
J Comput Neurosci (2008) 24:358–373
DOI 10.1007/s10827-007-0060-8

Parameter estimation for bursting neural models

Joseph H. Tien · John Guckenheimer

Received: 24 January 2007 / Revised: 6 September 2007 / Accepted: 15 October 2007 / Published online: 13 November 2007
© Springer Science + Business Media, LLC 2007

Abstract This paper presents work on parameter es-
timation methods for bursting neural models. In our
approach we use both geometrical features specific to
bursting, as well as general features such as periodic
orbits and their bifurcations. We use the geometry
underlying bursting to introduce defining equations for
burst initiation and termination, and restrict the estima-
tion algorithms to the space of bursting periodic orbits
when trying to fit periodic burst data. These geometri-
cal ideas are combined with automatic differentiation
to accurately compute parameter sensitivities for the
burst timing and period. In addition to being of inherent
interest, these sensitivities are used in standard
gradient-based optimization algorithms to fit model
burst duration and period to data. As an application,
we fit Butera et al.’s (Journal of Neurophysiology 81,
382–397, 1999) model of preBötzinger complex neu-
rons to empirical data both in control conditions and
when the neuromodulator norepinephrine is added
(Viemari and Ramirez, Journal of Neurophysiology 95,
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1 Introduction

Parameter estimation for neural models is an impor-
tant but challenging task. Fitting Hodgkin–Huxley style
models to data helps discern the roles of different
ion currents in shaping a cell’s firing pattern, sug-
gests different modulatory mechanisms, and can aid
in characterizing currents which are difficult to mea-
sure. Research on automated methods for parameter
estimation is ongoing (Bhalla and Bower 1993; Foster
et al. 1993; Hayes et al. 2005; Prinz et al. 2003; Tabak
et al. 2000; Vanier and Bower 1999). Local minima in
the objective function landscape as well as numerical
challenges such as the lack of analytic gradients are
two difficulties which are especially salient for bursting
models. Spike and burst timing discrepancies between
burst trajectories can result in complicated objective
function landscapes with many local minima. Bursting
models possess multiple time scales, which can lead
to delicate canard trajectories (Terman 1991). These
can cause rapid changes in the objective function land-
scape and contribute to numerical difficulties. Little
work has been done on using smooth, local optimiza-
tion methods for burst parameter estimation. Instead,
either non-smooth methods (Bhalla and Bower 1993;
Vanier and Bower 1999) or database construction and
searching (Prinz et al. 2003) have been used. This paper
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presents a local method for parameter estimation which
uses geometrical features underlying bursting to aid in
estimation.

Geometric features of bursting ODE models are
present both in multiple time scale features (Rinzel and
Lee 1987), and in general dynamical structures such
as periodic orbits. We use the former to define when
a burst initiates and terminates, and the latter to re-
strict to periodic model solutions when fitting periodic
data. Focusing on coarse burst features such as burst
duration and period leads to simpler objective function
landscapes. Smooth local methods require gradients of
the objective function. Here this means computing the
gradients of burst initiation and termination timing,
and of the burst period. These quantities can change
sharply when spikes are added or subtracted from a
burst. We use automatic differentiation and Taylor se-
ries integration to improve numerical accuracy of these
calculations. The gradients are themselves of biological
interest. They give the parameter sensitivities of burst
timing and period, and thus can help determine the
roles of different currents in shaping burst characteris-
tics. We illustrate these ideas by examining respiratory
preBötzinger neurons. We fit Butera et al.’s (1999)
model to empirical data measured by Viemari and
Ramirez (2006), and use our algorithms to look at
the role of the persistent sodium current (INa(P)). We
also examine possible modulatory targets in the pre-
Bötzinger complex (pBC).

Rinzel and Lee’s (1987) fast-slow “dissection” of
bursting models contributed greatly to understanding
burst mechanisms. This dissection is based upon geo-
metrical features associated with partitioning the model
into fast and slow subsystems. We use this same geom-
etry to introduce defining equations for burst initiation
and termination. This is discussed in Section 2.2. In
many situations, rhythmic bursting is observed and pe-
riodic model solutions are desired. Casey (2004) intro-
duced optimization algorithms specifically for periodic
orbits, and applied them to spiking neural models. We
build upon Casey’s work by developing optimization
algorithms for estimating parameters of models with
periodic burst trajectories. We fit data to characteris-
tics derived from the fast-slow dissection of the model
trajectories. Exploiting these features of the ODEs
in optimization algorithms is largely unexplored. This
approach considerably simplifies landscapes compared
to using least squares on the entire voltage trace.

These geometric ideas can be implemented numeri-
cally in a variety of ways. This includes different meth-
ods for calculating gradients, as analytic gradients of
the flow maps for ODE models are seldom available in
closed form. Finite differences are a common and easily

implemented choice. We describe here an alternative
approach which uses automatic differentiation together
with Taylor series integration to calculate derivatives
of the flow (Griewank 2000). Combining this with our
burst defining equations provides an accurate method
for computing the parameter sensitivities of burst tim-
ing, duration, and period. These methods are discussed
in Section 2.3.

Breathing is a heavily modulated periodic rhythm
which involves bursting neurons. The preBötzinger
complex (pBC) is a functionally defined region of the
brainstem that plays a key role in respiratory rhythm
generation (Feldman et al. 2003; Onimaru et al. 1989;
Smith et al. 1991). Premotor neurons in the pBC project
to motor neurons innervating the hypoglossal nerve.
Electrical bursts in the hypoglossal nerve correspond
to inspiration via movement of the tongue to clear
the air passage. The pBC maintains rhythmic activity
similar to hypoglossal nerve electrical activity in the
intact system even when excised from the rest of the
ventral respiratory group (Smith et al. 1991). Lesions
to the pBC disrupt the breathing rhythm (Feldman
et al. 2003). Thus the pBC is essential for normal res-
piratory rhythm generation. The pBC contains a vari-
ety of cell types, including endogenous bursting cells
which continue to burst when synaptically isolated. Un-
derstanding how the constituent ion currents of these
endogenous bursters influence burst characteristics is of
interest, particularly as these cells have been proposed
to serve as pacemakers for the pBC rhythm (Johnson
et al. 1994; Koshiya and Smith 1999; Onimaru et al.
1989; Smith et al. 1991).

Butera et al. (1999) presented a model of pBC neu-
rons containing a minimal set of currents. Viemari and
Ramirez (2006) measured burst characteristics of iso-
lated endogenous bursting pBC neurons both in control
conditions and in the presence of the neuromodula-
tor norepinephrine. Firing patterns in the pBC can be
modulated in a variety of ways. For example, burst
duration may be altered independent of burst period,
or burst period may change while burst duration is held
constant (Viemari and Ramirez 2006). By using our
optimization algorithms to fit Butera et al.’s model to
the empirical measurements of Viemari and Ramirez,
we can examine the role of different model currents
and identify possible modulatory targets in the pBC.
This includes the persistent sodium current (INa(P)),
which is found in many mammalian structures (see Crill
1996 and Magistretti and Alonso 1999 for listings). The
persistent sodium current plays many functional roles
including burst generation (such as in the pBC), bista-
bility and plateau potential generation, and excitatory
postsynaptic potential amplification (Deisz et al. 1991).
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Despite its importance, the persistent sodium current
is poorly characterized in many systems, including in
the pBC.

2 Methods

2.1 Objective functions

Optimization methods try to minimize an objective
function. In the context of parameter estimation, the
objective function gives some measure of the goodness
of fit of a model to data. Different objective function
choices have been considered in the literature (Bhalla
and Bower 1993; Vanier and Bower 1999). Here the
focus is on fitting burst duration and period. We use
objective functions of the form

G = (X − Xref)
2 +

(
w log

Yref

Y

)2

. (1)

Thus the objective function G consists of the squared
residuals of X together with a log penalty for discrepan-
cies in Y, with w the penalty weight. In the remainder
of this paper either X will be the burst period and Y
the burst duration, or X the burst duration and Y the
burst period. Fitting only one of these quantities is done
by setting w = 0. When fitting both burst duration and
period, a heuristic for choosing w is that proportional
changes in X and Y result in comparable changes in
G near (Xref, Yref). We estimate w as follows. Let μ

denote a common proportional deviation of X and
Y from their reference values. Then X = (1 + μ)Xref,
Y = (1 + μ)Yref, and G = (μXref)

2 + (
w log(1 + μ)

)2.
Setting μXref = w log(1 + μ) gives w = μXref

log(1+μ)
≈ Xref.

Thus w = Xref under this heuristic.
We use gradient-based methods to minimize G. Thus

we need to calculate the burst duration and period for
our model, together with the derivatives with respect to
parameters of these quantities.

Note that G is only defined for bursting periodic
solutions. We use an infinite barrier method (Fletcher
1987) to restrict to the periodic burst domain. This
corresponds to setting G = ∞ when periodic burst so-
lutions do not exist.

2.2 Burst defining equations

As initiated by Rinzel and Lee (1987), bursting models
can be examined from a multiple time scale viewpoint.

Consider a system of ODEs of the form

ẋ = f (x, y, ε)

ẏ = εg(x, y, ε), (2)

where x ∈ R
m, y ∈ R

n, and ε is a small positive para-
meter. The phase space variable x corresponds to the
fast variables, and y the slow variables. Considering
the singular limit ε → 0 gives the fast subsystem, with
the slow variables y treated as parameters. The collec-
tion of fixed points of the fast subsystem is called the
critical manifold M0 (Jones 1995). During the quies-
cent phase of a burst, the system lies close to a sta-
ble, hyperpolarized component of M0. Spike initiation
corresponds to rapidly moving away from this stable
component of M0 and closely following a family of
fast subsystem periodic orbits. Burst termination cor-
responds to returning close to a stable component of
M0.

We use this as the basis for our burst initiation and
termination defining equations. Let z = (x, y)T denote
the phase space variables. The burst initiation and ter-
mination event functions �init(z), �term(z) will be moni-
tored over solution trajectories, with the beginning and
end of a burst corresponding to places where �init and
�term are respectively equal to zero.

We define burst initiation as crossing a voltage
threshold while in the silent phase:

�init(z) = πv(z) − vinit. (3)

Here πv denotes projection to the voltage coordinate
and vinit is the chosen voltage threshold.

For burst termination, we use the defining equation

�term(z) = 1

2
‖Sf (z)‖2

2 − δ, (4)

together with the requirement that �̇term < 0. This cor-
responds to entry into a neighborhood of M0, where S
is a diagonal scaling matrix and the size of the neigh-
borhood depends upon the user-defined parameter δ.
There is the additional requirement that the system
passes close to a stable component of M0 and not,
for example, close to a saddle component. This can
be accomplished by taking a proposed event point,
locating a point on M0 which minimizes the distance
to the proposed event point, and then checking the
stability of the point on M0.

These event defining equations are depicted in Fig. 1.
The time spent between crossing these event surfaces is
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Fig. 1 Schematic of burst event surfaces. Burst initiation corre-
sponds to crossing the planar cross-section, and burst termination
corresponds to entering the gray tube. The heavy line depicts the
critical manifold M0, the lighter line is the burst periodic orbit,
and event points are marked by asterisks

the burst duration, which is one of the features to be fit
in the optimization.

2.3 Computing solution trajectories and sensitivities

In this section z ∈ R
zdim denotes phase space points, λ ∈

R
p denotes the ODE parameters, and f denotes the

(full) vector field. Thus ż = f (z, λ) is our neural model.
We use automatic differentiation and Taylor series

integration to compute solution trajectories and their
derivatives. We use a shooting framework introduced
by Guckenheimer and Meloon (2000) to compute peri-
odic orbits. Burst solution trajectories can be computed
as the zeros of shooting maps, as we now describe. Let
� be a discrete curve representation of our solution
trajectory. � is a collection of time and phase space
points, some of which are event points and some of
which are not. Let (t0, z0), . . . , (tm, zm) be points on a
solution trajectory. We take t0 = 0 by convention. For
periodic solutions, we also have zm = z0. This gives

� = (t1, . . . , tm, z0, . . . , zm−1). (5)

Suppose there are ne points (t, z) at which �init or
�term is equal to zero. Let σ1, . . . , σne denote the indices
of these burst event points. In the simplest situation for
burst periodic orbits, ne = 2.

The shooting map F : R
(zdim+1)·m × R

p → R
zdim·m+ne

is defined as:

F(t, z, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

	(z0, t1) − z1

	(z1, t2 − t1) − z2
...

	(zm−1, tm − tm−1) − z0

�σ1(zσ1)
...

�σne
(zσne

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where 	 is the flow map for the system and the �σi

correspond to burst initiation or termination defining
functions as appropriate (Section 2.2). For notational
convenience we have suppressed the λ dependence of 	

and �. Burst solutions to the ODE correspond to zeros
of the equation

F
(
�(λ), λ

) = 0. (7)

The first m components of Eq. (7) say that � is a
periodic solution to the ODE. The last ne components
of Eq. (7) specify that the points (tσi , zσi), i = 1, . . . , ne

are burst event points.
Differentiating Eq. (7) with respect to parameters λ

gives:

D�F · Dλ� + DλF = 0. (8)

Dλ�, the derivative of the solution trajectory with
respect to parameters, is the quantity of interest. While
closed form expressions for the flow maps 	(zi, ti+1 −
ti) in Eq. (6) are not available, we can use automatic dif-
ferentiation and Taylor series integration to compute
both 	 and the derivatives of 	 with respect to phase
space variables and to parameters. Using automatic
differentiation allows us to compute these derivatives
to high accuracy, essentially to the same accuracy as 	.
Thus we can compute D�F and DλF to high accuracy.
This in turn allows us to accurately compute Dλ� by
solving for Dλ� in Eq. (8), provided that D�F is square
and non-singular. Unfortunately F as defined in Eq. (6)
is not square. However, the situation can be remedied
by appending the tangent vectors which correspond
to sliding non-event mesh points along the periodic
orbit. Let f (zi) denote the (full) vector field at point
zi. Tangent vectors for sliding all mesh points along the
orbit are given by:

v0 = (
f (z0)

T , 0, . . . , −1, −1, . . . , −1, 0
)T

,

v1 = (
0, f (z1)

T , . . . , 0, 1, 0, . . . , 0
)T

,

...

vm−1 = (
0, . . . , f (zm−1)

T , 0, . . . , 1, 0
)T

. (9)

See Guckenheimer and Meloon (2000). Let
ρ1, . . . , ρm−ne denote the indices of non-event points.
Then appending vT

ρ1
, . . . , vT

ρm−ne
to D�F gives a
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square matrix. Letting Di = Dz	(zi, ti+1 − ti) and
f̂i = f (	(zi−1, ti − ti−1)) we have

D�F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 −Id f̂1

. . .
. . .

−Id Dm−1 f̂m

∇�T
σ1

. . .

∇�T
σne

vT
ρ1

. . .

vT
ρm−ne

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

The Di and Id blocks lie in R
zdim×zdim.

It can be shown that D�F has full rank when eval-
uated at a periodic orbit with transverse events and a
single multiplier of modulus 1. The interested reader is
referred to the Appendix for details. Provided that the
periodic orbit is not undergoing a bifurcation and the
events are transverse, we can compute Dλ� by

Dλ� = −(D�F)−1 DλF. (11)

Zeros of F correspond to periodic burst solutions to
the ODE. There are different possibilities for finding
�(λ) which satisfy Eq. (7). We found a simple shooting
method to work well here. A Poincare cross-section
was placed based upon a slow variable value during
the quiescent phase, and zeros of the return map were
found by Newton’s method. Finite differences were
used to compute the Jacobian of the return map. After
a periodic orbit was located, Taylor series integration
with automatic differentiation was used to compute the
derivatives of the flow around the periodic orbit, and
thus to obtain the parameter sensitivities of the trajec-
tories (11). The alternative of using finite differences to
compute these sensitivities is less accurate.

Parameter sensitivities give information on the rela-
tive importance of different parameters in determining
a trajectory characteristic. This information can be ex-
pressed in terms of scaled parameter sensitivities. Let ξ

be a trajectory characteristic of interest, λi a parameter,
and λ̄i the characteristic scale of λi. Then ∂ξ

∂λi
· λ̄i is

the scaled sensitivity of ξ to λi. The scaled sensitivi-
ties measure the relative effects of small proportional
changes in the parameters. This information highlights
changes that have a large effect on ξ . Infinitesimal
parameter changes in directions normal to Dλ� leave
ξ unchanged.

2.4 PreBötzinger complex

2.4.1 The model of Butera, Rinzel, and Smith

Cells in the pBC contain a number of different ion
channels, not all of which are necessary for endogenous
bursting. Butera et al. (1999) developed a Hodgkin–
Huxley style model for pBC cells which includes a
minimal set of currents: a fast sodium current INa,
a delayed rectifier potassium current IK, a persistent
sodium current INa(P), and a leak current IL. The model
equations are:

Cv̇ = −INa − IK − INa(P) − IL (12)

INa = gNam3
∞(1 − n)(v − vNa) (13)

IK = gKn4(v − vK) (14)

INa(P) = gNa(P)m̂∞h(v − vNa(P)) (15)

IL = gL(v − vL). (16)

The membrane potential is given by v, and m, n, m̂,

and h are gating variables (Table 1). m and n are activa-
tion variables for the fast sodium and delayed rectifier
potassium channels, while m̂ and h are the activation
and inactivation variables for the persistent sodium
channel. The variable n also serves as the inactivation
variable for the fast sodium channel. Equations for the
gating variables share a common form:

ẋ = x∞ − x
τx

(17)

x∞(v) = 1

1 + exp
(

v−θx
σx

) (18)

τx(v) = τ̄x

cosh
(

v−θx
2σx

) . (19)

Each gating variable is associated with three pa-
rameters, θ, τ̄ , and σ . x∞ denotes the steady state
value for gating variable x when the voltage is held
fixed. θ is the half-activation value (x∞(θ) = 1

2 ), and
σ gives the steepness of the steady state activation
curve when evaluated at θ . The sign of σ indicates
whether the steady state value x∞ increases (negative
σ ) or decreases with voltage. For a fixed voltage, gating

Table 1 Phase space variables for system (12–19)

v Membrane potential (mV)
t Time (ms)
m Fast sodium activation
n Potassium activation and fast sodium inactivation
m̂ Persistent sodium activation
h Persistent sodium inactivation
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Table 2 Parameters for system (12–19) (Butera et al. 1999)

C Membrane capacitance 21 pF
gNa Maximal fast sodium conductance 28 nS
vNa Fast sodium reversal potential 50 mV
θm m half-activation −34 mV
σm m time scale half-width −5 mV
gK Maximal potassium conductance 11.2 nS
vK Potassium reversal potential −85 mV
θn n half-activation −29 mV
σn n time scale half-width −4 mV
τ̄n n time scale constant 10 ms
gNa(P) Maximal persistent sodium 2.8 nS

conductance
vNa(P) Persistent sodium current reversal 50 mV

potential
θm̂ m̂ half-activation −40 mV
σm̂ m̂ time scale half-width −6 mV
θh h half-activation −48 mV
σh h time scale half-width 6 mV
τ̄h h time scale constant 1 × 104 ms
gL Maximal leak conductance 2.8 nS
vL Leak reversal potential −60 mV

variables approach their steady state values x∞ expo-
nentially at a rate τ(v). The value of τ(v) is given by a
bell-shaped curve with peak of height τ̄ centered at θ

and half-width given by σ (Butera et al. 1999).
Table 2 lists the units and default values of the

parameters for system (12–19). Butera et al. (1999)
also include an external applied current and a tonic
excitatory synaptic current. We omit these because they
can be absorbed into the leak current.

2.4.2 Empirical burst data and preBötzinger
neuromodulation

Viemari and Ramirez (2006) measured burst char-
acteristics for synaptically isolated pBC pacemaker
cells, both under control conditions and in the pres-
ence of norepinephrine. Norepinephrine is a respira-
tory system neuromodulator that plays an important
role in responses to elevated carbon dioxide levels
(Kinkead et al. 2001). Different effects were observed
for Cd2+-sensitive versus Cd2+-insensitive pacemakers.
Bursting in Cd2+-sensitive cells is calcium dependent,
whereas Cd2+-insensitive bursting is thought to rely
upon the persistent sodium current. Norepinephrine
altered Cd2+-insensitive pacemaker burst period, but
did not affect burst duration. In contrast, Cd2+-sensitive
pacemaker burst duration was modulated but burst
period was unaffected. Both α1 and α2 noradren-
ergic receptors affect respiratory output through G

protein coupled pathways (Hille 2001; Johnson et al.
1994; Viemari and Ramirez 2006). Norepinephrine
acts on synaptically isolated Cd2+-sensitive pacemak-
ers through an α1-receptor mediated effect on calcium
dependent channels (Viemari and Ramirez 2006). The
modulatory target for Cd2+-insensitive pacemakers is
not known. The empirical data is given in Table 3. We
use our optimization algorithms to fit Butera et al.’s
model to the data of Viemari and Ramirez. As system
(12–19) does not include calcium, we focus on fitting the
Cd2+-insensitive data.

Many pBC neuromodulators affect K+ channels, of-
ten through G protein coupled pathways. The binding
of serotonin to 5-HT1A receptors activates inward rec-
tifier potassium channels Kir (Richter et al. 2003). KATP

channels in the plasmalemma are involved in short term
respiratory depression following hypoxia (Haller et al.
2001), and mitochondrial KATP channels are conjec-
tured to play a role in long term facilitation following
repeated hypoxic episodes (Mironov et al. 2005). Sero-
tonin binding of 5-HT4 receptors also affects Ih activity
via cAMP-mediated phosphorylation (Bickmeyer et al.
2002). Brain derived neurotrophic factor (BDNF) also
modulates Ih. Thoby-Brisson et al. (2003) showed that
BDNF application both decreased Ih conductance and
shifted Ih activation curves to more hyperpolarized
voltages in neonatal mice. The pH-sensitive TASK
channels are another group of K+ channels which are
modulatory targets in the pBC (Washburn et al. 2003,
2002). TASK-1 and TASK-3 channels are expressed in
the rat pBC (Washburn et al. 2003). These channels
are sensitive to pH and to inhalation anesthetics such
as halothane (Washburn et al. 2003), both of which
influence the breathing rhythm. The conductances of all
of these currents are dominated by potassium, and thus
their reversal potentials are close both to one another
and to the resting potential for pBC cells. This suggests
modeling these currents by approximating them with an
effective leak current (Guckenheimer et al. 2005), and
motivates using the leak parameters gL, vL in system
(12–19) as active optimization parameters.

Table 3 Empirical data for Cd2+-insensitive pacemakers

Control Norepinephrine

Burst duration (s) 0.44 ± .02 0.52 ± 0.05
Frequency (Hz) 0.22 ± 0.05 0.41 ± 0.06
Mean period (ms) 4,546 2,439

Burst period differs between the control and norepinephrine
conditions, but the difference in burst duration is not significant.
From Table 4 of Viemari and Ramirez (2006)
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2.5 Optimization algorithm implementation

The optimization algorithms were implemented using
Matlab’s optimization toolbox. Results in this paper use
the Levenberg–Marquardt algorithm. Objective func-
tion gradients were computed using ADMC++ (Phipps
2003), an automatic differentiation package for Matlab.
The value of δ in Eq. (4) determines the size of the
neighborhood of M0. This choice will depend upon the
separation of time scales in the system. For system (12–
19), we take δ = 1 × 10−6. With this value for δ, system
(12–19) is insensitive to the choice of S in Eq. (4). We
used (3.33, 1.7) for the diagonal entries of S here, but
very different choices of S gave burst timings which
differed negligibly.

3 Results

The periodic bursting trajectory for system (12–19) with
parameter values given in Table 2 is shown in Fig. 2(a).
The located burst events using Eqs. (3) and (4) are

marked by x’s. The calculated burst period was 6,846
ms, and burst duration 845 ms.

A common empirical definition of burst duration is
width at half-maximal amplitude. Figure 3(a) compares
the burst duration for system (12–19) using this defini-
tion versus using the initiation and termination defining
equations (3–4). The leak conductance gL is varied on
a fine mesh, with all other parameter values given in
Table 2. As gL increases from 2.74 to 2.745 the number
of spikes decreases by 1. The change in spike number
results in an obvious discontinuity in burst duration
when using the width at half-maximal amplitude defi-
nition. Under this definition the burst duration is also
quite flat following the peak. Burst duration changes
more smoothly using the geometric defining equations,
and is less flat following the peak.

Figure 3(b) compares burst duration using these two
definitions over a wider range of gL values. The mean
difference between the two burst durations is 213 ms.
Adding this mean difference to the amplitude-based
burst duration is a crude approximation of the geo-
metric burst duration. Figure 3(c) shows the relative
error of the shifted amplitude burst duration from the
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Fig. 2 Four bursting periodic orbits for system (12–19). Burst initiation and termination events are marked by x’s. (a) Default
parameter values, Table 2. (b) Set 1, Table 4. (c) Control 1, Table 4. (d) NE 1, Table 8
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Fig. 3 (a–c) Comparison of burst durations calculated for system (12–19) across a range of gL values using the geometric burst defining
equations (3–4), versus the width at half-maximal amplitude definition. All other parameter values are given in Table 2. (a) Burst
duration comparison on a fine gL mesh near where a change in spike number occurs. (b) Burst duration comparison for a wider range
of gL values on a coarser mesh. (c) BDgeom−BDamp−c

BDgeom
plotted against gL, where BDgeom is the geometric burst duration, BDamp the

amplitude-based burst duration, and c = 213 ms. See text. (d) Burst period plotted against gL

geometric burst duration. The calculated relative errors
are less than 6%. The burst period ranges from 3,025 ms
to 9,220 ms over the gL values considered in Fig. 3(b)
and (c). This is depicted in Fig. 3(d).

3.1 Control data fits

A sequential approach to fitting the burst character-
istics reported for Cd2+-insensitive pacemakers in the
control setting (see Table 3) was used. This entailed first
matching the burst period, and then optimizing burst
duration while maintaining a good fit for the period.
This was done by first using Eq. (1) with X equal to the
burst period and penalty weight w = 0, and then setting
X to the burst duration, Y the period, and w equal to
the reference burst duration.

The leak parameters affect burst period (Butera
et al. 1999) and are a likely target of modulation (Sec-
tion 2.4.2). Thus (gL, vL) were selected as the initial
active optimization parameters. The observed mean
control burst period was 4,546 ms and burst duration
averaged 440 ms. We started with an initial burster at

(gL, vL) = (2.8, −59.3) with period 4,308 ms and burst
duration 797 ms. Using our optimization algorithms to
fit burst period alone resulted in the parameter values
labeled Set 1 in Table 4. The period matches the em-
pirical observations very closely, but the burst duration
of 787 ms is longer than the actual 440 ms observed in
the control conditions. The voltage trace for Set 1 is
shown in Fig. 2(b). The Set 1 parameter values were
taken as the starting point for a new optimization using
the log penalty function on the period [Eq. (1)]. The
parameter sensitivities for the Set 1 burster were used
to aid in active parameter selection. Table 5 lists the
scaled sensitivities computed using automatic differ-
entiation, together with their rankings by magnitude.
The rankings give the index after sorting by magnitude
in descending order. We say that a parameter has a
high period sensitivity ranking if the period sensitivity
to this parameter is large compared with other period
sensitivities. High ranking sensitivities correspond to
small indices.

A heuristic for adjusting burst duration while keep-
ing the period unchanged is to look for parameters
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Table 4 Two parameter sets for system (12–19) obtained from optimization

Active optimization parameters Period (ms) Burst duration (ms)

Set 1 gL = 2.8313 vL = −59.3099 4,546 787
Control 1 θm = −34.1159 θn = −27.2325 4,548 440

σn = −4.3890 τ̄n = 9.3977
σh = 5.1783

Set 1 resulted from attempting to match the period of Cd2+-insensitive pacemakers in the control setting (Table 3), with active
parameters gL, vL and initial active parameter values (2.8, −59.3). Control 1 the output from attempting to match both period and
burst duration for Cd2+-insensitive pacemakers in the control setting, starting from Set 1 with active parameters θm, θn, σn, τ̄n, σh. All
other parameter values given in Table 2. X=period, w = 0 in Eq. (1) for the Set 1 fit. For Control 1, X=burst duration, w = 440, and
Y=period

which affect burst duration more strongly than period.
This means using parameters with higher burst rank
than period rank. The parameters θm, σm, θn, σn, τ̄n,

and σh all fit this description. The parameter σm was
discarded because of its low burst sensitivity ranking.
Using the remaining five active parameters with objec-
tive function (1) resulted in the parameter set labeled
as Control 1 in Table 4. Essentially a perfect fit was
obtained. The voltage trace is shown in Fig. 2(c).

As an alternative, we select the parameters of the
persistent sodium current as active parameters. The
persistent sodium current parameter values in system
(12–19) are uncertain, motivating use of the INa(P) pa-
rameters for optimization. The parameter set labeled
Control 2 in Table 6 shows the results of optimiz-
ing over all the INa(P) parameters. Again a perfect fit
was obtained. Figure 4(a–b) shows the discrepancies
in period and burst duration over the course of the
optimization for Control 2. Convergence occurred after
11 iterations.

In both Control 1 and 2 the relative change in σh

over the course of the optimization was greater than
that for the other active parameters, suggesting that
σh is important for determining burst characteristics.
This was examined further by starting from Set 1 and
repeating the optimization using a smaller subset of the
INa(P) parameters which included σh. Control 3 shows
the results using (θh, σh), and Control 4 the results from
(gNa(P), σh) as the active optimization parameters. The
resulting fits were substantial improvements from the
initial burster corresponding to Set 1: burst duration
discrepancies were within 10% for Control 3 and 18%
for Control 4, while the period remained within 1%
of the empirical observations. Burst duration in the
presence of norepinephrine was 520 ms, which was not
significantly different from the control burst duration of
440 ms (Table 3; Viemari and Ramirez 2006). The fits
from Controls 3 and 4 both deviated less than this from
the control burst duration.

Table 5 shows that the relative influence of the
potassium current parameters is greater on the burst
duration than on the period. Control 5 in Table 6
shows the result of including τ̄n together with σh in the
active optimization parameters. Both τ̄n and σh changed
significantly over the course of the optimization, which
yielded an excellent fit.

Neuromodulators often act by altering conduc-
tances. This possibility was examined by optimizing
over all conductances. The resulting conductance val-
ues are given in Control 6 of Table 6. A perfect fit was
obtained. The slow conductances gNa(P) and gL experi-
enced the greatest relative change over the course of
the optimization. The potassium conductance gK also

Table 5 Parameter sensitivities for the Set 1 burster (Table 4)

Parameter Scaled sensitivities T rank Burst rank

∂T
∂λ

∂(tterm−tinit)
∂λ

gNa −8.11 × 102 −6.16 × 102 17 17
vNa −8.09 × 102 −7.19 × 102 18 16
θm 1.42 × 103 −2.21 × 103 15 10
σm 5.61 × 102 −8.03 × 102 19 15
gK −2.20 × 103 −1.28 × 103 13 11
vK 4.83 × 103 3.53 × 103 9 7
θn 1.18 × 104 6.87 × 103 7 3
σn 1.33 × 103 5.10 × 103 16 5
τ̄n −1.88 × 103 −2.67 × 103 14 8
gNa(P) −2.15 × 104 9.44 × 102 5 14
vNa(P) −1.07 × 104 5.92 × 102 8 18
θm̂ 1.26 × 105 −10.62 2 19
σm̂ 3.54 × 104 5.79 × 103 4 4
θh −5.96 × 104 8.05 × 103 3 2
σh 3.59 × 103 4.01 × 103 11 6
τ̄h 2.79 × 103 1.24 × 103 12 13
gL 2.07 × 104 −1.24 × 103 6 12
vL −1.31 × 105 −2.27 × 104 1 1
C 3.63 × 103 2.21 × 103 10 9

T=period, tterm − tinit=burst duration. Scale factors correspond to
the parameter values in Table 2
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Table 6 Obtained fits for
system (12–19) to
Cd2+-insensitive pacemaker
data in the control setting
(Table 3)

Initial parameters correspond
to Set 1 in Table 4. X=burst
duration, Y=period, w = 440
in Eq. (1) for all fits

Active optimization parameters Period (ms) Burst duration (ms)

Control 2 gNa(P) = 2.7880 vNa(P) = 50.0004 4,546 440
θm̂ = −39.9066 σm̂ = −5.8644
θh = −48.1844 σh = 4.8049
τ̄h = 1.0000 × 104

Control 3 θh = −48.9104 σh = 5.1514 4,531 482
Control 4 gNa(P) = 2.6539 σh = 5.1579 4,516 516
Control 5 τ̄n = 6.1802 σh = 4.2717 4,466 446
Control 6 gNa = 29.0386 gK = 16.2096 4,546 440

gNa(P) = 5.3177 gL = 5.7035
Control 7 gNa(P) = 6.9680 gL = 6.8818 4,584 483
Control 8 gL = 3.1510 vL = −58.5762 4,952 638

experienced a large relative change of 45%, whereas
the fast sodium conductance changed by less than 4%.
Optimizing over the slow conductances alone resulted
in a good fit to the control data, as given by Control 7.

Leak channel modulation is one of the primary
known modulatory mechanisms in the pBC (Section
2.4.2). However, using (gL, vL) as active parameters to
try to fit the control data from Set 1 resulted in a poor
fit, labeled Control 8 in Table 6. The final burst duration
was 638 ms, much greater than the desired 440 ms.

Of the fits reported in Table 6, the Control 8 period
was also the farthest from the mean observed control
period.

The Control 1–8 fits were also performed with finite
differences, both using Taylor series integration and
Matlab’s ode15s solver. The Controls 2–7 fits were
very similar irrespective of the derivative method. The
finite difference fits for Control 1 were worse than the
fit using automatic differentiation, with final periods of
3,127 (ode15s) and 3,128 (Taylor) ms and final burst

2 4 6 8 10
10

 –10

10
 –8

10
 –6

10
 –4

10
–2

10
0

10
2

10
4

Iteration

|B
ur

st
 d

ur
at

io
n 

di
ffe

re
nc

e|

2 4 6 8 10 12 14 16

10
0

10
2

10
–2

10
–4

10
–6

10
–8

Iteration

|B
ur

st
 d

ur
at

io
n 

di
ffe

re
nc

e|

(a) (c)

2 4 6 8 10

10
0

10
–8

10
–10

10
–6

10
–4

10
–2

10
2

Iteration

|P
er

io
d 

di
ffe

re
nc

e|

2 4 6 8 10 12 14 16
10

–8

10
–6

10
–4

10
–2

10
0

10
2

10
4

Iteration

|P
er

io
d 

di
ffe

re
nc

e|

(b) (d)
Fig. 4 Progress of two optimization runs. (a–b) Optimization run resulting in Control 2, Table 6. X=burst duration, Y=period in
Eq. (1). (c–d) Optimization run resulting in NE 6, Table 8. X=period, Y=burst duration in Eq. (1). Time measured in milliseconds
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Table 7 Parameter sensitivities for the Control 1 burster
(Table 4)

Parameter Scaled sensitivities T rank Burst rank

∂T
∂λ

∂(tterm−tinit)
∂λ

gNa 5.22 × 102 1.31 × 102 17 16
vNa 7.56 × 102 2.23 × 102 16 15
θm 5.06 × 103 1.99 × 103 10 3
σm 1.66 × 103 4.41 × 102 12 10
gK −80.36 5.54 × 102 19 5
vK −9.23 × 102 −1.31 × 103 15 6
θn 1.37 × 103 −2.98 × 103 14 2
σn −6.44 × 103 −8.45 × 102 8 7
τ̄n 2.82 × 103 8.10 × 102 11 8
gNa(P) −1.77 × 104 −63.43 5 17
vNa(P) −8.82 × 103 −62.48 7 18
θm̂ 9.71 × 104 −1.61 × 103 1 5
σm̂ 2.05 × 104 −1.71 × 103 4 4
θh −6.19 × 104 −4.36 × 102 3 11
σh −5.71 × 103 −2.69 × 102 9 14
τ̄h 1.59 × 103 −40.62 13 19
gL 1.68 × 104 −3.32 × 102 6 12
vL −6.96 × 104 6.35 × 103 2 1
C 3.03 × 102 −2.86 × 102 18 13

Scale factors correspond to the parameter values in Table 2

duration 475 ms. Using finite differences and ode15s
for Control 8 resulted in a poor fit, with final period
5,025 ms and burst duration 656 ms. However, finite dif-
ferences and Taylor series integration performed well
for Control 8, with the final active parameter values
(gL, vL) = (3.5105, −57.2746) giving the desired period
(4,546 ms) and burst duration (440 ms). A complete
listing of the results using finite differences is given in
the Supplementary Materials.

3.2 Norepinephrine data fits

Norepinephrine application to Cd2+-insensitive pace-
makers caused burst period to shorten, but did not

significantly alter burst duration (Table 3, Viemari and
Ramirez 2006). We examined different mechanisms
for this change by starting from one of the obtained
fits to the control data discussed in Section 3.1, and
using our optimization algorithms to match the burst
characteristics under norepinephrine application. In
the objective function (1), X was set to the period, Y
the burst duration, and w the reference period. Parame-
ter sets Controls 1–2 and 5–6 in Tables 4 and 6 were all
excellent fits to the control data. We selected Control 1
as the starting point for optimization, but could just as
easily have used Controls 2, 5, or 6 as well.

Table 7 gives the burst characteristic sensitivities for
the Control 1 burster. The highest period sensitivity
rankings correspond to slow current (INa(P), IL) para-
meters. The parameters which have higher period sen-
sitivity rankings than burst duration sensitivity rankings
are gNa(P), vNa(P), θm̂, θh, σh, τ̄h, and gL. As conductances
are a common modulatory target, we selected gNa(P) and
gL from this set for optimization. The resulting output
is labeled as NE 1 in Table 8, and the voltage trace is
shown in Fig. 2(d). A perfect fit to the observed period
and burst duration was obtained. This importance of
the slow conductances was also demonstrated when all
of the conductances were used as active parameters,
as shown in NE 2 of Table 8. A perfect fit was again
obtained, with the largest relative changes in the active
parameter values occurring for gNa(P) and gL. Note that
the relative change in gK was small, in contrast to the
fit for burst duration with constrained period obtained
in Control 6 (Table 6). Varying the leak parameters
gL, vL was another way to match the observed burst
characteristics in the norepinephrine condition. The pa-
rameter set NE 3 in Table 8 shows the final parameter
values obtained using gL, vL as the active parameters.
An exact match was obtained, in contrast with attempts
to fit the control data using these parameters (Control
8). On the other hand, varying (τ̄n, σh) resulted in an
excellent fit to the control data. Attempting to fit the

Table 8 Obtained fits for
system (12–19) to
Cd2+-insensitive pacemaker
data after norepinephrine
application (Table 3)

Initial parameters correspond
to Control 1 in Table 4.
X=period, Y=burst duration,
w = 2, 439 for all fits

Active optimization parameters Period (ms) Burst duration (ms)

NE 1 gNa(P) = 3.1389 gL = 2.4504 2,439 520
NE 2 gNa = 28.0203 gK = 11.3725 2,439 520

gNa(P) = 2.9282 gL = 2.3317
NE 3 gL = 2.4125 vL = −58.7136 2,439 520
NE 4 gNa(P) = 3.0055 θm̂ = −40.1244 2,439 520

σm̂ = −6.3893 θh = −47.9642
σh = 5.1597 τ̄h = 1.0000 × 104

NE 5 gNa(P) = 3.6095 σh = 5.2835 2,439 520
NE 6 θh = −44.3301 σh = 4.7354 2,439 520
NE 7 τ̄n = 9.8538 σh = 5.3777 4, 528 494
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norepinephrine data using (τ̄n, σh) resulted in a poor fit
(NE 7).

Persistent sodium current parameters could also be
used to match the norepinephrine data. Perfect fits
were obtained when using gNa(P), θm̂, σm̂, θh, σh, τ̄h as
active parameters, as shown in NE 4, Table 8. An exact
match was still obtained when the active parameter set
was reduced to (gNa(P), σh), corresponding to NE 5, or
to (θh, σh), labeled NE 6 in Table 8. The discrepancies
in period and burst duration over the course of the
optimization for NE 6 are shown in Fig. 4(c–d).

The NE 1–7 fits were repeated using finite differ-
ences with both Taylor series integration and Matlab’s
ode15s solver. In all cases, the resulting fits were very
similar to those using automatic differentiation. These
results are given in the Supplementary Materials.

4 Discussion

Viemari and Ramirez (2006) observed that burst dura-
tion and period in pBC pacemaker cells can be con-
trolled independently of one another. Fitting Butera
et al.’s (1999) model to the empirical data shows some
of the ways this can be accomplished. Excellent fits
can be obtained in a number of ways. For example,
the control data can be fit by adjusting a collection of
activation and time constant parameters from all the
currents (Control 1, Table 4), all parameters of the
persistent sodium current (Control 2, Table 6), time
constant and activation parameters for potassium and
persistent sodium inactivation (Control 5), and conduc-
tances for all currents in the model (Control 6). The
results give insight into the relative importance of dif-
ferent parameters in shaping burst characteristics. For
example, Control 2 varied 7 parameters but the relative
change in σh was by far the largest over the course of the
optimization, suggesting that σh is important for alter-
ing burst duration when the period is constrained. This
is supported by subsequent optimization runs which in-
cluded σh in a smaller set of parameters (e.g. Control 5),
where excellent fits were still obtained. This steepness
at half-activation parameter has not been emphasized
in previous studies.

One of the objectives of this study was to examine
possible roles of the persistent sodium current in shap-
ing bursts. From Control 2 we see that INa(P) can modify
burst duration without changing burst period. The in-
activation kinetics appear to be particularly important.
The persistent sodium current can also modulate burst
period when the burst duration is constrained. This is
seen in NE 4, where a perfect fit to the norepinephrine

data was obtained by modulating INa(P) parameters.
However, here the largest relative changes occurred
for gNa(P) and θm̂, whereas σh changed much less. The
results for NE 1, 2, and 4 in Table 8 suggest that changes
in the slow conductances gNa(P), gL are a ready means
for modulating period independent of burst duration.
This is supported by the sensitivities in Table 7. The
parameters gNa(P), vNa(P), θm̂, θh, σh, τ̄h,and gL all have
higher ranking period sensitivities than burst duration
sensitivities. Within this set, the period is least sensitive
to σh and τ̄h. For both Set 1 and Control 1, the slow
conductances have period sensitivity rankings in the top
third (Tables 5 and 7).

On the other hand, for both Set 1 and Control 1
the potassium current parameters have higher burst
duration sensitivity rankings than period sensitivity
rankings. This is consistent with Ghigliazza and Holmes
(2004), who found that changing the potassium current
time scale in the SRK model (Sherman et al. 1988)
could strongly affect the number of spikes per burst
while only moderately affecting burst period. The fast
sodium activation parameters θm, σm also appear to
affect burst duration more strongly than period. The
period and burst duration are both very sensitive to
the leak reversal potential. This is true for both Set
1 and Control 1. Varying the leak parameters gL, vL

resulted in a perfect fit to the burst characteristics in
the presence of norepinephrine (NE 3). Recall that
the leak current can be viewed as an amalgamation of
currents with very slow time constants that change little
over a period of the bursting oscillations. Thus varying
the leak parameters is a likely modulatory mechanism
for altering burst period with minimal disturbance to
burst duration. It may be more difficult to use the leak
parameters to alter burst duration while respecting con-
straints on the period (see Control 8). Likely candidates
for modulating burst duration independently of period
include the delayed rectifier potassium currents (cur-
rents which operate on the middle time scale), and time
scale parameters for slow processes such as persistent
sodium current inactivation.

Much of the neural parameter estimation literature
uses global optimization or search methods (Bhalla and
Bower 1993; Foster et al. 1993; Prinz et al. 2003; Vanier
and Bower 1999). The methods presented here are local
methods which use the geometry underlying bursting to
introduce burst event defining equations. These defin-
ing equations are then used to fit burst characteristics.
This approach is new, combining optimization meth-
ods with fast-slow decompositions of model equation
burst trajectories. A complication is that the phase
space geometry is not empirically observable. Thus the
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burst termination event as defined in Eq. (4) is not
directly observable either. In practice the experimenter
will have to use some other measure to compute the
burst duration from the observed voltage trace. Simple
measures such as adding a constant to the width at half-
maximal amplitude may match the geometric defini-
tion reasonably well (Fig. 3). Detailed examination of
empirical burst duration measures and the quality of
parameter estimates that result from using geometric
features to fit these empirical measures will be very
helpful.

Using geometric features in optimization algorithms
can be useful even when biased parameter estimates
result. In many biological situations, the aim of mod-
eling is to gain insight into different mechanisms un-
derlying observed behavior, rather than finding a set of
equations and parameter values which exactly describe
the system. It is extremely rare to be in a situation
where the form of the ODE model is thought to be
completely correct. Currents which are known to be
present are regularly omitted from Hodgkin–Huxley
style models. For example, Butera, Rinzel, and Smith’s
model of the pBC omits calcium currents which are
known to exist. In this case some bias in the parameter
estimates is acceptable, as the estimation and sensitivity
analysis can still be used to tease apart the roles of
different currents in controlling features such as period
and burst duration. This is the approach we have taken
here. Modifications continue to be made to Butera et
al.’s model as new experimental data become available
(Rybak et al. 2004). The methods presented in this
paper can be used to aid model development and ex-
ploration.

One of the challenges of parameter estimation for
bursting models is that spike number often changes
through highly sensitive canard trajectories (Terman
1991). The geometric burst termination defining equa-
tion (4) is advantageous in this situation, as can be seen
in Fig. 3(a). As gL is increased from 2.74 to 2.745, the
final interspike interval increases until finally the last
spike is lost and the number of spikes decreases by one.
A depolarized voltage “shoulder” corresponding to a
canard persists after the spike number has changed.
The width of this shoulder decreases as gL is further
increased. The geometric defining equation reflects the
amount of time the trajectory spends near the saddle
portion of the critical manifold. As a consequence,
burst duration varies smoothly near where the change
in spike number occurs, and the burst duration slope
indicates whether the width of the voltage shoulder is
increasing or decreasing with the parameter. On the
other hand, the width at half-maximal amplitude defi-

nition of burst duration does not capture how the width
of the voltage shoulder varies following the change in
spike number. This results in both a large, discontinu-
ous jump in burst duration when spike number changes,
and in a nearly flat region following the change in
spike number. Both the jagged and flat portions of
the amplitude-based burst duration plot in Fig. 3(a)
can cause difficulties for gradient-based optimization
algorithms.

Several of the objective functions in the literature
involve spike number (Bhalla and Bower 1993; Vanier
and Bower 1999), and thus change discontinuously.
Other objective functions involve smoothing (Hayes
et al. 2005) or transforming (Tabak et al. 2000) the time
series data. The objective functions we use are sim-
ple ones based directly upon fundamental, biologically
relevant quantities such as period and burst duration.
This makes the progress of the optimization algorithms
easier to interpret. The algorithms converge after a
small number of iterations (Fig. 4). Different objective
functions besides Eq. (1) involving the period and burst
duration are possible, depending upon the available
data and goals of the research. The period and burst
duration can be combined with other features of the
voltage trace. Casey (2004) combined period and the
voltage time series for spiking data. The objective func-
tion there involved voltage least squares on a rescaled,
common time axis, together with a log penalty on pe-
riod discrepancies. A similar approach using both pe-
riod and burst duration together with the voltage time
series is possible for bursting data. Fitting the period
and burst duration can also serve as a way to generate
initial parameter values for subsequent optimization
involving more detailed features of the data.

An appealing feature of using gradient-based
optimization algorithms is that the parameter sensitivi-
ties involved are biologically relevant and easily inter-
preted. Here we have used automatic differentiation
and Taylor series integration to accurately compute
gradients, but it is worth noting that the geometrical
ideas are independent of the numerical method used. 1

There has been little published work on how gradient
accuracy affects optimization algorithm performance
for ODE models. More work is needed to examine
if and when substantial accuracy is necessary for the
optimization algorithms to work well. Our work with
the pBC and other bursting models indicates that the
numerical method can play a role when solutions are

1A Matlab implementation using finite differences is available in
the online Supplementary Materials.



J Comput Neurosci (2008) 24:358–373 371

highly sensitive to the parameters, for example near
where spikes are added or subtracted. We illustrate this
in the context of continuation of periodic orbits with
fixed period.

Let DλT denote the Jacobian of the period with
respect to parameters. The entries of DλT consist of
the period sensitivities. The kernel of DλT gives the
parameter tangent space of MT , the manifold of pe-
riodic orbits with fixed period T. This information can
be used in a predictor-corrector framework for contin-
uation. Figure 5 shows an example for continuation of
fixed period orbits in the (gL, vL) plane. The number of
spikes stays constant as we move from point A to B in
Fig. 5, but at point B we are close to adding a spike.
The degree to which period and burst duration sen-
sitivities differ when different numerical methods are
used depends upon how close the system is to adding
or dropping a spike. The relative error at point A of
scaled sensitivities calculated using finite differences
versus automatic differentiation is less than 3 × 10−4.
At (gL, vL) = (2.7183, −58.0967), the relative error
is O(1).

Canards associated with changes in spike number
occur in thin regions of parameter space. The frequency
that optimization algorithms land in these thin regions
and their effect on the optimization need further exami-
nation. Of the Controls 1–8 optimization runs described
in Section 3.1, the numerical method used had a large
effect on the final parameters in Controls 1 and 8.
The optimization algorithms likely encountered canard
trajectories during these two runs. Situations can also
arise where regions of the objective function landscape
are nearly flat. In this case high accuracy may be needed
for the optimization algorithms to properly make their
way towards a minimum. Tien (2007) describes a test
problem where using finite differences fails due to this
reason, but using automatic differentiation leads to the
global minimum.

Continuing families of periodic orbits is often itself
of interest. Comparing the trajectories from points A
and B in Fig. 5(a), we see that burst duration changes
significantly over MT [Fig. 5(b–c)]. The kernel of
Dλ(tterm − tinit) gives the parameter tangent space of
the manifold of periodic orbits with constant burst
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Fig. 5 Continuation of fixed period bursters for system (12–19) in the (gL, vL) plane. All other parameter values given in Table 2.
(a) The manifold MT of fixed period bursters. (b) Burst orbit at point A of MT . (c) Burst orbit at point B of MT
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duration. The intersection of these two manifolds gives
the submanifold of fixed period and burst duration
orbits.

Predictor-corrector continuation tends to follow
burst families with a fixed number of spikes (Fig. 5). On
the other hand, spike number does change during opti-
mization when using penalty functions such as Eq. (1)
to fit the control data. For example, Set 1 has 19 spikes
while Control 1 has 14 (Fig. 2). Figure 4 shows discrep-
ancies in burst duration and period over the course of
the optimization runs which terminate at Control 2 and
NE 6. For Control 2 the log penalty term in (1) involves
the period, whereas in the NE 6 optimization run burst
duration discrepancies are penalized. In both cases we
see that the penalty initially increases before eventually
decreasing. This initial increase allows for changes in
spike number.

We expect the idea of using geometrical features of
the ODE to aid in parameter estimation to be broadly
applicable. Bursting models typically have a separa-
tion of time scales which we utilize in our methods.
Combining basic dynamical features such as periodic
orbits into optimization algorithms has largely been
unexplored. In addition to the work presented here
on periodic bursting in the pBC, we have also used
this approach for transient bursts in the Hindmarsh–
Rose equations (Hindmarsh and Rose 1984). Focus-
ing on burst timing rather than on the entire voltage
trace greatly simplifies objective function landscapes
there (Tien 2007). Both Butera et al.’s model and the
Hindmarsh–Rose equations are square-wave bursters
with a single slow variable. It would be interesting to
adapt the methods used here to other types of bursters,
and to models with multiple slow variables. Application
to synaptically coupled cells is also of interest.
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Appendix

A periodic orbit is elementary if it has a single multiplier
of modulus one. Here we prove that D�F as given in
Eq. (10) has full rank when evaluated at an elementary
periodic orbit with transverse events.

Proposition 1 Let F be given by Eq. (6), and D�F by
Eq. (10). If D�F is evaluated at a periodic orbit with a
single multiplier of modulus 1, and <∇�σi , f (zσi)> �= 0
for i = 1, . . . , ne, then D�F has full rank.

Proof Let A denote the submatrix given by the first
m · zdim rows of Eq. (10), B consist of rows m · zdim +
1 through m · zdim + ne, and C denote the last m − ne

rows. B corresponds to the rows of D�F containing the
∇�σi terms, and C the vρ j elements of Eq. (10).

Guckenheimer and Meloon (2000) show that A
has full rank for elementary periodic orbits. Because
<∇�σi , f (zσi)> �= 0, ∇�σi �= 0 and the rows of B are
therefore linearly independent. We next show that
transverse events imply that each row of B has a
nonzero component in N(A). The inner product of
∇�σi with vσi , the basis element of N(A) corresponding
to sliding mesh point σi along the orbit, is equal to
< f (zσi), ∇�σi>. This is nonzero by the transversality
assumption. Let [A; B] denote the first m · zdim + ne

rows of D�F. We thus have that [A; B] has full rank.
Finally, note that a basis for the nullspace of [A; B] is
given by the basis elements of N(A) corresponding to
sliding non-event points along the periodic orbit. These
basis elements are the rows of C. 	


Similar results hold for transient burst solutions. In
this case � consists of the event time points together
with all the phase space points, with non-event time
points being treated as fixed. The shooting map F is
modified to remove the periodic boundary condition.
In this case the corresponding expression for D�F has
full rank when evaluated at a solution trajectory with
transverse events. Details are given in Tien (2007).
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