w(0) exp(−t/ε)

and a system of two equations not involving the w-coordinate (except for the appearance of
w(0) in the argument of f̄ and ḡ):

v′ = f̄ (w(0) exp(−t/ε), v, θ, ε),

θ ′ = ḡ(w(0) exp(−t/ε), v, θ, ε).
(11)

These equations make sense for ε > 0. We let w(t, ε), v(t, ε) and θ(t, ε) denote their solutions.
For ε = 0, solutions for t > 0 are defined for initial condition, z ∈ �−, as follows: w(t, 0) = 0
for all t > 0, and v(t, 0) and θ(t, 0) are defined using the reduced flow on Sa with P(z) as
initial condition. We claim that on any time interval bounded away from 0, w(t, ε), v(t, ε)

and θ(t, ε) converge uniformly in Ck to w(t, 0), v(t, 0) and θ(t, 0), respectively, as ε → 0.
(This convergence is not uniform on time intervals of the form (0, t0) because of the jump in
w(·, 0) at t = 0.)

Let t1 > 0 (to be thought of as roughly equal to the transition time from �− to �1) be
fixed. A formal argument for the C0 convergence of the time-t1-map of (10) goes as follows.
Let z = (v, θ) ∈ �−, and let ζε(t) and ηε(t) denote the solutions of (10) and (11) with initial
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condition z. We will show that for any given α > 0, |ζε(t1) − ζ0(t1)| < α for ε sufficiently
small (independent of z). By Gronwall’s inequality, there exist β > 0 and ε(β) > 0 such that
for all t0 ∈ (0, t1) and ε < ε(β), if |ζε(t0) − ζ0(t0)| < β then |ζε(t1) − ζ0(t1)| < α. Next we
choose t0 > 0 small enough that for all small ε, |ηε(t0)−η0(t0)| < β/2. Here we have used the
bounded C0 norms of f̄ and ḡ in the relevant region of phase space to limit the total movement
of ηε in the time interval [0, t0]. Finally, shrink ε if necessary so that |ζε(t0) − ζ0(t0)| < β.

To prove the Ck convergence of these time-t-maps, we differentiate (10) and (11) with
respect to z to obtain a hierarchy of variational equations. These are again non-autonomous
vector fields in which the time dependence is through terms of the form exp(−t/ε). Solutions
of the variational equations give the derivatives of the flow map of the system (10) and (11).
Therefore, the same estimates that we have used for the convergence of time-t-maps establish
that the derivatives of these maps converge as ε → 0.

To complete the proof of proposition 3.1, it only remains to observe that the functions Tε,
where Tε(z) is the time it takes for the ε-flow to reach �1 starting at z ∈ �−, converge in Ck

to T0 as ε → 0. This is a direct consequence of the argument above.

Remark. One might expect that the difference between H−,1
ε and H

−,1
0 would be exponentially

small, but this is not true, even if the only ε dependence of the system (10) appears through
the terms exp(−t/ε) . This is evident from simple examples such as

εw′ = −w,

z′ = 1,

θ ′ = w.

(12)

The solutions of system (12) are given by

(w(t), z(t), θ(t)) = (w(0) exp(−t/ε), z(0) + t, θ(0) + εw(0)(1 − exp(−t/ε)). (13)

Thus the Poincaré map, Hε, for the section from w = 1 to z = 1 is given by Hε(z, θ) =
(exp(−(1 − z)/ε), θ + ε(1 − exp(−(1 − z)/ε)) while H0(z, θ) = (0, θ). The difference
between these two maps is O(ε) but not o(ε). This is due to the fact that the change in θ during
the initial fast convergence to the slow manifold is O(ε). Classical results of Vasil’eva [22]
give asymptotic expansions in ε for the solutions of system (10).

We record the following in anticipation of the blow-up analysis to follow. Returning to
(u, v, θ)-coordinates, let u = R(v, θ, ε) and θ = G(v, θ, ε) be the two components of the
map H−,1. Let Sε be the slow manifolds in Theorem 3 and note that S0 ∩ �1 = {u = √

δ}.
Lemma 1.

(i) |R − √
δ| = O(ε);

(ii)

∣∣∣∣∂R

∂v

∣∣∣∣ = O(ε),

∣∣∣∣∂R

∂θ

∣∣∣∣ = O(ε).

Proof. It follows from theorem 3 that Sε ∩ �1 is the graph of u = √
δ + εγ̄ (θ, ε) where γ̄ is

uniformly bounded in Ck as a function of θ . Let R̂(v, θ, ε) denote the w-component of H−,1

in (w, v, θ)-coordinates. Then

R(v, θ, ε) = R̂(v, θ, ε) +
√

δ + εγ̄ (G(v, θ, ε), ε). (14)

We have shown that R̂ and its derivatives are O(exp(−c/ε)). (i) follows immediately and
(ii) follows from the fact that |∂γ̃ /∂θ |, |∂G/∂v| and |∂G/∂θ | are all O(1). �
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Figure 4. Sections in the rescaled system (15) in (U, V ) phase space, which shows solutions of
the Riccati equation (given by E = 0 in (15)). The special solution (solid curve starting at S0) of
the Riccati equation represents the extension of the manifold Sa past the fold-curve.

II. Blow-up at fold curve and H 2,3 : �2 → �3. We first deal with this crucial part and adjust
the rest of the analysis around it. To get past the fold-curve L+, we use the blow-up in [20],
which is carried out in new coordinates

E = ε1/3, EU = u, E2V = v and E2T = t.

In these coordinates, �2 : V = c2 and �3 : U = −c3 are independent of ε, and the transformed
system is given by

dU

dT
= V − U 2,

dV

dT
= f̂ (EU, E2V, θ, E3),

dθ

dT
= E2ĝ(EU, E2V, θ, E3).

(15)

Note that system (15) is a Riccati equation in (U, V )-space when E = 0 (see figure 4). This is
a regularly perturbed system as E → 0. Hence, the Poincaré maps from �2 to �3 are smooth
and vary smoothly with E.

Transitions between (u, v, θ, ε) and (U, V, θ, E)-coordinates are made via the blow-up
map �1

ε : �1 → �1 given by �1
ε(u, θ) = (ε−1/3u, θ) = (U, θ) and the blow-down map

�+
ε : �+ → �+ given by �+(V , θ) = (E2V, θ) = (v, θ). That is to say, we view H− as

H− = �+ ◦ H̃ 3,+ ◦ H̃ 2,3 ◦ H̃ 1,2 ◦ �1 ◦ H−,1, (16)

where the ˜ in H̃ means the map in question is to be seen in (U, V, θ)-coordinates. Clearly,
�+ does no harm in terms of Ck boundedness or convergence. As for �1, ∂U/∂u = ε−1/3,
but observe that when differentiating �1 ◦ H−,1, ∂U/∂u is followed without exception by
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either ∂R/∂v or ∂R/∂θ where R is the u-component of H−,1. By lemma 1, both these terms
are O(ε).

To summarize, we have proved, in the notation of (16), the Ck convergence of �1 ◦ H−,1

and H̃ 2,3 for every integer k > 0.

III. Before the jump, i.e. H̃ 1,2 : �1 → �2. This region is a transition between the two phases
of dynamics studied in parts I and II. In (u, v, θ)-coordinates, the minimum angle between
the fast direction and the slow manifold tends to 0 as ε → 0, making it impossible to deduce
uniform estimates from standard normal hyperbolic theory. In (U, V, θ)-coordinates, this lack
of uniformity is exchanged for unbounded domains and unbounded times: �1 is given by
V = δE−2 and the time, T0, it takes to go from �1 to �2 is O(E−2).

Proposition 3.2. The first k derivatives of H̃ 1,2 are uniformly bounded for all E > 0.

For simplicity we normalize the speed in the V -direction by rewriting (15) as

dU

dT
= (V − U 2)X,

dV

dT
= −1,

dθ

dT
= E2Y, (17)

where X = −f̂ and Y = −f̂ /ĝ. The map H̃ 1,2 is then given by the time-T0-map where
T0 = δE−2 − c2. Note that X is positive and bounded away from 0. The next lemma describes
the region in which all the action takes place.

Lemma 2. There exists C > 0 such that the following holds for all E > 0: between �1 and
�2, the U -coordinates of all trajectories starting from �− satisfy

√
V < U <

√
V + C.

Proof. By lemma 1(i), all trajectories meet �1 in {|U − √
V | < O(E2)}. That U >

√
V is

because {V = U 2} bends downwards while dU/dT > 0 if U <
√

V . Finally we claim that√
V < U <

√
V + C is a trapping region for C > 0 large enough because at U = √

V + C

(V − U 2)X = −C(U +
√

V )X < − 1

2
√

V
. �

Let (ξ, η) denote the (U, θ)-coordinates of a point in �1, and let U(t) = U(ξ, η, t)

and θ(t) = θ(ξ, η, t) denote the solution of (17) with U(ξ, η, 0) = ξ and θ(ξ, η, 0) = η.
Differentiating (17) and letting

h1 = −2UX + E(V − U 2)XU,

h2 = (V − U 2)Xθ ,

we obtain the first variational equations:

(i)
dUξ

dT
= h1Uξ + h2θξ , Uξ (0) = 1,

(ii)
dθξ

dT
= E3YUUξ + E2Yθθξ , θξ (0) = 0,

(iii)
dUη

dT
= h1Uη + h2θη, Uξ (0) = 0,

(iv)
dθη

dT
= E3YUUη + E2Yθθη, θη(0) = 1.

We claim that on the time interval of interest, |Uξ |, |Uη|, |θξ |, |θη| = O(1) (in fact,
|θξ | = O(E)). In the relevant region of phase space, |V − U 2| � const · U (lemma 2),
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so h1 is dominated by the term −2UX. To estimate |Uη| and |θη|, for example, suppose
|θη(s)| = O(1) for all s < t . Then |Uη(t)| = O(1) because if |Uη(s)| is large enough then the
first term on the right side of (iii) will dominate the second. On the other hand, (iv) says that
if |Uη(s)| = O(1) for all s < t then |θη(t)| can change at a maximum rate of O(E2).

Higher order variational equations are obtained by differentiating (i)–(iv). Let α denote a
j -tuple of ξ and η, 1 < j � k, and let ∂αU and ∂αθ denote the corresponding partials of U and
θ . Proposition 3.2 asserts that ∂αU and ∂αθ are uniformly bounded for all E > 0. Observe
that for any α, ∂αU and ∂αθ satisfy equations having the same form as (i)–(iv) with additional
terms in (known) functions of t :

d(∂αU)

dT
= h1∂

αU + h2∂
αθ + { · · · }, ∂αU(0) = 0,

d(∂αθ)

dT
= E3YU∂αU + E2Yθ∂

αθ + { · · · }, ∂αθ(0) = 0.

Here the expressions inside the brackets are sums of terms that are products of (i) partials of X

and Y and (ii) partials of U, θ, h1 and h2 of order < |α|. Partials of the kind in (i) are bounded
by definition. Those in (ii) are shown inductively to be bounded, except for partials of h2,
which contain terms of size �const · U (e.g. ∂h2/∂η = −2UUηXθ + (V − U 2)XθUEUη +
(V − U 2)Xθθθη). As explained earlier, for equations of the form above, as long as all terms
are �const · U , the right side is dominated by h1∂

αU once ∂αU becomes sufficiently large.

IV. After the jump, i.e. H̃ 3,+ : �3 → �+. We make a final coordinate transformation by
setting W = U/(1 − U) to obtain

W ′ = (1 + W)2V − W 2,

V ′ = f̂ (EW/(1 + W), E2V, θ, E3),

θ ′ = E2ĝ(EW/(1 + W), E2V, θ, E3).

(18)

The section �3 : U =−c3 is now given by W = −c3/(1+c3) < 0 with −1 < −c3/(1+c3) < 0,
and the section �+ : U = −dE−1 is given by W = −d/(d − E) which gives in the limit
E → 0 the section W = −1. System (18) varies smoothly with E in the region between the
cross-sections �3 and �+. It is also apparent that W ′ < 0 throughout this region (equivalent
to V < U 2 in (15)). Therefore, the flow from �3 to �+ requires finite time; so smooth
dependence on initial conditions for solutions to systems of ordinary differential equations
implies that H̃ 3,+ converges in the Ck topology as E → 0. These maps are unaffected as we
transform back to (U, V, θ)-coordinates.

To recapitulate, we have proved Ck convergence (for arbitrary k) in I, II and IV and Ck

boundedness in III. The C0 convergence of H−
ε from �1 to �2 is trivial in (u, v, θ)- coordinates.

The proof of theorem 2 is therefore complete. �

4. Henon-like maps

The existence of chaotic attractors in mappings that are not uniformly hyperbolic has
been investigated intensively for over twenty years, beginning with numerical investigations
of Flaherty and Hoppensteadt [7], the pioneering work of Hénon [12] and the work of
Jakobson [13] on quadratic maps of the interval. Henon [12] illustrated the existence of chaotic
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attractors in a two-dimensional diffeomorphism of the plane defined by quadratic functions.
Benedicks and Carleson [2] developed powerful techniques for analysing Henon maps close
to the singular limit (in which the map reduces to a map of the interval). Benedicks and
Young [3] constructed SRB measures on these attractors. The results of [2] were extended by
Mora and Viana [18] and further extended and refined by Wang and Young [23–26]. One of
the contributions of Wang and Young was to replace the formula of the Hénon maps by a list of
concrete, geometric properties which are sufficient to prove the existence of chaotic attractors
with SRB measures and positive Lyapunov exponents. This section reviews these geometric
conditions and their implications. In the next section, we will discuss these conditions in the
context of return maps for a family of forced relaxation oscillations.

Let M = S1 × I where I ⊂ IR is a closed interval. Coordinates in M are denoted by
(θ, y). We consider a family of maps Ha,ε : M → M parametrized by a ∈ [a0, a1] ⊂ IR and
ε ∈ (0, ε0] ⊂ IR. Conditions (C0) and (C1) below give the overall setup, describing Ha,ε as
small perturbations of rank-one maps.

(C0) Regularity conditions.

• For each ε > 0, the function (θ, y, a) → Ha,ε(θ, y) is C3.
• Each Ha,ε is an embedding of M into itself.

(C1) The singular limit. There exist rank-one maps Ha,0 : M → M such that as functions
of (θ, y, a), Ha,ε(θ, y) converge in the C3 norm to Ha,0(θ, y) as ε → 0. The image sets of M

under Ha,0, i.e. Ha,0(M), are assumed to be diffeomorphic to S1.
Via small changes of coordinates, we may assume Ha,0(M) is independent of a. We

denote this set by γ and regard Ha,0 restricted to γ as a map of S1 to itself, denoted by ha .
The rest of the conditions involve only the singular limit maps Ha,0 and ha . Expansion on the
attractor is derived from the corresponding properties of ha , which we formulate as (C2).

(C2) Expansion in one-dimensional maps. There exists a∗ ∈ [a0, a1] so that ha∗ = h has the
following properties. There are c > 1, N ∈ Z

+ and a neighbourhood I of the critical set C

(the set where h′ = 0) in γ such that

• if ξ, h(ξ), . . . , hn−1(ξ) �∈ I and hn(ξ) ∈ I then (hn)′(ξ) � cn.
• if ξ, h(ξ), . . . , hn−1(ξ) �∈ I and n � N then (hn)′(ξ) � cn.
• if ξ ∈ I is not a critical point, there is n = n(ξ) such that h(ξ), . . . , hn−1(ξ) �∈ I and

(hn)′(ξ) � cn.
• min(|h′′|) > 0 on I .
• if ξ is a critical point then hn(ξ) �∈ I for all n > 0.

The next two conditions ensure the absence of ‘coincidences’ that may obstruct the
analysis. The first relies upon the concept of smooth continuations. Since we assume that
the critical points of ha∗ are non-degenerate, they vary smoothly with a near a∗. Also, points
p whose ha∗ trajectories avoid the set I have unique continuations as curves of points with a
constant symbolic itinerary in γ \I .

(C3) Parameter transversality. For each critical point ξ of ha∗ , let p = ha∗(ξ) and let ξa and
pa denote the continuations of ξ and p. Then

d

da
ha(ξa) �= d

da
pa at a = a∗.
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(C4) Non-degeneracy at ‘turns’. At each critical point ξ of ha∗ ,

∂

∂y
Ha∗,0(ξ, 0) �= 0.

Finally, we include a condition used to deduce additional mixing properties.

(C5) Mixing.

• The constant c in (C2) is larger than 2.
• Let J1, . . . , Jr be intervals of monotonicity of ha∗ and let P = (pi,j ) be the 0–1 matrix

with pi,j = 1 if and only if Jj ⊂ ha∗(Ji). Then P is power positive, i.e. there is an n such
that all entries of P n are positive.

Wang and Young proved that families Ha,ε : M → M satisfying (C0)–(C5) have
chaotic attractors with strong stochastic properties. This is expressed through the idea of
SRB measures. We review the definition and implications of this important idea.

For H = Ha,ε, an H -invariant Borel probability measure µ is called an SRB measure if
(i) µ-a.e. H has at least one positive Lyapunov exponent and (ii) the conditional measures
of µ on unstable manifolds have densities with respect to the Riemannian volume on these
manifolds.

Taking the view that positive Lebesgue measure sets correspond to observable events, one
regards an invariant measure as physically relevant if its properties are reflected on a positive
Lebesgue measure set. In dissipative systems, attractors typically have Lebesgue measure
zero, and a priori there may not be any physically relevant invariant measures. This is why
SRB measures are important: a result from general (non-uniform) hyperbolic theory says that
if µ is an ergodic SRB measure with no zero Lyapunov exponents then the set of points whose
orbits have asymptotic distributions given by µ, i.e. the set of points z with the property that
for every continuous function ϕ on M ,

1

n

n−1∑
i=0

ϕ(H i(z)) →
∫

ϕ dµ as n → ∞,

has positive Lebesgue measure.
The above result is obtained by showing that the set of points z which lie on stable manifolds

of µ-typical points has a positive Lebesgue measure. Since orbits starting from such points
have positive Lyapunov exponents, it follows that in the presence of an SRB measure of the
kind above, positive Lyapunov exponents are observed on a positive Lebesgue set. This is an
important characteristic of chaotic attractors.

SRB measures were discovered for axiom A attractors by Sinai, Ruelle and Bowen.
However, not all attractors (outside of the axiom A category) have SRB measures. For more
information, see the review paper [27].

We next formulate a version of the results of Wang and Young suitable for slow–fast
systems.

Theorem 4. [23, 24] Assume the family Ha,ε satisfies (C0)–(C4). Then for each sufficiently
small ε > 0, there is a positive measure set of parameters a for which Ha,ε has an SRB measure,
µa,ε. As a consequence, there is a positive Lebesgue measure set Aa,ε ⊂ M with the property
that for every z ∈ Aa,ε,

(i) the orbit with initial condition z has a positive Lyapunov exponent and
(ii) the asymptotic distribution of the orbit with initial condition z is given by µa,ε.
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If in addition (C5) is satisfied, then with respect to µa,ε, Ha,ε is mixing; in fact, it has exponential
decay of correlations for all Hölder continuous test functions.

Proof. References for these assertions are as follows.
The existence of an SRB measureµ is theorem 1.3(1) in [23]—except that the ‘Misiurewicz

condition’ in section 1.1 of [23] is replaced by (C2) in the theorem above. That the results
in [23] continue to hold with (C2) in lieu of the ‘Misiurewicz condition’ is proved in lemma A.4
in the appendix of [24]. The reason for this replacement is to improve applicability: negative
Schwarzian, which is part of the ‘Misiurewicz condition’, is often not valid or hard to check
in applications.

We may assume µ is ergodic (by taking one of its ergodic components if it is not). It has
no zero Lyapunov exponents because by definition, one of the Lyapunov exponents is positive,
and by virtue of the fact that the Ha,ε can be approximated by rank-one maps (see (C1)), the
other is negative. Properties (i) and (ii) follow from the general theory of SRB measures as
explained earlier.

If µ is mixing then the assertion on correlation decay is given by theorem 1.4 in [23]. That
(C5) implies the existence of a mixing SRB measure is proved in lemma A.5 in the appendix
of [24]6. �
Remark 1. We explain the roles of the two parameters a and ε. The latter is a measure of
how close the map is to its singular limit; see (C1). The reason for introducing a is that
in general, to determine if a given system has an SRB measure requires knowledge of the
system to infinite precision. One way to formulate checkable conditions is to introduce a
notion of probability, expressed here in the form of a parameter, on the space of dynamical
systems. The situation is similar to that of the quadratic family in one dimension: for the
family fa(x) = 1 − ax2, x ∈ [−1, 1], a ∈ [0, 2], it has been shown that there is an open
and dense set of parameters for which the map has a stable periodic orbit [8, 17], while for a
positive measure set of parameters, the map has an invariant density with a positive Lyapunov
exponent [13]. This phenomenon is expected to carry over to our setting for ε small, i.e. in
the complement of the parameters a identified in theorem 4, it is expected that there are many
parameters with stable periodic orbits.

Remark 2. We point out an essential difference between slow–fast systems and systems with a
single time scale in the application of Wang–Young theory. In systems with a single time scale,
there is usually some form of comparability of determinants, a version of which is condition
(∗∗) in [23]. This condition is relaxed in [24] to the existence of K > 0 independent of (a, ε)

such that
det(DHa,ε(z))

det(DHa,ε(z′))
� K for all z, z′ ∈ M. (19)

These conditions, which are used to control more detailed dynamical behaviour in the basin
away from the attractor, cannot be expected to hold for forced oscillations; see section 5. Thus
some of the results in [23] (namely theorems 1.2(2) and 1.3(2), (3)) cannot be applied directly
to the systems treated in this paper. The properties in theorem 4 do not require this type of
condition.

The two-dimensional version of Wang–Young theory summarized in this section is
adequate for present purposes. We mention for future reference that this body of results
has been extended to rank-one attractors in n-dimensional phase spaces where n is an arbitrary
integer �2. This will be published in [26], with another preprint to follow.
6 In [24], a determinant condition that is not part of (C0)–(C5) is assumed. This condition is needed for some of the
other results in [24]; it is not relevant for the results cited here. See remark 2.
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5. Verification of (C0)–(C5) in forced oscillations

We now explain how the (general) results on chaotic attractors reviewed in section 4 may be
applied to slow–fast systems in general and forced oscillations in particular. In this context,
the maps Ha,ε are Poincaré maps 	a,ε : �− → �− (see section 2) for a family of systems
parametrized by a. As we will see, a subset of (C0)–(C5) is enjoyed by all slow–fast systems
satisfying the assumptions in section 2, while the validity of the remaining conditions depends
on the specific characteristics of the system in question. We will first identify this non-
system specific part of (C0)–(C5), then demonstrate how to verify the remaining conditions
numerically for an example.

I. Which parts of (C0)–(C5) hold for general slow–fast systems? We consider a one-parameter
family of slow–fast systems with the following properties: (i) for each parameter a, the system
is given by equation (2) in section 2; (ii) the coefficients and their derivatives depend smoothly
on a and (iii) assumptions 1–4 in section 2 hold. Continuing to use the notation from earlier and
choosing �− independently of a, we let 	a,ε : �− → �− denote the Poincaré map from the
cross-section �− to itself. This is the family Ha,ε for which we now seek to verify (C0)–(C5).

The two items in (C0) are corollaries of standard theorems for existence, uniqueness
and smooth dependence of solutions to the initial value problem for systems of differential
equations.

With respect to (C1): for fixed a, the convergence of Ha,ε(θ, y) as functions of (y, θ)

to a rank-one singular limit as ε → 0 was proved in section 3. Convergence of derivatives
involving a is treated similarly. Here γ is the image of the projection (along lines parallel to
the x-axis) of L− onto �−. It is clearly diffeomorphic to S1. Observe that critical points of h

are exactly those points, ξ ∈ γ , with the property that the slow flow on S+
a is tangent to P(L−)

at P(ξ). By assumption 4, these critical points are non-degenerate as required in (C2).
The other properties of (C2), which assert the existence of a singular limit map ha∗ with

expansion, do not necessarily hold for all families satisfying the conditions above. This
comment also applies to (C3).

(C4), on the other hand, is a consequence of the properties assumed. Let γ be as above,
and let ξ ∈ γ be a critical point of h. Consider a line segment ω through ξ parallel to the
y-axis, i.e. ω is perpendicular to γ . We claim H−

0 maps γ diffeomorphically onto a segment
in �+. To see this, recall that there are three parts to H−

0 : the jump P from �− to S+
a , the slow

flow along S+
a to L+ and finally the jump P from L+ to �+. First, P(ω) is transverse to the

slow flow on the critical manifold because ξ ∈ γ being a critical point, P(γ ) is tangent to the
flow at P(ξ). It follows that the map along trajectories to L+ is a diffeomorphism on P(ω).
Finally, P maps L+ diffeomorphically to �+.

(C5) is stronger than (C2); it is also dependent upon the family in question.
We finish by explaining why (19) fails for forced oscillations in general. This is because

the volume element along an orbit that spends time t along the slow manifold is contracted by
∼ exp(−ct/ε). Since different orbits spend different amounts of time near the slow manifold,
the ratios in volume contraction between returns to �−, i.e. det(DH), is in general unbounded
as ε → 0.

II. An example with expansion. Consider the family of vector fields:

εẋ = y + x − x3

3
,

ẏ = −x + a(x2 − 1) sin(2πθ),

θ̇ = ω,

(20)
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with ε � 0 small. The system (20) is a forced relaxation oscillation, a modification of
the forced van der Pol equation [6] in which the forcing amplitude depends upon x. The
numerical calculations in this part of the paper are not rigorous; we have not tried to establish
error bounds for them. More rigorous numerical work is clearly within the realm of feasibility
(see discussion at the end). Our main interest, however, is to demonstrate how to verify
numerically the Wang–Young conditions in the context of relaxation oscillations. Since these
systems appear extensively as models of physical systems, a procedure for detecting strange
attractors can be useful.

First, we show that (20) meets the assumptions in section 2. As a singularly perturbed
vector field, the system (20) has two slow variables (y, θ) and one fast variable x. The critical
manifold is the smooth surface y = x3/3 − x and the fold-curves are x = ±1, y = ∓2/3.
On the fold-curves, the normal switching condition is satisfied because ẏ �= 0. Since θ̇ never
vanishes, there are no equilibrium points at all. Assumptions 1–3 are satisfied. In particular,
all trajectories near the stable sheets of the critical manifold flow to the fold-curves and make
regular jumps to the opposite sheet of the critical manifold. Note that the system is symmetric
with respect to σ : (x, y, θ) → (−x, −y, θ + 0.5).

In the singular limit ε = 0, the (rescaled) slow vector field is

x ′ = −x + a(x2 − 1) sin(2πθ),

θ ′ = (x2 − 1)ω.
(21)

The images of the fold-curves by the jumps P are the curves x = ∓2, y = ∓2/3, and the
slow vector field is tangent to these curves at points where x ′ = ±2 + 3a sin(2πθ) = 0. This
equation has a pair of solutions on each fold-curve when a > 2/3. The non-degeneracy of
these tangencies is also easily checked, verifying assumption 4.

We introduce cross-sections, �+ and �−, to system (20) defined by x = 1, y > 0 and
x = −1, y < 0, respectively. Note that σ interchanges �+ and �− and that these cross-
sections are almost orthogonal to the vector field. The ‘half’ return map H is defined by
flowing from �+ to �− and then applying σ . Fixed points of H correspond to symmetric
periodic orbits of (20), and H ◦ H is the return map of �+. Therefore, it suffices to establish
the required conditions for the rank-one maps obtained from H by letting ε → 0.

To begin with, we treat both ω and a as parameters and look for (ω, a) such that hω,a has
the property that its two critical values are fixed points. Figure 5 displays the graph of the
singular limit h : γ → γ for

(ω, a) = (11.509 008 886 004 4, 41.858 149 991 123 1)

computed with the Dormand–Prince variable step Runge–Kutta algorithm described in Hairer–
Wanner [11] at a mesh of 10 000 points on the circle x = 1, y = 2/3. The map h has two
critical points located at the values of arcsin(2/(3 ∗ a))/(2 ∗ π), with both critical values
being at a fixed point, p, located near 0.7531. The increasing segment of the image of h wraps
around the circle six times, while the decreasing segment of the image of h wraps around the
circle five times.

To give additional evidence for the existence of parameter values with the properties above,
we use finite difference calculations to estimate the derivatives of (p, h(c1), h(c2)) with respect
to the parameters ω and a. The results are approximately (0.0022, 0.7833, −1.0517) for ω

and (−0.0449, 3.1287, 3.1279) for a. These results demonstrate that the map (ω, a) →
(h(c1), h(c2)) is non-singular and gives strong evidence of the existence of parameter values
for which h(c1) = h(c2) = p.

From here on ω is fixed and a is the special parameter a∗ in (C2). Numerical calculations in
the last paragraph also clearly show the derivatives of (h(c1), h(c2)) with respect to a are much
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Figure 5. The graph of h.

Figure 6. The graph of h′.

larger than those of p; this is (C3). It remains to study expansion properties of h corresponding
to this special parameter.

Figure 6 displays the graph of h′. Two pairs of horizontal lines bound the region where
|h′| < 1 and the region where |h′| < 2. We see that outside relatively small neighbourhoods
U1 = (0.0043, 0.0142) and U2 = (0.4860, 0.4958) of the critical points c1 and c2, h is
expanding by a factor of at least 2. (C2) and (C5) require that we produce a number λ > 2 such
that for every x ∈ (U1 ∪U2), x �= c1, c2, there exists n = n(x) > 1 such that hi(x) �∈ (U1 ∪U2)

for all 0 < i < n and |(hn)′(x)| > λn.
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To obtain the desired expansion, we introduce two smaller intervals V1 = (0.0079, 0.0105)

and V2 = (0.4893, 0.4921) inside U1 and U2. The derivatives on Vi and Ui \ Vi will be
estimated separately. Here are some relevant estimates: outside V1 and V2, |h′| > 0.5. Inside
V1, −440 < |h′′| < −420, while in V2, 400 < |h′′| < 410. The images of V1 and V2 are
contained in the interval J = [p − 0.0005, p + 0.0005] ≈ [0.7526, 0.7536] inside which
56 < |h′| < 100, while the images of U1 and U2 are contained in the interval [0.747, 0.760]
inside which |h′| > 15. (The derivative h′(p) > 69.) Finally, the image of J is contained in
the interval [0.71, 0.81] inside which |h′| > 7.4.

We assert that these estimates are adequate to prove that there is a λ > 2 with the required
properties. First consider x ∈ Vj , j = 1 or 2 and let k � 1 be such that hi(x) ∈ J for all
0 < i � k and hk+1(x) �∈ J . This implies 220 × 100k(x − c)2 > 0.0005. Since

|x − c| >

√
0.0005

220 · 100k
,

|(hk+1)′(x)| > 400 · 56k|x − c| > 400

√
0.0005

220

(
56√
100

)k

> 0.6 (5.6)k.

If k > 1 then |(hk+1)′(x)| > 0.6 · (5.6)k > 2k+1. For k = 1, we use the derivative estimate on
h(J ) to get |(h3)′(x)| > 0.6 ·5.6 ·7.4 > 23. Finally, for x ∈ Uj \Vj , |(h2)′(x)| > 0.5 ·15 > 22.
We conclude that λ can be chosen >2, and (C2) and (C5) are satisfied.

This completes the numerical verification of (C2), (C3) and (C5). Our analysis illustrates
that specific models of relaxation oscillations fall within the class of systems described
by the general theory developed here, but it does not constitute a proof that the system
(20) is in this class. Rigorous error bounds for the calculations are feasible in principle.
We describe what needs to be done. All the calculations involve the singular half-return
map h, obtained by the integration of the two-dimensional reduced vector field (20) from
initial conditions on x = 2 to the cross-section x = 1. Convergence of Runge–Kutta
numerical integration implies that the computed approximation to the map h will converge
to h as the precision of the computer arithmetic increases and time steps of the integration
decrease. Variational equations can be used to compute the derivatives of h to the same
order of accuracy (in step size) as h itself. We believe that interval arithmetic methods
applied to the system (20) can be used to prove that it satisfies (C2), (C3) and (C5). Two
types of calculations are required: to prove that there are parameter values for which h

maps its pair of critical points to fixed points and rigorous verification of the estimates on
derivatives that we have given. Our theory of how Henon-like maps can be used to prove
the existence of chaotic attractors in singularly perturbed vector fields is independent of the
implementation of these calculations. Therefore, we have chosen to leave this matter for
future work directed at developing methods for achieving rigorous error estimates for numerical
integration. Methods of Guckenheimer and Malo [9,10] based on transversality are a step in this
direction.
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