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Abstract

This paper presents an algorithm for computer verification of the

global structure of structurally stable planar vector fields. Construct-

ing analytical proofs for the qualitative properties of phase portraits

has been difficult. We try to avoid this barrier by augmenting nu-

merical computations of trajectories of dynamical systems with error

estimates that yield rigorous proofs. Our approach is one that lends

itself to high precision estimates, because the proofs are broken into in-

dependent calculations whose length in floating point operations does

not increase with increasing precision. The algorithm that we present

is tested on a system that arises in the study of Hopf bifurcation of

periodic orbits with 1:4 resonance.

1 Introduction

Poincaré initiated the geometric analysis of phase portraits of planar vec-
tor fields in his thesis [Poincare 1880]. The concept of structural stability
[Andronov and Pontryagin 1937] formalizes the idea that a phase portrait is
qualitatively unchanged by perturbations. On compact orientable two dimen-
sional manifolds, structurally vector fields have a finite number of equilibrium
points and periodic orbits, and all trajectories approach these in forward and
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backwards time [Peixoto 1962]. The phase portraits of these structurally sta-
ble vector fields can be classified by graphs with vertices at the equilibria and
periodic orbits, labeled by their stability type, and edges located near sepa-
ratrices that connect saddles to sinks and sources. Numerical computation
of the data contained in these graphs is often a routine matter and a reliable
one, unless the vector fields are near structural instability. On the other hand,
rigorous verification that numerically computed phase portraits are correct
has seldom been attempted or accomplished. This paper presents a general
approach to the problem of producing computer generated proofs for the cor-
rectness of phase portraits for structurally stable vector fields. This approach
was initiated by Salvador Malo [Malo 1993], and is further developed here.
The algorithms that we describe have been implemented and tested with a
few examples. They have been effective in producing the desired proofs, per-
haps far more so than other methods that have been attempted with these
types of problems.

The difficulty with producing rigorous bounds on the location of trajec-
tories lies in the growth of error estimates during highly iterative procedures.
Numerical integration algorithms of a typical trajectory may involve thou-
sands of time steps in such an iterative procedure. Controlling round off
errors of floating point computations in such a process is problematic. Suc-
cessful efforts to prove statements about the approximate location of trajec-
tories have tended to rely upon very high numerical precision of the numerical
integration as an antidote to the rapid growth of error estimates. Such precise
numerical analysis has been based on the use of interval arithmetic. The ba-
sic operations of interval arithmetic produce intervals that contain the range
of a function on rectangular domains. Our methods for proving properties
of planar vector fields also make use of interval arithmetic, but they do so
in a much more limited way. In particular, we refrain from iterative cal-
culations with interval arithmetic. Geometric structures are computed that
we expect to possess qualitative properties (like transversality) with respect
to the original vector field. Validation of these properties utilizes interval
arithmetic, but the computational complexity of each unit of interval arith-
metic computation is independent of time steps or the resolution with which
piecewise smooth objects are computed. When finer meshes are used to com-
pute these piecewise smooth objects, the number of independent estimates
that are performed with interval arithmetic increases, but the number of
arithmetic operations in each estimate remains unchanged.
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The problems that we discuss have been ones that have been very re-
sistant to analysis. For example, Hilbert’s sixteenth problem [Hilbert 1902]
concerning bounds for the number of limit cycles of planar polynomial vec-
tor fields appears to be far from solution, even for quadratic vector fields.
There are many examples of vector fields whose phase portraits have been
established through rigorous arguments, but the process of deriving a phase
portrait from an analytic expression of a vector field remains mysterious.
Indeed, the difficulty of the subject has been deceptive. Many published re-
sults and proofs have been later discovered to be flawed, including Dulac’s
work [Dulac 1923] on singular cycles of analytic planar vector fields and the
work of Petrovskii and Landis on Hilbert’s sixteenth problem. Analytic argu-
ments to reestablish the proof of Dulac’s Theorem are complex and delicate
[Il’yashenko 1991,Ecalle 1993].

The logical structure of our arguments may appear to be somewhat con-
fusing in relation to ideas of “constructive” mathematics, and a few com-
ments at the outset may help put the matter into perspective. We regard
the computer as an “oracle” which we ask questions. Questions are formu-
lated as input data for sets of calculations. There are two possible outcomes
to the computer’s work: (1) the calculations rigorously confirm that a phase
portrait is correct, or (2) the calculations fail to confirm that a phase por-
trait is correct. The application of interval arithmetic to a given input data
set involves a bounded number of operations that can be readily estimated.
Thus, this phase of the analysis does not suffer from a halting problem. In
the second case, one can change the input data and try again. The theory
that we present states that if one begins with a structurally stable vector
field, there is input data that will yield a proof that a numerically computed
phase portrait is correct. However, this fails to be completely conclusive
from an algorithmic point of view because one has no way of verifying that
a vector field is structurally stable in advance of outcome (1). Thus, if one
formulates a set of trials of increasing precision, the computer will eventually
produce a proof of the correctness of a phase portrait for a structurally sta-
ble vector field. Presented with a vector field that is not structurally stable,
the computation will not confirm this fact. It will only fail in its attempted
proof of structural stability. However, note that the numerical precursors to
the interval arithmetic calculations can also be expected to fail to produce
trial data as input for the interval arithmetic procedures. Pragmatically, we
terminate the calculation when the computer produces a definitive answer or
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our patience is exhausted.
The situation described in the previous paragraph is analogous to the

question of producing a numerical proof that a continuous function has a zero.
If a function changes sign, then computing values with sufficient precision
will determine that this fact. The intermediate value theorem completes the
proof that the function has a zero. If there is a zero with a local maximum or
minimum at a number that is not explicitly computable, then we will not be
able to determine the existence or non-existence of a zero by a computation
of fixed length. For example, the functions fε(x) = (x − π)2 + ε will be
indistinguishable by numerical calculations of fixed length for numbers ε of
sufficiently small magnitude. Numerical proofs that a function vanishes can
be expected to succeed only when the function has qualitative properties that
can be verified with finite precision calculations.

From an abstract perspective, the problem of verifying the correctness of
the phase portrait of a structurally stable planar vector field seems trivial:
simply increase the accuracy of error estimates for numerically computed
trajectories. On further reflection, the matter appears more complicated.
The numerical computations involve both truncation and round-off errors.
As truncation errors are reduced by decreasing step sizes, the number of
arithmetic operations and error estimates may grow due to the larger num-
ber of operations. Thus, simultaneous increase in the number of step sizes
and the floating point precision of individual operations might not produce
error estimates for trajectories that improve with increasing precision in the
calculations. The number of arithmetic operations in the individual com-
puter generated estimates used in this paper do not increase in length with
increasing precision. Thus, they are an improvement upon estimates for the
accuracy of a numerical integration. With increasing precision, more esti-
mates need to be made, but the number of arithmetic operations in each
remains fixed. Nonetheless, there is still a dependency of the proofs on nu-
merical integration since the input data for the verification routines comes
from numerical integration. For our procedures to work with vector fields
that approach the boundary of structural stability, the (unverified) accuracy
of this data must improve with increasing precision. It is the procedures for
producing proofs from accurate numerical integrations that are free from the
uncontrolled growth of round-off errors with increasingly fine discretizations.

This paper treats only the case of planar vector fields, though the meth-
ods are applicable with increasing complexity to higher dimensional systems.
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We do this for two reasons. First, structural stability is not a dense prop-
erty of in the space of vector fields on manifolds of dimension larger than
two. Second, the topological and computational complexity increase rapidly
with dimension unless the dynamics of a high dimensional system reduce to
those of a low dimensional system. This is particularly true when a sys-
tem possesses chaotic invariant sets. Faced with these difficulties, we have
endeavored to present our strategy in the simplest possible setting. As is
evident from the general lack of progress on Hilbert’s sixteenth problem, the
mathematical questions associated with this domain of problems are still
formidable. Farzaneh [1995] has succeeded in using methods based on the
strategy presented here to validate the existence of stable periodic orbits in
the three dimensional Lorenz system [Lorenz 1963].

2 Background

We recall facts about planar vector fields in this section. Two flows are
topologically equivalent if there is an orientation preserving homeomorphism
mapping trajectories of one onto trajectories of the other. A flow is said to be
structurally stable if C1 perturbations of the flow are topologically equivalent
to the original flow. Structurally stable flows on orientable compact two di-
mensional manifolds were characterized by Peixoto [Peixoto 1962], following
earlier work for flows on the disk by de Baggis [deBaggis 1952,Peixoto and
Peixoto 1959]:

Theorem 1 A Cr vector field on a compact two dimensional manifold is

structurally stable if and only if:

1. there are a finite number of equilibrium points and periodic orbits, each

hyperbolic

2. there are no trajectories connecting saddle points

3. the nonwandering set of the flow consists entirely of equilibrium points

and periodic orbits

Remark: We shall focus most of our attention on planar polynomial vec-
tor fields. Since the plane is not compact, one has the choice of studying
the properties of these vector fields in a compact region [Peixoto and Peixoto
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1959] or compactifying the vector fields to polynomial line fields on the pro-
jective plane or vector fields on the two dimensional sphere [Lefschetz 1957].
Since the concept of structural stability only deals with the geometry of the
singular foliations produced from a vector field or line field, we can apply
Peixoto’s theorem in this setting. In particular, we shall be concerned with
planar vector fields that have a finite number of equilibria and periodic or-
bits, each hyperbolic, and have no saddle connections. Ignoring the issues of
compactification, we shall call these vector fields structurally stable.

Definition 1 The spine of a planar vector field with hyperbolic equilibria

is the set consisting of its equilibrium points, periodic orbits and the stable

and unstable manifolds of the saddle points. Two spines are topologically

equivalent if there is a homeomorphism of the plane mapping one to the

other, preserving the stability types of equilibria and periodic orbits.

Theorem 2 If two planar vector fields with hyperbolic equilibria have topo-

logically equivalent spines, then they are topologically equivalent.

In accord with this result, the main thrust of our work is to determine the
topological equivalence class of a spine. The spine of a vector field is almost a
graph. The limit sets of the saddle separatrices are either equilibrium points
or periodic orbits. Spines fail to be graphs because separatrices tending
to periodic orbits have infinite length. Still, a spine is a finite union of
curves and equilibrium points that we shall regard as a combinatorial and
topological object. We shall say that we have (rigorously) determined the
phase portrait of a planar vector field if we have proved that its phase portrait
lies in a specific topological equivalence class. From a computational point
of view, what needs to be done is to verify the number of equilibria and
their stability types, the number and stability types of periodic orbits and to
confirm the topological location of the saddle separatrices in the complement
of the equilibria and periodic orbits.

The least tractable part of determining the phase portrait of a planar
vector field involves periodic orbits. Since all hyperbolic periodic orbits of a
planar system are either stable or unstable, they can be located by forwards
and backwards numerical integrations. The difficulty lies in confirming that
these numerical integrations are correct. There are three results about planar
vector fields that we shall use in these arguments:
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1. The Poincaré-Bendixson Theorem

2. Duff’s theory of rotated vector fields

3. Floquet theory for periodic orbits

The Poincaré-Bendixson Theorem is a fundamental result concerning the
limit sets of trajectories for planar vector fields. One statement of the theo-
rem is the following.

Theorem 3 (Hirsch and Smale 1974) A nonempty, compact limit set of

a C1 planar vector field, which contains no equilibrium point, is a periodic

orbit.

Our application of the Poincaré-Bendixson Theorem will be based upon
surrounding a numerically computed (un)stable periodic orbit with an an-
nulus that has the property that the vector field points transversally out of
or into the annulus on its boundary. We formalize this concept with the
following definition:

Definition 2 If X is a planar vector field and A ⊂ R2 is an annulus, then

A is called a transverse annulus if

1. The boundary of A is a piecewise C1 curve.

2. X is transverse to the boundary of A with X pointing out of A on both

boundary components or pointing into A on both boundary components

of A.

3. X has no equilibrium points in A.

At a point where the boundary of A is not smooth, transversality with
respect to the boundary is defined by the requirement that X or −X lie in
the sector bounded by the left and right tangents of the boundary curves
that points towards the interior of the annulus. The Poincaré-Bendixson
Theorem implies immediately that a transverse annulus contains a periodic
orbit of X. We make a further definition:

Definition 3 A transverse annulus A for X that contains a single periodic

orbit γ is called an isolating annulus for γ.
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Our computations of transverse annuli will be accomplished in two dif-
ferent ways, both relying on additional results about two dimensional vector
fields. The first of these methods is based upon the theory of rotated vector
fields [Duff 1953]. Consider the following family of planar vector fields:

ẋ1 = cos(θ)f1(x1, x2) − sin(θ)f2(x1, x2)

ẋ1 = sin(θ)f1(x1, x2) + cos(θ)f2(x1, x2)

that is obtained by rotating the vector field ẋ = f(x). Duff [1953] proves
that the flow of the rotated vector fields have the following properties:

1. The equilibria of the rotated vector fields are independent of θ.

2. If θ is not a multiple of π, then the flow of the rotated vector field is
transverse to that of ẋ = f(x), except at their equilibria.

3. Hyperbolic limit cycles of the rotated vector fields vary continuously
and monotonically with θ.

4. If θ1 − θ2 is not a multiple of π, then the limit cycles of the rotated
vector fields for θ1 and θ2 are disjoint.

Rotated vector fields will be used in the computation of regions that
bound saddle separatrices for structurally stable vector fields. Each stable
manifold of a saddle has α-limit set that is an unstable equilibrium or an
unstable periodic orbit. Similarly, each unstable manifold of a saddle has
ω-limit set that is a stable equilibrium or a stable periodic orbit. Our goal
is to verify that the α-limit sets of stable manifolds and the ω-limit sets of
unstable manifolds are the equilibrium points or periodic orbits found in a
numerical computation. Assume that we have computed an isolating annulus
for each periodic orbit and a disk surrounding each (un)stable equilibrium
that lies in its (un)stable manifold. The eigendirections of a saddle point in
a rotated family vary monotonically with the angle of rotation. Moreover,
the separatrices of one member of a rotated family are transverse to the
trajectories of other members of the family. Consider a segment σs of a
stable manifold defined on the time interval [−T,∞) or a segment σu of
an unstable manifold defined on the time interval (−∞, T ] that extend to
the isolating neighborhood U of its α or ω-limit set. For small rotations,
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the corresponding separatrix segments of the rotated vector fields will be
mutually disjoint and enter U . Therefore the separatrices of rotated vector
fields with small positive and negative rotation angles bound a strip S in the
complement of U so that S ∪U contains the separatrix of the original vector
field. Moreover, the trajectories of rotated fields that lie on the boundary
of S make a constant angle with the original vector field. Verifying the
transversality of the boundary of S suffices to prove that the original saddle
separatrix enters U . Use of rotated vector fields to rule out saddle connections
of a planar vector field has been discussed extensively by Malo [1993].

Duff’s theory implies that limit cycles of rotated vector fields for small
positive and negative angles of rotation will form the boundary of an iso-
lating annulus for a periodic orbit. Since the property of being a transverse
annulus is an open property (with respect to the C1 topology of its boundary
components), we expect that numerical approximations to the limit cycles of
rotated vector fields will form satisfactory boundaries for transverse annuli.
However, verification that an annulus is isolating for a limit cycle seems to
be more complex than verifying the transversality of the boundary compo-
nents, so we use another technique to verify uniqueness of the limit cycles in
annulus. The method entails the introduction of special coordinate systems
that we call Floquet coordinates.

Definition 4 Let γ be a limit cycle for a planar vector field X. An annular

coordinate system ψ : S1 ×R → R2 with coordinates (u, v) is called a system

of Floquet coordinates for γ if it has the following properties:

1. If x ∈ γ, then ψ is defined in a neighborhood of x, v = 0, v̇ = 0 and

u̇ = 1.

2. ∂ψ

∂u
and ∂ψ

∂v
are perpendicular at (u, 0).

3. For u fixed, ψ(u, v) is an affine function of v.

4. The variational equations (Dψ)−1(DX)(Dψ) of X in the ψ coordinates

are constant along the u axis ψ−1(γ).

The first three of these conditions state that ψ is a normal bundle to γ.

Theorem 4 A periodic orbit of a smooth vector field has a system of Floquet

coordinates.
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In the next section, we describe an algorithm for numerically computing
Floquet coordinates.

3 Numerical Computation of Floquet Coor-

dinates

As input for the interval arithmetic computations we describe later, we need
a representation of an approximate Floquet coordinate system. Let g : S1 →
R2 be a periodic orbit of the planar vector field X defined by the equation
ẋ = f(x). Denote by f⊥(x) the vector obtained by rotating f(x) by π/2.
A parametrization of the normal bundle of g is given by ψ(u, v) = g(u) +
k(u)f⊥(u)v for any smooth positive function k : S1 → R. Suitable choices
of k will make ψ−1 a Floquet system of coordinates in a neighborhood of g.
These k are determined by the following differential equation.

Theorem 5 If ẋ = f(x) defines a planar vector field X with periodic orbit

g and ψ(u, v) = g(u) + v exp(β(u))f⊥(u) is a parametrization of a tubular

neighborhood of g, then the divergence of X in the (u, v) coordinates is given

by

−
dβ

du
+
f⊥Dff⊥

f · f
−
fDff

f · f

along the periodic orbit v = 0.

Proof: The vector field X in the (u, v) coordinates is (Dψ)−1f ◦ψ. Setting
h = exp(β)f⊥, we compute

Dψ =

(

g′1(u) + vh′1(u) h1(u)
g′2(u) + vh′2(u) h2(u)

)

and

(Dψ)−1 =
1

det

(

h2(u) −h1(u)
−(g′2(u) + vh′2(u)) g′1(u) + vh′1(u)

)

with det = (g′1(u) + vh′1(u))h2(u) − (g′2(u) + vh′2(u))h1(u). Thus

(Dψ)−1f =
1

det

(

h2(u)f1 − h1(u)f2

−(g′2(u) + vh′2(u))f1 + g′1(u) + vh′1(u)f2

)
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and

div((Dψ)−1f ◦ ψ) =
∂

∂u

(

h2(u)f1 − h1(u)f2

det

)

+

∂

∂v

(

−(g′2(u) + vh′2(u))f1 + (g′1(u) + vh′1(u))f2

det

)

Along the periodic orbit v = 0,

(

g′1
g′2

)

=

(

f1

f2

)

and
det = h2f1 − h1f2 = exp(β)f · f

Therefore v = 0 implies −g′2f1 + g′1f2 = 0 and

div((Dψ)−1f ◦ ψ) =
∂

∂v

(

−g′2(u)f1 + g′1(u)f2

det

)

+
h′2f1 − h′1f2

det

=
−g′2

∂f1
∂v

+ g′1
∂f2
∂v

exp(β)f · f
+
h′2f1 − h′1f2

det

=
f⊥ ·Dff⊥

f · f
−
f ·Dff

f · f
− β ′

The last calculation uses that

∂

∂v
(f ◦ ψ) = Dfh

and
h′ = (exp(β)f⊥ ◦ ψ)′ = βh+ exp(β)(Dff)⊥

along the periodic orbit v = 0.
This theorem gives a variational equation that we use for the computation

of Floquet coordinates. In the Floquet coordinates, div((Dψ)−1f ◦ ψ) is
constant along the periodic orbit. Since the Lyapunov exponent λ is the
integral of this quantity along the periodic orbit, we must have

β ′ =
f⊥ ·Dff⊥

f · f
−
f ·Dff

f · f
−
λ

T
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where T is the period of the periodic orbit. If values for λ and T are known,
then the data needed for the computation of Floquet coordinates is obtained
by integration of this differential equation along with the equation ẋ = f(x).
If numerical integration of ẋ = f(x) together with its variational equation
ξ̇ = Df(ξ) produces an approximation of the limit cycle, its period and
Lyapunov exponent, then a further numerical integration of the equation for
β produces all of the data required for construction of a coordinate system
that approximates the Floquet coordinates.

4 Interval Arithmetic

The numerical data generated by numerical integrations of the original vec-
tor field, its variational equations, rotations and the associated equation for
constructing Floquet coordinates, are discrete representations of continu-
ous objects. Proofs of global properties for planar vector fields based on
transversality rely upon smooth functions. The transition from discrete data
to smooth functions is made by interpolation. Piecewise polynomial and ra-
tional functions will be created from the numerical data, and their properties
investigated with interval arithmetic. In all cases, the desired proofs will be
reduced to a set of computations showing that the ranges of the constructed
functions do not contain zero. This is “the” standard problem of interval
arithmetic, and there is substantial theory and practice is organizing these
range computations to be as accurate and efficient as possible. The rigorous
bounds of the range computations achievable in the implementation of the
algorithms described in this paper are important, but incidental to the the-
ory. This section assumes that if F is a rational function that is positive on
a rectangle in the plane, this fact can be verified using interval arithmetic
computations.

The numerical implementation of interval arithmetic is based upon a set of
functions Fj(I1, ..., Ik) whose arguments and values are intervals of real num-
bers. The intervals may have zero length. For each Fj, there is a real valued
function F̄j : Rk → R with the property that if xi ∈ Ii for i = 1 · · ·k, then
F̄j(x1, ...xk) ∈ Fj(I1, ..., Ik). For the interval arithmetic computations used in
this paper, it suffices to take Fj that correspond to the basic arithmetic opera-
tions of addition, subtraction, multiplication and division. Directed rounding
operations from the ANSI/IEEE 754-1985 Arithmetic Standard are used in
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an implementation of the functions Fj. To program the interval arithmetic
calculations, a lexical analysis of compound arithmetic expressions written
in the computer language C (produced by the Unix utility functions lex)
is transformed (with the Unix utility yacc) to programs built upon a small
library of interval arithmetic evaluations of the basic arithmetic operations.
The libraries and lex/yacc programs that we use were written by Salvador
Malo [1993].

There are two types of calculations that we perform with interval arith-
metic. In the first, the transversality of a vector field ẋ = f(x) to a piecewise
polynomial curve is computed. The piecewise polynomial curve γ(u) comes
either from numerical integration of a rotated vector field, or it comes from
an explicitly defined curve in a piecewise polynomial coordinate system. In
either case the transversality calculation for a polynomial vector field takes
the form of verifying that the functions γ ′(u) · f(γ(u)) do not vanish. If f
is polynomial, then this requires computation of the range of the piecewise
polynomial function γ′(u) · f(γ(u)). Algebraic methods could be used as
an alternative to interval arithmetic computation for this purpose; however,
this paper does not explore methods other than interval arithmetic for these
computations.

Our second type of interval arithmetic computation begins with piecewise
polynomial coordinate transformation of a vector field and then evaluates
expressions involving the derivatives of the vector field in the transformed
coordinates. If ẋ = f(x) is a polynomial vector field and (ψ)−1 is a polynomial
coordinate system for a region of the plane, then the transformed vector field
((Dψ)−1f ◦ ψ) and its divergence are rational functions. Therefore, interval
arithmetic evaluation of these expressions can be carried out as a sequence
of interval arithmetic evaluations of basic arithmetic operations. The goal
is to compute the integral of the divergence of a vector field in Floquet
coordinates. There is a small technical problem that we encounter here. If
the transformed vector field is only piecewise smooth, then its divergence
may be singular. Discontinuous changes in the vector field may contribute
to the stability of the limit cycle. To obtain a continuous transformed vector
field having divergence with only simple jump discontinuities, the coordinate
transformation should be C1.

To reduce the complexity of the divergence calculations, we rescale the
vector field slightly so that v̇ is identically 1. Thus a continuous line field
transverse to a periodic orbit is preserved, and the divergence of the vector
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field becomes ∂v̇/∂v. Using this approach, we can use C0 coordinate systems
since all that needs to be calculated is whether the flow expands or contracts
in the v coordinate direction.

We use coordinate patches that are based upon cubic interpolations of
the vector field and have total degree 4 in both coordinates. The cubic inter-
polations employed here rely upon the availability of the tangent direction
to trajectories from evaluation of the vector field. Let ẋ = f(x) be a smooth
vector field, and let p0, · · · , pn be n + 1 points obtained from application
of a numerical integration procedure with constant time step ∆ applied to
f . Construct a C1 cubic interpolating polynomial that passes through the
computed points pn and has derivatives f(pn) at these points. If the time
interval of this trajectory segment is translated so that its origin becomes
(2n+ 1)∆/2, then the domain of the function interpolating between pn and
pn+1 will be [−∆/2,∆/2]. The coefficients of this interpolating polynomial
a0 + a1x + a2x

2 + a3x
3 are given by

a0 =
1

2
(pn+1 + pn) −

∆

8
(f(pn+1) − f(pn))

a1 =
3

2∆
(pn+1 − pn) −

1

4
(f(pn+1) + f(pn))

a2 = frac12∆(f(pn+1) − f(pn))

a3 = −
2

∆3
(pn+1 − pn) +

1

∆2
(f(pn+1) + f(pn))

This interpolation formula is used to compute a piecewise cubic curve g(u)
approximating the numerically computed periodic orbit of the vector field
ẋ = f(x). A piecewise polynomial coordinate system ψ(u, v) = g(u)+ v h(u)
is then constructed where the curve h(u) has the form c(u) (g⊥)′(u) and
c(u) is the linear interpolation between the numerically computed values for
exp(β(pn) and exp(β(pn+1). Thus h and ψ are cubic functions of u and ψ is
affine in v. When computing the transformed vector field (Dψ)−1f ◦ ψ, the
common denominator of this rational function is det((Dψ)). To simplify our
calculations, the vector field is scaled so that the u component is identically
1. Thus the rescaled vector field is f̃ = (1, dv/du). The trajectories can
be parametrized by u and the lines given by constant u and varying v are
preserved by the flow of f̃ . Note that f̃ is still a rational vector field if f is
polynomial. The degree of f̃ is bounded by b = (deg(f) + 1) deg(ψ)− 1. To
demonstrate the existence of a periodic orbit of f̃ , it suffices to determine
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the sign of the v component of f̃ along curves defined by v = ±ε. If this
component never vanishes on the two components, but has opposite sign on
the two, then the Poincaré-Bendixson Theorem implies the existence of a
limit cycle in the annulus bounded by these two curves.

Since the functions h(u) have values determined by f(pn), h
′(u) may be

discontinuous as we move from one patch to the next. Thus the transformed
vector field may be discontinuous, and the derivative of its return map might
have contributions coming from the discontinuities in addition to the integral
of the divergence along trajectories. Nonetheless, the integral of the diver-
gence of f̃ determines whether segments parallel to the v axis are expanded
or contracted. Note that the divergence of f̃ is δ(u, v) = ∂(dv/du)/∂v. Flow-
ing from the boundary of one coordinate patch to the next, the integral of
δ(u, v) calculates the rate at which infinitesimal trajectory segments in the
v direction are contracted or expanded. If δ < (>) 0 does not change sign in
a neighborhood of the limit cycle, then all initial conditions are contracted
(expanded) towards each other in the v direction. In particular, only one
limit cycle can occur in the neighborhood.

5 An Example

We discuss the application of the procedure described in the previous section
to prove the existence and uniqueness of a limit cycle for the following cubic
vector field:

ż = exp(iθ)z − (γ + iα)z|z|2 + z̄3

with parameter values (θ, γ, α) = (1.0553, 0.09, 1.2). This family of vector
fields arises in the study of Hopf bifurcation of periodic orbits with charac-
teristic multipliers ±i [Arnold 1977]. There have been intensive numerical
studies of the dynamics displayed by this family [Beresovskaya and Khib-
nik 1980, Krauskopf 1993] but the system has resisted analytical attempts
to fully characterize its dynamics. In one region of the (θ, γ, α) parameter
space, the system has a pair of concentric limit cycles. Malo [1993] used
rotated vector fields to produce a pair of rigorously verified transverse annuli
for these limit cycles at the parameter values (θ, γ, α) = (1.0703, 0.1, 1.2).
Uniqueness of the limit cycles in each of these transverse annuli was not
proved. Malo also used rotated vector fields to prove the non-existence of
limit cycles for parameter values (θ, γ, α) = (π/4, 2, 3) by proving that there
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are strips containing trajectories that connect the four sinks to infinity and
to the source at the origin.

We study this family further by exhibiting an isolating annulus for a pe-
riodic orbit at the parameter values (θ, γ, α) = (1.0553, 0.09, 1.2) that are
close to those where there are a pair of limit cycles. The single limit cycle
at these parameter values has period 3.394537 and characteristic multiplier
−2.101615095. There are large segments in regions where the divergence of
the vector field is positive and large segments in regions where the diver-
gence of the vector field is negative. Figure 1 shows the limit cycle together
with the circle on which the divergence of the vector field is 0. Thus, es-
tablishing the stability properties of the limit cycle requires careful analysis.
We perform this analysis by computing a piecewise polynomial system of
approximate Floquet coordinates. The numerical integration of the vector
field is accompanied by solution of the variational equation that determines
the function β used in the construction of Floquet coordinates as well as the
solution of the “standard” variational equations that are used to determine
the characteristic multiplier of the trajectory. The numerical integrations
were performed with a fourth order Runge-Kutta algorithm with the step
size ∆ = 0.0001697265519 adjusted so that the length of the limit cycle was
20, 000 time steps. The data from these numerical calculations provided the
input for the calculation of the Floquet coordinate system.

The transformation to Floquet coordinates and calculation of the diver-
gence of the rescaled vector field was implemented in a C program that
employed interval arithmetic. Each segment of the numerically computed
limit cycle was approximated by a cubic curve g(u) whose tangent was the
(numerically) computed value of the vector field at the end points of the
segment. The normal bundle to this computed curve was parametrized in
the form g(u) + vk(u)g′(u) where k(u) is a linear function that interpolates
the values of exp(β(u)) numerically computed from the variational equations
for the vector field. In each segment of length ∆, we performed interval
arithmetic calculations to estimate the divergence of the vector field in the
annulus defined by |v| < 10−5. To estimate the range of the divergence
function more accurately, we partitioned the domain [−∆/2,∆/2] of u into
ten subintervals Ij and performed a single interval calculation of the di-
vergence for the rectangle (u, v) ∈ Ij × [−10−5, 10−5]. Over much of the
limit cycle these produce estimates of the divergence that lie in the range
[−0.63,−0.61]. Near the points where the limit cycle is farthest from the
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origin, the estimated range of the divergence becomes larger, with extreme
values in the interval [−0.780663,−0.444572]. Nowhere does the divergence
of the transformed vector field come close to the origin relative to its average
divergence −0.6191168619. We conclude that the vector field has at most
one limit cycle in the annulus |v| < 10−5. To prove the existence of a limit
cycle in the annulus |v| < 10−5, we performed interval arithmetic calcula-
tions of the v component of the transformed vector field on the boundary
components of the annulus. To obtain verification of the transversality con-
ditions in this coordinate system, we had to finely partition each segment of
the the piecewise cubic curve defining the boundary between two of its knot
points. Each segment was subdivided into 2000 subsegments. The computed
value of the u component of the transformed vector field before rescaling
is approximately 40, so the expected length of its v component is approxi-
mately 0.62 · 40 · 10−5 = 0.000248. The computed intervals lie in the range [-
0.000381,-0.0000836] on the boundary v = 0.00001 and [0.0000821,0.000380]
on the boundary v = −0.00001. Thus, the coordinate transformation to
Floquet coordinates produces an annulus in which the interval arithmetic
calculations prove that the vector field of this example has a unique limit
cycle in the isolating annulus.

To complete verification of the global properties of this phase portrait,
there are three remaining tasks:

1. prove that the α-limit set of the stable manifold of a saddle point is
the origin,

2. prove that the ω-limit set of the unstable manifold of a saddle point has
one separatrix tending to the periodic orbit and one separatrix tending
to a sink, and

3. prove that there is a trajectory connecting infinity to the periodic orbit.

For each of these tasks, we use rotated vector fields to find curves transverse
to the vector field that form corridors trapping the vector field in the appro-
priate region. In addition to the interval arithmetic calculations that proceed
in a similar fashion to those for establishing the existence of an isolating an-
nulus, it is also necessary to make local arguments about the properties of
the equilibrium points, and to estimate a region at region at infinity which
contains no periodic orbits.
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The radial component (żz̄ + ˙̄z)/2 of the vector field is positive inside the
disk of radius 0.67 centered at the origin, so all trajectories entering this disk
have the origin as α-limit set. The derivative of the vector field at the saddle
point located at approximately (0.567825, 0.43735) is approximately

(

1.38 −1.33
−2.05 −0.58

)

The eigenvalues are approximately 2.32 and −1.52, and the eigenvectors are
approximately (0.82,−0.58) and (0.42, 0.93). For rotation angles in the in-
terval (−0.1, 0.1), the eigenvalues remain well away from the imaginary axis
and the eigenvectors stay far from the coordinate axes. This implies that
initial conditions that are vertically above and below the saddle point and
initial conditions that are right and left of the saddle point can be used
to for the computation of corridors that will bound the saddle separatrices.
Points whose distance from the saddle is approximately 0.01 suffice for these
computations. Next we note that the divergence of the vector field is sym-
metric with respect to rotations, and a decreasing quadratic function of r
that vanishes on a circle near r = 1.655. Therefore, any limit cycle must
intersect the disk of this radius. Finally, we need an estimate for how wide
the isolating annulus is, so that we can determine when points are inside the
annulus. The highest point on the limit cycle occurs near (1.153, 2.96481).
Here the value of the vector field is approximately (4, 0) and the factor exp(β)
is abut 0.375. Therefore the width of the isolating annulus is about 0.000015.
These estimates sufficient data for creating corridors that connect the saddle
separatrices to their limit sets and infinity to the limit cycle.

In carrying out the interval arithmetic calculations, it is helpful to con-
sider the angles of rotation that can be used in computing the trajectories
that will form the corridor boundaries. The stringent limitations that we en-
counter are those associated with trajectories approaching the limit cycle. To
obtain trajectories that enter or leave the isolating neighborhood, the limit
cycles of the rotated vector field cannot separate the isolating neighborhood
from the trajectory. With a rotation angle of 10−5, the limit cycle intersects
the vertical line x = 1.153 near y = 2.96498. The difference is about an
order of magnitude larger than the width of the isolating neighborhood that
has been determined, so it is necessary to work with rotation angles that are
of the order of 10−6 to obtain trajectories that enter the isolating neighbor-
hood. With these small rotation angles the transversality verification for a
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curve g(u) computed from numerical integration of the rotated vector field
requires small steps. Performing these calculations by direct interval arith-
metic evaluation of the cross product of the tangent vector to g with the
vector field requires very small steps along the curve. If a piecewise linear
curve g is used, then the variation in the direction of f along an individual
curve segment should be comparable to the rotation angle ψ. For small ∆,
f(x + ∆) is approximately Dfx · ∆. From this we estimate the change in
angle along a curve segment to be

(

f⊥Dfxf

f · f

)

∆

Thus we expect that we need to take ∆ comparable to |Df |−1ψ. At (1.153, 2.96481)
near the limit cycle, Df is roughly 35. These estimates lead us to expect
that each circuit around the limit cycle for the corridor will require on the
order of 108 interval arithmetic evaluations. The transversality calculations
along the boundary of the isolating annulus used 8 × 107 steps, so the work
is comparable. The truncation and roundoff errors associated with these
calculations are still small relative to the transversality condition, but the
computations are lengthy. Thus, it would be helpful to find techniques that
will be more effective in determining the range of the functions whose zeros
signal the loss of transversality, but this was not necessary in confirming the
global structure of the specific vector field studied in this paper.
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Figure Caption: The phase portrait of the vector field ż = exp(i1.0553)z−
(0.09+i1.2)z|z|2+z̄3 showing the saddle point separatrices and one trajectory
accumulating at the limit cycle. Triangles denote sinks and the square is the
source at the origin.


