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Abstract. Many neural systems display adaptive properties that occur on time scales that are slower
than the time scales associated with repetitive firing of action potentials or bursting oscillations. Spike
frequency adaptation is the name given to processes that reduce the frequency of rhythmic tonic firing
of action potentials, sometimes leading to the termination of spiking and the cell becoming quiescent.
This paper examines this processes mathematically, within the context of singularly perturbed dynamical
systems. We place emphasis upon the lengths of successive interspike intervals during adaptation. Two
different bifurcation mechanisms in singularly perturbed systems that correspond to the termination of
firing are distinguished by the rate at which interspike intervals slow near the termination of firing. We
compare theoretical predictions to measurement of spike frequency adaptation in a model of the LP cell

of the lobster stomatogastric ganglion.

1. Introduction

Spike frequency adaptation is the gradual slow-
ing of the rate of firing in a neuron (Hille 1992).
This definition of spike frequency adaptation al-
lows multiple physiological bases. When spike
frequency adaptation leads to the termination of
spiking or to bursting oscillations, there are also
multiple dynamical mechanisms that may be as-
sociated with this termination. There has been
substantial interest in the qualitative classification
of bursting oscillations of electrophysiological sys-
tems (Rinzel 1987, Bertram et al. 1995, Wang and
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Rinzel 1995) based upon the theory of singularly
perturbed systems of differential equations and bi-
furcation theory of dynamical systems. These de-
scriptions have been formulated from the view-
point of singularly perturbed systems as “slowly
varying” dynamical systems. In this approach,
two time scales are identified in the models. The
faster time scale captures the dynamics associated
with periodic firing while the adaptive properties
are described by modulation of the firing that oc-
curs on the slower time scale. The slowly vary-
ing point of view fixes the unit time scale as a
fast time and regards adaptation as the movement
of parameters for the fast subsystem through its
parameter space. When the separation between
these time scales 1s infinite, the “frozen” system



is a family of vector fields in which the slowly
varying variables become parameters for the fast
subsystems that no longer evolve. To interpret
time series recordings that display spike frequency
adaptation in terms of the frozen system, the se-
ries can be divided into temporal epochs in which
the dynamics are governed by a particular attrac-
tor of the fast dynamical system. The transitions
between these attractors are bifurcations of the
frozen system. The same analysis applies to both
the termination of spiking through spike frequency
adaptation and to the repetitive terminations of
spiking that occur in bursting oscillations. In both
cases, the classification of bifurcations that termi-
nate a family of limit cycles can be used to eluci-
date the dynamical mechanisms underlying spike
termination.

Application of bifurcation theory to the anal-
ysis of transitions between spiking and quiescent
behavior of a neural system is a pattern recog-
nition problem. Bifurcations are associated with
characteristic features of time series from voltage
traces. Qualitative features of the traces such as
decaying or growing oscillations, action potentials
that overshoot or undershoot, etc. can be used
to establish which types of bifurcation are consis-
tent with the observations (Bertram et al. 1995).
Thus the classification of bursting oscillations pro-
ceeds in two stages: identification of significant
qualitative features in time series and association
of bifurcations with the identified complex of fea-
tures. This process 1s imperfect for a variety of
reasons, including ambiguous data and the possi-
bility that the identified features do not uniquely
determine a single underlying dynamical mecha-
nism. QOur thesis in this paper is that quantitative
analysis of sequences of interspike intervals pro-
vides additional information that can be used to
constrain the mechanisms underlying the termi-
nation of spiking. The methods are most useful
in situations where the active phase of an oscilla-
tion has a large number of action potentials. This
assumption is satisfied by generic systems in the
singular limit of widely separated time scales that
is used 1n the formulation of the qualitative the-
ory. The mathematical theory of singularly per-
turbed systems is currently inadequate to provide
rigorous foundations for our quantitative analysis.
There 1s a lack of theory describing the transitions

that occur in systems that have periodic attractors
in their fast subsystems; existing literature deals
primarily with transitions from stable equilibria of
the fast subsystems (Mishchenko and Rozov 1980,
Nejshtadt 1985). This paper outlines initial steps
toward such a quantitative theory, though we give
no pretense of mathematical rigor and minimize
the technicality of our mathematical descriptions.
Our ultimate goal is a reliable set of methods
that enable one to associate dynamical mecha-
nisms between periodic spiking and quiescent be-
havior in data from neural systems. Accomplish-
ing this goal requires an assessment of the robust-
ness of our data analysis methods when applied
to experimental data that is noisy. To examine
these questions, we study data from an isolated LP
neuron of the stomatogastric ganglion and a mod-
erately realistic conductance based model for this
neuron. There are some surprises that occur in the
analysis of the model neuron. We identify transi-
tion behavior in the model neuron distinctly dif-
ferent from that previously described. The tran-
sition is associated with subcritical Hopf bifurca-
tion, but it differs from the “Type III” bursting
behavior described by Rinzel (1987) and Bertram
et al. (1995). Tt also differs from the bursting os-
cillations with subcritical Hopf bifurcations stud-
ied by Rinzel and Troy (1982) and Ermentrout and
Kopell (1986). Aspects of the experimental data
that we analyze show features reminiscent of this
new Hopf bifurcation scenario. We give a brief de-
scription of this new type of transition and extend
our quantitative analysis to include this case.
Section 2 of this paper is a mathematical dis-
cussion of mechanisms by which periodic spik-
ing ceases in systems with two widely separated
time scales. We focus attention on cases in which
the interspike intervals increase without bound as
they approach the termination of spiking and the
separation between time scales becomes larger.
Extending the observations of Rinzel and Ermen-
trout (1989), we study the rate at which the inter-
spike intervals grow in terms of the ratio between
the time scales. Our analysis is applied to nu-
merical data from the model discussed in Rinzel
and Ermentrout (1989). In Section 3, we inves-
tigate a larger conductance based model based
upon voltage clamp data from the LP neuron of
the stomatogastric ganglion (Harris-Warrick et al.



1995, Buchholtz et al. 1992). In some parameter
ranges, we find that the dynamical mechanisms
for spike frequency termination discussed in Sec-
tion 2 fit the numerical data well, but there are
other regions in which we find additional mech-
anisms for spike frequency termination. These
new mechanisms entail subthreshold oscillations
whose growth rate increases from cycle to cycle
in the slowly varying system. Section 4 compares
the results of our numerical investigations with
measurements of interspike intervals from the LP
neuron of Panulirus interruptusin which spike fre-
quency adaptation leads to the termination of fir-
ing. In this section and the discussion in Section
5, we compare the experimental data with the dif-
ferent dynamical mechanisms for spike frequency
adaptation discussed in the paper and argue that
the subcritical Hopf mechanism introduced in this
paper fits some of the experimental data better
than the other scenarios we describe. Our conclu-
sions are tentative, but we demonstrate the ability
of our analysis to make distinctions among dy-
namical mechanisms for termination of spiking in
neuronal data.

2. Dynamical Systems with Multiple

Time Scales

Rinzel (1987) has emphasized the use of dynami-
cal systems with two time scales to model bursting
phenomena in electrically active cells. His analy-
sis and its subsequent extensions (e.g. Bertram et
al. 1995, Wang and Rinzel 1995) have not placed
much emphasis upon the rigorous or quantita-
tive analysis of systems with multiple time scales.
The theory that underlies such analysis is only
partially developed, and we develop it further to
describe quantitative properties of transitions in
multiple time scale systems that are subsequently
used to relate experimental data to bifurcation
mechanisms in models. Our focus is on scaling
properties of interspike intervals at transitions as-
sociated with homoclinic, saddle-node and Hopf
bifurcations. This section describes these mathe-
matics.

We study systems of differential equations in
R™*" of the form

z = ef(z,y)
y = g(z,y)
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A system of differential equations written in this
form 1is called a singularly perturbed vector field.
Here ¢ > 0 is a small parameter that explicitly
separates the time scales of two sets of variables,
the slow z variables, and the fast y variables. We
call the system with ¢ = 0 the frozen field. In
the frozen field, the slow x variables do not evolve
at all, but remain constant since £ = 0. The de-
pendence of the system on ¢ makes it possible to
study the behavior of the system for small ¢ in
terms of the frozen field. The system y = g(z,y)
is called the fast subsystem. In the frozen system,
x acts as a set of parameters for the fast phase
variables y while in the “thawed” system, the z
variables evolve on a slower time scale than the
fast variables. Thus we imagine that the fast vari-
ables approach an attracting state, but that this
attracting state changes slowly in time. If the at-
tracting state undergoes a bifurcation, then the
system has a transition from one type of attract-
ing state to another; in the examples we analyze
here, the process of adaptation leads to a transi-
tion between tonic spiking and quiescence.

In our application to neural systems, there are
several distinct time scales: the millisecond time
scale associated with action potentials, the 10-500
millisecond time scale associated with the period
of tonic firing, the 1 second time scale of bursting
oscillations, and a 10-100 second time scale associ-
ated with adaptive properties of the cell that leads
to termination of tonic spiking. Our slow time
scale will be the slow time scale of this adapta-
tion, and the frozen systems are capable of burst-
ing, spiking or quiescent behavior depending upon
the values of system parameters and slow vari-
ables. As has become customary in studies of
Hodgkin-Huxley like models of neurons, we regard
the fastest time scale (activation of the spike gen-
erating sodium channel) as instantaneous. The
slow variables are regarded as moving the fast
subsystem in an extended parameter space that
includes the slow variables, modulating the be-
havior of the system in a state dependent fashion.
Abrupt transitions between spiking and quiescent
behavior occur close to bifurcations of the frozen
system. Our goals are to classify “generic” cases of
this transition and to determine asymptotic prop-
erties of the lengths of interspike intervals as the
system undergoes the transition from tonic spik-
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Fig. 1. Diagrams of generic codimension one bifurcations
that lead to the birth or death of stable periodic orbits. In
each case, the parameter varies along a horizontal axis and
elements of phase portraits are drawn in vertical planes.
The equilibrium curves are labeled E and the families of
periodic orbits are labeled P. a) Hopf bifurcation, with a
family of periodic orbits emerging from a curve of equilib-
rium points. b) branches of stable and unstable periodicor-
bits collide in a saddle node of limit cycles. c) a homoclinic
bifurcation of a curve of saddle points. The stable and un-
stable manifolds of the equilibria, W*(E) and W%(E), pass
through each other in the homoclinic orbit H. Trajecto-
ries in W*(E) have arrows. The front of the surface P
of periodic orbits is shaded. d) a saddle-node in a cycle
bifurcation. A curve of equilibria is born inside a cylinder
formed from attracting invariant curves of the flow. These
equilibria destroy the periodic orbits, the invariant curves
then being formed from the unstable manifolds W*(E) of
the unstable equilibria. The insets give an alternate de-
piction of the systems. Equilibrium points (stable - heavy
line, unstable - dotted line) and extreme values of periodic
orbits ( stable - continuous line, unstable - dashed line) are
projected into a plane in which the horizontal coordinate
is the parameter and the vertical coordinate is one of the
phase space variables.

ing to quiescence. Similar transitions mark the
end of the active phase of bursting oscillations, but
on somewhat faster time scales than those associ-
ated with the spike frequency adaptation studied
in this paper.

The model analog of spiking behavior of a neu-
ron is a stable periodic orbit of a dynamical sys-
tem. We are interested in the ways in which
a family of stable periodic orbits can terminate
with a varying parameter or the variation of the

slow variable(s) in a singularly perturbed system.
Bifurcation theory (Guckenheimer and Holmes,
1983) classifies four general mechanisms for such
transitions in generic families of vector fields, il-
lustrated in Figure 1:
1. Hopf bifurcations
. Saddle-nodes of limit cycles
. Homoclinic bifurcations
. Saddle-nodes of equilibria interrupting limit cy-
cles
At Hopf bifurcations, a family of periodic orbits
meets a family of equilibrium points. The am-
plitude of the oscillations of the periodic orbits
decrease as the bifurcation point is approached as
shown in Figure la. At saddle-nodes of limit cy-
cles, a pair of periodic orbits of finite amplitude
and period, but differing stability properties ap-
proach each other and annihilate each other as
shown in Figure 1b. Families of periodic orbits can
also terminate by the period of the periodic orbits
growing without bound. This happens both in
homoclinic bifurcations and at some saddle-node
bifurcations of equilibria. Homoclinic orbits are
defined to be trajectories that approach the same
equilibrium point in both forwards and backwards
time; i.e., they lie in both the stable and unstable
manifolds of the saddle. At homoclinic bifurca-
tions, the periods of a family of periodic orbits
becomes unbounded as the periodic orbits tend to
a homoclinic orbit as shown in Figure 1lc. When
a stable periodic orbit approaches a saddle-node
of an equilibrium, the equilibrium point at the bi-
furcation has an open region of trajectories that
converge to it. This region of trajectories contains
the limit of the periodic orbit. Following the bi-
furcation, there are two equilibria, a sink and a
saddle as shown in Figure 1d. The result is an ex-
citable system in which perturbations that move
an initial point from the sink to the opposite side
of the saddle result in a trajectory that approxi-
mates the vanished periodic orbit.

What are the distinguishing characteristics of
each of these types of transition in voltage record-
ings from neurons undergoing adaptation from a
tonic to a quiescent state? We assume that ob-
served spiking corresponds to following a contin-
uous family of stable periodic orbits in a model
system. Based on this assumption, Hopf bifurca-
tions could be identified by the amplitude of the
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oscillations decaying to zero. However, the multi-
ple time scales in our “fast” subsystems can yield a
very steep decline in amplitude of the oscillations
(the canard phenomenon, Arnold et al 1994), and
the continuous reduction in amplitude may not
be readily discernible. Saddle-node bifurcations
of limit cycles are characterized by the fact that
the period of the oscillations remains bounded and
the amplitude of the oscillations does not decay to
zero. Separating the homoclinic and saddle-node
bifurcations of equilibria using experimental data
is more difficult. As observed by Rinzel and Er-
mentrout (1989), the asymptotic properties of the
period of the oscillatory phase just prior to qui-
escence differ in these two cases. One of our ob-
jectives in this paper is to explore this observation
more deeply and use it as the basis for distinguish-
ing homoclinic bifurcations from saddle-node bi-
furcations that interrupt limit cycles. The remain-
der of this section outlines the mathematical anal-
ysis associated with the termination of firing be-
havior at homoclinic and saddle-node transitions
in singularly perturbed systems.

Homoclinic orbits of a frozen system:
The starting point for a systematic asymptotic
analysis of homoclinic bifurcations in singularly
perturbed systems is the geometric singular per-
turbation theory of Fenichel (1971). A homoclinic
orbit approaches an equilibrium point e along its
stable manifold as ¢ — co and along its unstable
manifold as ¢ = —oo. In a generic frozen system
with a homoclinic orbit, the equilibrium point e
lies in a manifold F of equilibria for the fast sys-
tem that are hyperbolic saddles. (See Figure Ic.)
The stable manifolds of the equilibria in E fit to-
gether to form the stable manifold W?*(E) of E.
Similarly, the unstable manifolds of the equilib-
ria form the unstable manifold W¥(E) of E. Now
W?*(FE) and W*(FE) intersect transversally at the
homoclinic orbits of equilibria in . Furthermore,
there is a family of periodic orbits P that lie to one
side of H. The front of the surface P is shaded in
Figure 1c. The periods of the orbits in P become
unbounded as they approach H. Fenichel proves
that much of this structure persists in the unfrozen
system for € > 0. The manifold F is the limit of
a family of normally hyperbolic manifolds F. as
€ — 0. There are stable and unstable manifolds
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for E. that continue to intersect transversally. In
a neighborhood of E, Fenichel defines coordinates
for which the families of (local) strong stable and
unstable manifolds lie in coordinate planes.

We want to estimate the periods of periodic
orbits of vector fields that pass close to a saddle
point. In the vicinity of the saddle, the speed
of the vector field is slow. If the periodic orbit
comes close enough to the saddle, then the pas-
sage time past the saddle occupies most of the
period. The relationship between the time re-
quired to pass by the saddle and the distance to
the saddle is readily quantified in the case that
the vector field is linear near the saddle. The
theory established by Ilyashenko and Yakovenko
(1991) allows us to introduce such coordinates for
generic systems. More concretely, there are coor-
dinates so that the saddle point for the fast sub-
system is the origin and that the fast equations
are defined by y; = A;(z)y; near the origin where
the A;(z) are smooth functions of the slow vari-
able defining the eigenvalues of the saddle. As-
sume that A;(z) > 0 for ¢ = 1,...,u and that
Ai(z) < 0for i =u+1,...,n. The stable mani-
fold of the origin is the coordinate subspace asso-
ciated with indices ¢ = u+1,...,n. The unstable
manifold is the subspace associated with indices
i = 1,...,u. In each unstable direction, y;(t) is
given by v;(0) exp(t);), implying that the time a
trajectory spends near the origin is comparable
to min(—In(y;)/Ai), i = 1,...,u. From this esti-
mate, we conclude that the period of a periodic
orbit passing close enough to a saddle is propor-
tional to the logarithm of the distance of its closest
approach to the stable manifold. For a tonically
firing neuron, the next paragraph demonstrates
how this analysis leads to circumstances in which
the period of firing is proportional to the loga-
rithm of the time to termination.

Homoclinic transitions in a singularly
perturbed system: A full asymptotic analysis
of what happens to homoclinic orbits and nearby
trajectories in singularly perturbed systems has
not been performed, and we do not give a com-
plete analysis here. Instead, we assume that there
is a single slow variable z, and that we analyze tra-
jectories of the singularly perturbed system that
track a one parameter family of stable periodic or-



bits of the frozen system until it reaches the vicin-
ity of a homoclinic orbit. This only makes sense
for positive values of ¢ since trajectories of the
frozen system do not pass through the homoclinic
transition. Time is measured in “fast” time and
we assume that z evolves at unit rate in slow time,
i.e, # = € is constant and f(z,y) = 1. To mea-
sure the period of the cycles n a trajectory of the
singularly perturbed system, choose a cross sec-
tion to the family of periodic orbits of the frozen
system and measure the return time from one in-
tersection with the cross section to the next. Each
cycle of the oscillation of the singularly perturbed
trajectory will carry it closer to the stable mani-
fold of the invariant manifold corresponding to the
frozen saddle points. Thus successive cycles of the
oscillation grow longer. Since z = ¢ is constant,
the change in the slow variable z increases from
one cycle to the next. Consequently, the succes-
sive periods of the oscillations grow a bit faster
than logarithmically as would be expected if the
distance to the homoclinic bifurcation changed by
a constant amount d per cycle.

Based upon our assumption that z is constant,
the distance of z from its critical value for bifurca-
tion to quiescence is €(tp —t), ¢4 being the time at
which z reaches the homoclinic bifurcation. The
“Instantaneous” period Thom (t) of the cycles at
time ¢ can be expected to have an expansion with
leading terms a; In(¢p —t) + a2. This implies that
the times ¢, of successive returns to the cross sec-
tion should satisfy a recursion relation that is ap-
proximated by t,41 = t, + aiIn(tp — ) + as.
From this recursion we want to derive a func-
tion that gives the leading asymptotic properties
of the periods as a function of ¢,. To do so,
we compare the solutions of the difference equa-
tion with the solutions of the differential equation
" = ai1In(tp — 7) + az. Here 7 is a new “time-
like” variable in terms of which z evolves at a
constant rate. The solutions of these two equa-
tions have the same leading order asymptotics
near t, that we express in terms of s = t; — ¢,
the time until the transition occurs. Both 7 and
t, become unbounded with leading order term
sln(s). Substituting this leading order term into
the asymptotic expansion for the instantaneous
periods, we conclude that the dependence of the
instantaneous periods on s should behave like

Thom (s) = e1In(s71) + ez In(In(s™1)) + c3. Here s
was defined so that it decreases in constant incre-
ments per cycle, s = 0 representing the cycle at
which the homoclinic transition occurs. The func-
tional form of Thom (s) is predicted to fit plots in
which there is one point for each cycle of a toni-
cally firing neuron, the abscissa counting the num-
ber of preceding cycles and the ordinate giving the
interspike interval of the cycle.

Saddle-node bifurcations and transitions:
Consider a frozen system with a single slow vari-
able z having a saddle-node bifurcation at z = 0.
Assume that there is a family of periodic orbits
for z < 0 that terminates at the saddle-node bi-
furcation. The periods of these periodic orbits are
unbounded as the bifurcation is approached. At
the bifurcation, there is a single trajectory that
approaches the new equilibrium as ¢ =& —oo. This
trajectory also approaches the degenerate equilib-
rium as £ — oo, see Figure 1d. In the setting of
a neural model, the system is on the edge of ex-
citability: any depolarization, however slight, will
induce the system to fire an action potential and
then return to quiescence. For parameters close
to the bifurcation parameter for the family of pe-
riodic orbits, the flow in phase space past the lo-
cation where the equilibrium emerges slows and
the period of the periodic orbits grows. Near the
bifurcation, the evolution of the vector field along
the periodic orbits is approximated by solutions of
the equation § = —2 +y? with < 0 proportional
to the distance of the parameter from its bifurca-
tion value (Guckenheimer and Holmes, 1993). The
time that it takes a trajectory to pass through a
fixed neighborhood of the origin is proportional to
(—2)'/2. This can be seen by rescaling the equa-
tion by setting y = (—2)/?Y and T = (—z)'/%
to obtain Y/ = 1 4+ Y? and observing that solu-
tions of this equation go from —oco to co in finite
time. Thus, the functional form of interspike in-
tervals are predicted to fit a function of the form
Iin = c1 + cz(—m)_l/z. The term ¢; in I,, ac-
counts for the time required for the periodic or-
bit to return to the neighborhood of the emerging
equilibrium when it escapes from this region.

If we now let ¢ > 0 and consider slow evolu-
tion of z satisfying £ = ¢, the saddle-node tran-
sition can be analyzed in a heuristic manner sim-
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Fig. 2. Reciprocals of interspike intervals from a trajectory in the Morris-Lecar model that undergoes homoclinic bifurca-
tion. In the left diagram, the horizontal axis is time along the trajectory at the end of each period. In the right diagram,
the horizontal axis is spike number. The data have been fit with curves of logarithmic type from Table 4.

ilar to our analysis of homoclinic transitions. As
in the homoclinic case, we observe here oscilla-
tions with growing period, but the quantitative
rate of growth is different. The periods of suc-
cessive cycles grow as s~ 1/? with s = t,, — # the
time prior to the time t4, at which transition oc-
curs. Note that s is a decreasing function. We
can also express the asymptotic growth of the pe-
riods in terms of cycle number. Set ¢, to be the
time of spike n in a sequence. We estimate that
the1 =tn +c1 4 catsn — tn)_l/2 based upon our
derivation of the function I, and the assumption
that x varies at a constant rate. Regard the cycle
number as a discrete value of a continuous vari-
able 7 and express s as a function of 7. The dif-
ference equation for ¢, can then be viewed as a
discretization of the differential equation ds/dr =
c1 4 ca(s)~/2, obtained by replacing ds/dr by
s(n+1)—s(n) =tsn—tny1—(tsn—1tn) = th—tny1.
We compute that the leading term in the asymp-
totic expansion of s(7) is 72/3. The asymptotic
expansion of the interspike intervals as a function
of 7, the number of cycles prior to bifurcation,
has leading term 7='/3. This heuristic argument
is consistent with the classical asymptotic anal-
ysis of flow past a saddle-node or fold in singu-
larly perturbed systems (Mishchenko 1980). The
classical analysis is based partly on rescaling the
equation & = —ct + 2% to X! = =T + X? by set-
ting # = €'/2X and T = ¢'/3t. This rescaling
indicates that the time required for trajectories
to pass through a neighborhood of the origin is
proportional to ¢~ /3. These asymptotics suggest
that by the time that the slow parameter declines
to a magnitude comparable to €!/3 | the subsequent
periods of the cycles will be comparable to ¢=1/3.

The final cycles in the oscillation are likely to be
reached when the slow variable declines to a mag-
nitude comparable to €2/ rather than e.

Test on Morris-Lecar System: To test our
heuristic arguments about the properties of in-
terspike intervals during homoclinic and saddle-
node transitions, we used a model version of the
Morris-Lecar model studied by Rinzel and Ermen-
trout (1989). This is a three dimensional dynam-
ical system with two fast variables and one slow
variable, obtained by adding a slowly varying vari-
able to the Morris-Lecar model for an electrically
excitable membrane. The equations defining the
model are

v — U3 v — U3

w = 0.5¢(1+ tanh(

) — w) cosh(

V4 21)4
v —1
-1
)= 1)

—grw(v —vk) —gi(v—wu)+i

i = e(v* —v— ai)

)

v = —0.5gcq(1 + tanh(

The variables v and w in the model represent
membrane potential and an activation variable for
a voltage gated potassium conductance. The third
equation introduces an ad hoc variable 7 that in-
troduces a current to the membrane that slowly
relaxes towards an equilibrium value (v* — v)/a
when v remains constant. The variable 7 is the
slow variable of this system; v and w are the fast
variables. The frozen system has ¢ = 0.

We chose a set of parameter values in the mod-
ified Morris-Lecar model such that the termina-
tion of the active phase occurs via a homoclinic
transition. The interspike interval gives a mea-
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Fig. 3. Reciprocals of interspike intervals from a trajectory in the Morris-Lecar model that undergoes saddle-node in a cycle
bifurcation. In the left diagram, the horizontal axis is time along the trajectory at the end of each period. In the right
diagram, the horizontal axis is spike number. The data have been fit with curves of square root type from Table 4.

sure of the “instantaneous” period of the oscil-
lations in the model data, and we denote its re-
ciprocal the instantaneous spike frequency. The
diamond symbols in Figure 2a plot the instanta-
neous spike frequency for each cycle as a function
of the time at which that interspike interval ends.
The dashed curve is a fit of a function 1/(21 —
2.46In(3325 —t)) of the form 1/(c1 + c2 In(tp — 1))
to the data. As predicted by the theory, such
a function does an excellent job of matching the
“tail” of the data as the frequency of spiking slows
and then terminates. The theory that we have
developed is only asymptotic and makes no pre-
dictions about the period of oscillations long be-
fore the termination. In this case, the function
fits more than the last half of the data set ex-
tremely well, certainly within the variation that
would be expected from experimental data. Fig-
ure 2b plots the same data for instantaneous spike
frequency as a function of cycle number. A func-
tion 1/(13.9—1.62In(99—s)—1.0In(In(99—3s))) of
the form 1/(c1 + e2 In(Np — s) + ez In(In(Np, — s)))
predicted by the theory is fit to the data. As in
Figure 2a, the fit of the predicted function to more
than the last half of the data is excellent. The op-
timal fit of the relation predicted by a saddle-node
termination is much poorer.

Figure 3 shows comparable data to Figure 2
for a different set of parameter values in which
the termination of the active phase of bursting
in the modified Morris-Lecar model occurs via
a saddle-node transition. The diamond symbols
in Figure 3a plot instantaneous spike frequency
as a function of the time at which the inter-
spike interval ends, while Figure 3b plots the same
data for 1/interspikeinterval as a function of cy-

cle number. In Figure 3a, a function 1/(3.6 +
530/4/1705 — t) of the form 1/(c1 + ¢a//tsn — 1)
suggested by the theory is fit to the model data.
Here the function predicted by the theory fits
the entire data set extraordinarily well, far bet-
ter than might be expected from the asymptotic
nature of the theory. Similarly, in Figure 3b,
a function 1/2.1 + 58.85(71 — s)~/3 of the form
1/(e1 + e2(Nsp — 3)_1/3) suggested by the theory
fits the entire data set extremely well despite the
fact that the theory predicts only that such a func-
tion will give a good approximation to the data
near the termination of spiking. Functions of the
form predicted by a homoclinic termination give a
poor fit to this data. These tests with data from
the modified Morris-Lecar model confirm that the
validity of our asymptotic theory for distinguish-
ing homoclinic and saddle-node transitions at the
end of a period of spiking.

3. Model Studies

To further explore the properties associated with
the termination of spiking in a system undergo-
ing spike frequency adaptation, we performed ad-
ditional investigations on a more realistic single-
compartment conductance based model for a neu-
ron that we have studied experimentally, the LP
cell of the stomatogastric ganglion of Panulirus in-
terruptus. Our starting point is a model we have
used to explore mechanisms for postinhibitory re-
bound in the LP neuron (Harris-Warrick et al.
1995). This model is a modification of one gen-
erated by Buchholtz et al. (1992) based upon
voltage clamp measurements of Golowasch et al.
(1991). We added to this model a very slowly ac-
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Table 2: Fixed parameters for model of the LP neuron

Parameter Value Meaning Units
Jag 1.5 fast A current conductance uS
JAs 1.3 slow A current conductance uS
JK(Ca) 5 K(Ca) current conductance uS
aq 0.05 leak current conductance uS
gh 0.1 sag current conductance uS
Fx -86 Potassium reversal potential mV
£ -52 leak reversal potential mV
£y, -10 sag reversal potential mV
FEeq 140 Ca reversal potential mV
Eng 50 Sodium reversal potential mV
Cnm 0.002 Membrane capacitance nkF

tivating, non-inactivating current that is an ide-
alization of an outward potassium current with
simple kinetics. The time constant for the acti-
vation was set to slow current 0.0985s~!, and the
equilibrium value for its activation is a sigmoidal
function centered at —42 mv. The equations for
the model and the fixed parameters are given in
Tables 1 and 2.

We analyzed this model in two forms, the sin-
gularly perturbed system (as given in Tables 1

0

Hopf and Saddle-node Bifurcation Curves
1

10+

o lext(nA)

o

voltage (mV)

-50

0.05 0.1 0.15 0.2 0.25
maximal conductance

Fig. 4. Equilibrium and bifurcation curves for the frozen
LP model with the parameter values of column A of Ta-
ble 3. The six solid lines are curves of equilibria for
Iezt = 0...5 nA moving from left to right. The dashed
line is the curve of saddle-node bifurcation points which
passes through the vertical tangency of each of the equilib-
rium curves. The dotted line is a curve of Hopf bifurcation
points. The Hopf and saddle-node curves intersect near
Iezt = 4 nA at a codimension two bifurcation. The equi-
librium points below both the saddle-node and Hopf curves
are stable, whereas the others are unstable.

and 2) and the frozen system. The frozen sys-
tem corresponds to eliminating the equation for
slow current activation a; in Table 1 and then
setting as; = 1 corresponding to full activation of
the slow outward potassium current in the voltage
equation. We first studied how the eigenvalues of
equilibrium solutions of the frozen system varied
with the parameters g,, the maximal conductance
of the slow current, and I.;:, the externally ap-
plied current. Within the parameter regimes in
which we looked, the singularly perturbed system
exhibits three different mechanisms for spike ter-
mination. The first is a saddle-node of equilibria
interrupting a limit cycle, the second is a homo-
clinic bifurcation and the third is a more compli-
cated subcritical Hopf bifurcation mechanism that
we discuss below.

The Frozen System: The LP model has a
linear dependence upon many of its parameters,
for example, the maximal conductance parame-
ters. If one of these parameters is allowed to vary
and the remaining parameters are held fixed, the
frozen system model has exactly one equilibrium
point for each value of the voltage, vg. Further-
more, the equilibrium vy remains fixed along a line
in the (Zegt, gs) parameter plane. For a fixed value
of Iy the equilibrium points in the (g;, v)-plane
form an S-shaped curve as depicted in Figure 4.
For each point in the (g, v)-plane there is exactly
one value of I.;; that creates an equilibrium at
this point of the (gs,v)-plane. The six S-shaped
curves in Figure 4 are the curves of equilibrium
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Table 3: Varying parameters for model of the LP neuron

Parameter A B C D Meaning Units
JK 0.1 0.7 1.3 0.4 K current conductance uS
Jcal 0.21 0.0001 0.0001 o0.21 Inactivating Ca current conductance uS
JCa2 0.047 O 0 0.047 Noninactivating Ca current conductance uS
JNa 2700 2300 1900 2700  Na current conductance uS
Js 0.15 0.15 0.15 0.1 slow K current conductance uS
Vs -42 -42 -42 -41 slow K current half activation mV

points for I, = 0,1,...,5 nA, moving from left
to right. The left folds of the equilibrium curves
i.e., the points of the equilibrium curves with tan-
gent parallel to the v axis, are saddle-node bifur-
cations which give birth to two new fixed points
with varying g;. For values of g; smaller than
the value at the fold, there are no nearby equilib-
ria, while for values of g, larger than the value at
the fold, there are two nearby equilibria. At the
fold point, the equilibrium point has a single zero
eigenvalue. The remaining eigenvalues either all
have negative real parts, or there is a single pair of
complex eigenvalues with positive real part. The
equilibrium points that are above the left fold; i.e.,
more depolarized, are always unstable points with
either a one or three dimensional unstable man-
ifold while those on the lower branch are either
stable, or unstable with a two dimensional unsta-
ble manifold. For values of g; to the left of the
saddle-node bifurcation, the system is in a tonic
firing state. However, the behavior of the system
for values of g, to the right of the saddle-node bi-
furcation can take several forms depending on the
system parameters. Results for the three sets of
parameter values given in Table 3 are discussed
below.

The parameter values in column A of Table 3
are our “base” values, representing nominal con-
trol conditions for the neuron, Figure 4 gives ad-
ditional information about the bifurcations of the
frozen system. In the (gs, Jep:)-plane there is a
curve of saddle-node bifurcations. Its projection
into the (g;, v)-plane is the curve in Figure 4 that
passes through the fold points on the left sides of
the equilibrium curves. The U-shaped curve open-
ing to the right on the diagram is the projection
of a curve of Hopf bifurcation points that occur
with varying (gs, Iezt). There is a codimension

two bifurcation where the saddle-node curve and
the Hopf curve intersect. This is a new feature
that does not occur in the Morris-Lecar system,
since the fast Morris-Lecar subsystem is only two
dimensional and this codimension two bifurcation
requires a three dimensional phase space. At the
codimension two point, the equilibrium point has
one zero eigenvalue and a pair of pure imaginary
eigenvalues. We shall denote as I, the value of I,
at which this codimension two bifurcation occurs
(for the Table 3, column A parameter values, I,
is approximately 4 nA). For I < I, the saddle-
node bifurcation occurs on the limit cycle and all
the equilibria on the lower branch are globally at-
tracting, so that as g, is increased past the saddle-
node, the system moves from a state of tonic firing
to a quiescent state in which all initial conditions
lead to the quiescent state, perhaps after firing a
single potential. Approaching the bifurcation, the
period of firing of the limit cycle increases with-
out bound as described above with the theory of
saddle-node bifurcations. For I.;; > I., the new
equilibrium point created at the saddle-node bi-
furcation appears nearby, but off the limit cycle,
and has, in addition to the one dimensional cen-
ter manifold, a two dimensional unstable manifold
which does not disappear until the Hopf bifurca-
tion is reached. As a result, the limit cycle repre-
senting tonic firing persists past the saddle-node
bifurcation as g; is increased. The mechanism as-
sociated with the termination of firing in this pa-
rameter region does not fit the cases analyzed in
the previous section, but appears to be related to
the codimension two bifurcation occurring at /..
Although Hopf bifurcation produces a family of
periodic orbits, the stable limit cycle that we see
to the left of the Hopf point does not shrink di-
rectly to the Hopf point. Instead, it appears that
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Fig. 5. Equilibrium and bifurcation curves for the frozen
LP model with the parameter values of column C of Ta-
ble 3. The six solid lines are curves of equilibria for
Iezt = 0...5 nA moving from left to right. There are
no saddle-node bifurcations in this parameter regime but
Hopf bifurcation curve (dotted line) separates the stable
equilibria (below) from the unstable equilibria (above).

the Hopf bifurcation is subcritical, giving rise to
a small, finite period, unstable limit cycle to the
right of the bifurcation. Thus the death of our
stable limit cycle as the Hopf point is approached
from the left is occurring by some process different
from the Hopf mechanism. Within the narrow re-
gion to the right of the saddle-node but left of the
Hopf bifurcation, the equilibrium points on the
lower branch have a complex pair of eigenvalues
with positive real part. As the parameter g in-
creases past the saddle-node bifurcation into this
region, no abrupt change is noticed in the limit cy-
cles. However, as g continues to increase toward
the Hopf bifurcation, fast, low-amplitude growing
oscillations become evident during the rebound
phase of the spike. Simultaneously, the spiking
frequency continues to decrease. Figure 5 shows
a simulated voltage trace for this low frequency
spiking.

Very near the Hopf point, the limit cycle has
an extremely long period where most of its time
is spent near the unstable equilibrium oscillating
at a constant high frequency, but with slowly in-
creasing amplitude. The cell stays in this state of
slowly growing fast oscillations until their ampli-

voltage (mV)

Il Il Il Il Il I Il Il
0 002 004 006 008 01 012 014 016 018 0.2
g5, maximal conductance

Fig. 6. A trajectory from the frozen LP model that comes
close to an equilibrium undergoing Hopf bifurcation. Each
spike is preceded by growing subthreshold oscillations pre-
ceding each spike. Computation of a cross-section for
this trajectory (not shown) suggests that the trajectory
is chaotic.

tude becomes large enough to push the cell above
threshold, eliciting a single action potential and
a subsequent return very close to the equilibrium
point to continue the process again. The growth
and frequency of the underlying fast oscillations
correspond to what one would expect from the real
and imaginary parts of the complex eigenvalues.
The length of the period of the limit cycle seems to
be determined primarily by the growth rate away
from the equilibrium, that is, by the real part of
the complex eigenvalue. This state appears to be
very close to a homoclinic orbit of focal type; i.e.,
the homoclinic orbit approaches the equilibrium
from the direction of a real, negative eigenvalue
and escapes from the vicinity of the equilibrium
in the directions of a pair of complex eigenvalues.
However, analysis of homoclinic orbits that occur
sufficiently close to a subcritical Hopf bifurcation
suggests that there may be chaotic attractors to
the system in this parameter regime. To explore
this possibility, we computed a cross-section ob-
tained from a trajectory undergoing repeated cy-
cles of small amplitude, fast oscillations near the
equilibrium followed by a single action potential.
The parameter values for this trajectory were lo-
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Fig. 7. Spike frequency adaptation for the LP cell model with the parameter values of column D of Table 3. The graphs on
the left are for the upward portion of the protocol, while those on the right are for the downward portion. The protocol is
illustrated in the top right panel. Injected current increases by 1 nA from bottom to top on the left and decreases by 1 nA

from top to bottom on the right.

cated to the left of the Hopf bifurcation point for
Iopt > I.. Points of the cross-section did not con-
verge to a fixed point as they would if the trajec-
tory was periodic, but continued to wander along
a curve. Details of the successive oscillations of
the model neuron varied in an apparently chaotic
fashion for the chosen parameter values. Glendin-
ning and Sparrow (1984) have shown that the ap-
proach to a homoclinic orbit of focal type may be
accompanied by sequences of saddle-nodes of limit
cycle and period-doubling bifurcations of a peri-
odic orbit together with chaotic attractors that
are formed and then lose stability. We conjecture
that similar complex dynamics are occurring here
in our model of the LP cell. The asymptotic anal-
ysis of periods of periodic orbits in this regime is

problematic since we are unsure of the parame-
ter domains in which stable periodic orbits exist.
Moreover, there are two competing factors for de-
termining the time required for trajectories pass-
ing near the equilibrium to escape: namely, the
magnitude of the real part of the unstable eigen-
value and the distance of closest approach to the
equilibrium.

We made two sets of parameter modifications
that are outside the normal biological range of pa-
rameters for the purpose of testing the mathemat-
ical theory of the previous section. The parameter
values in column B of Table 3 differ from those of
column A in that there is a virtually complete re-
moval of the calcium currents, a small reduction of
the sodium conductance and a substantial increase
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Fig. 10. Spike frequency adaptation from an experiment on the LP cell. The graphs on the left are for the upward portion
of the protocol, while those on the right are for the downward portion. Injected current increases by 1 nA from bottom to
top on the left and decreases by 1 nA from top to bottom on the right.

in the delayed rectifier conductance. While the bi-
furcation diagram looks qualitatively the same as
Figure 4 for the parameter values in column B of
Table 3, homoclinic bifurcation occur at the ter-
mination of spiking for 7., < I. with variations
in gs. The mechanism for spike termination for
Tegt > I is the same as the complex scenario de-
scribed above. For I < I., as gs 1s increased, the
saddle-node bifurcation gives birth to two equilib-
ria near the limit cycle, the lower one of which is
stable but not globally attracting, while the one
dimensional unstable manifold of the upper one
winds tightly around the limit cycle representing
tonic spiking. Thus the model cell displays bista-
bility in this region to the right of the saddle-node
bifurcation. As g, is increased slightly more, the
unstable manifold of the saddle and the limit cycle

coalesce in a homoclinic loop after which the sta-
ble equilibrium becomes globally attracting and
the system becomes excitable, but quiescent.

A further reduction of the sodium conductance
and an increase in the delayed rectifier conduc-
tance gives the parameter values in column C of
Table 3. For these parameter values, the bifurca-
tion diagram is shown in Figure 6.

Here the equilibrium curves have lost their S-
shape and do not have a vertical tangent at any
point within the parameter regime of interest.
This means that there is exactly one equilibrium
point for each value of g; and no saddle-node bi-
furcations occur. The curve of Hopf bifurcation
points is still present dividing the stable equilib-
ria to the bottom from the unstable equilibria to
the top. Termination of the limit cycle occurs via
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Fig. 8 Voltage trace from the LP cell model with the
parameter values of column A of Table 3. The injected
current is increased from 0 to 4 nA in 1 nA increments.
Fach increase in the injected current begins a new phase
of activity. For the first three steps, the frequency of the
action potentials slowly decreases to zero and the voltage
settles to a new equilibrium value. For I.;; = 4 nA, the
model remains in a tonic firing state.

the subcritical Hopf bifurcation mechanism as g;
is increased past the Hopf point.

Time Dependent Activation of the Slow
Current When activation of the slow current is
added to the model, the slow increase in a; over
time (with g; held constant) mimics the increase
of gs described above for the frozen system. The
time constant, ks, for the activation variable was
set t0 0.0985 s~!, based on estimates of slow spike
adaptation from experimental data obtained dur-
ing depolarization of an LP neuron (Peck, unpub-
lished). For many of our computer simulations
and experiments on the real LP cell, we followed
a “stair step” current injection protocol: an ex-
ternal injected current was first increased by 1 nA
steps to a maximum of 4 or 5 nA and then de-
creased by 1 nA steps back to zero. The applied
current was held steady for about a half a minute
between steps to allow the cell to settle to either
a resting state or a tonically firing state with con-
stant firing frequency.
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Fig. 9. The same voltage trace as in Figure 9 plotted as a
function of the conductance of the slow current. The volt-
age trace is plotted as a dotted line in order to be able to see
the other curves on the graph. (The apparent horizontal
and curved lines within the voltage trace are an artifact of
the spacing of the dots in the closely packed vertical lines.)
The solid lines are the equilibrium curves as in Figure 4.
The dashed line is the null cline for the conductance of the
slow current. Note how for each value of I.;; the activity
continues until the saddle-node bifurcation is reached after
which the solution settles to the point at the intersection
of the equilibrium curve and the null cline. For I.;; = 4
nA, the conductance fails to increase far enough to reach
the saddle-node bifurcation and thus the system remains
in a tonic firing state.

We wished to determine if the model could ad-
equately capture the LP cell behavior in cases
where the cell underwent spike frequency adap-
tation but not termination. From Figure 4 we
see that the spike terminating bifurcations occur
when the conductance of the slow potassium cur-
rent becomes large. Thus, these bifurcations are
never reached if the conductance of the slow cur-
rent is sufficiently small. The parameters in col-
umn D of Table 3 differ from those in column A in
that the slow current half activation is shifted to a
more depolarized value and the maximal conduc-
tance is lowered, both of which cause a reduction
in the slow current. The spike frequency data for a
stair step current injection simulation is shown in
Figure 7. Note that during the upward part of the
injection staircase, after an increment in the exter-
nal current, the spike frequency decreases slowly
to a steady value. The amount of change is less
and the final steady value is higher for higher val-
ues of the external current. During the downward
portion of the staircase, the spike frequency rises
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Fig. 11. Instantaneous frequency data from the LP cell model for the parameter values in column A of Table 3. The same
data is plotted in both the left and right columns. Optimal least squares fits to the logarithmic and square root functions
of Table 4 are overlaid on the data points in the left and right columns respectively. The sum of the norm of the residuals
divided by the number of data points for each pair of fits are as follows. (The first value is for the logarithmic fit and the
second for the square root fit.) 1 nA: 0.1280, 0.0867; 2 nA: 0.0701, 0.0579; 3 nA: 0.0418, 0.0414.

after each step to approximately the same steady
value as was achieved on the way up. This figure
should be compared with Figure 8 which shows
real LP cell data from an experiment with a sim-
ilar current injection protocol. The model and
experimental data both display spike frequency
adaptation with frequency increasing in response
to depolarizing steps and decreasing in response
to hyperpolarizing steps.

We next wished to investigate the model be-
havior in cases where spike termination occurred.
Starting from appropriate initial conditions, the

system evolves from a state of tonic firing through
a transition to a quiescent state. Figure 9 shows
several such events where, after each return to a
quiescent state, the externally applied current is
stepped up 1 nA. Sudden increases in I.;; trans-
late the bifurcation curve to the right so that the
system lies in a state to the left of the saddle-
node bifurcation curve for the frozen system, that
is, in a tonic firing state. Over time, the activa-
tion of the slow current increases until either the
average voltage during the firing state 1s not suffi-
ciently large to drive a further increase of the ac-
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Fig. 12. Instantaneous frequency data from the LP cell model for the parameter values in column B of Table 3. The same
data is plotted in both the left and right columns. Optimal least squares fits to the logarithmic and square root functions
of Table 4 are overlaid on the data points in the left and right columns respectively. The sum of the norm of the residuals
divided by the number of data points for each pair of fits are as follows. (The first value is for the logarithmic fit and the
second for the square root fit.) 1 nA: 0.00212, 0.00484; 2 nA: 0.00154, 0.01852; 3 nA: 0.00141, 0.01264.

tivation of the slow current or a spike-terminating
transition occurs and the system becomes quies-
cent once more. Figure 10 shows the same trace
as in Figure 9 this time plotted as a function of
the conductance, gsay, rather than time. Overlaid
on this trace are the equilibrium curves for the
frozen system and the null cline for the variable
as. This figure illustrates that the system switches
from a tonic firing state to a quiescent state as the
saddle-node bifurcation is passed. After passing
the saddle-node bifurcation, the system tracks the
slow manifold 1.e., the curve of equilibrium points
for the frozen system, until it reaches equilibrium
on the null cline for a;. Once reaching this state,

the externally applied current is increased by 1 nA
and the process continues.

Note that the slow variable a, in this model
does not have a constant velocity since its equa-
tion of motion is voltage dependent. In particu-
lar, we noted distinct increases in the velocity of
as when approaching a spike terminating transi-
tion. This effect is due to the fact that the system
tends to remain for long times close to the place
where the equilibrium point is about to appear,
and the value of the voltage there is more depo-
larized than the time averaged voltage of the tonic
firing state. The net result is that the model ac-
celerates toward the spike termination bifurcation,
that is, the frequency of firing drops slightly faster
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than would be the case if the slow variable a, had
a constant velocity. However, we can still distin-
guish homoclinic and saddle-node bifurcations by
fitting the frequency data to the asymptotic curves
as developed in the previous section. The data for
several terminating traces for the parameter val-
ues in columns A and B of Table 3 are shown
in Figure 11 and 12 respectively. In all of these,
It < I, so that the mechanism of termination
is either the saddle-node interrupting a limit cy-
cle or a homoclinic bifurcation. As seen in both
of these figures, the square root function consis-
tently gives the best fit for the saddle-node case
while the logarithmic function performs best for
the homoclinic case, as expected. The curves in
these figures are of the functional form given in
Table 4. They were fit to the data using a nonlin-
ear least squares algorithm with a weighted factor
that was set so that the curve reached a frequency
of zero within one cycle of the last spike before ter-
mination. The sum of the norm of the residuals
divided by the number of data points is given in
the captions for Figures 11 and 12 for each of the
curve fits.

For I.;: > I. with the parameter values in
columns A and B of Table 3, the distance be-
tween the saddle-node and Hopf bifurcations cor-
responds to such a small increase in ag that the
region between these two bifurcations is traversed
quite quickly, in just a fraction of a single cy-
cle, rendering the effects of the Hopf bifurcation
unobservable. However, for the parameter val-
ues in column C of Table 3, the spike termina-
tion through the subcritical Hopf is readily ob-
servable. Instantaneous frequency data for sev-
eral terminating traces for these parameter values
are shown in Figure 13, where, not surprisingly, it
is clear that neither the square root function nor
the logarithmic function provide a satisfactory fit.
Since the exponential growth away from the equi-
librium is given by e**| where A is the real part
of the complex unstable eigenvalue, it is reason-
able to assume that the period of the limit cycle
is dominated by a term proportional to 1/A. As A
varies nearly linearly with the conductance, which
in turn is assumed to vary linearly in time, we sus-
pect that the instantaneous frequency should be-
have as A+1/(B—Ct). A fit of the model data to

this fractional linear function is shown if Figure 13

where it is seen that the results are significantly
better than the fits to square root or logarithmic
functions of Table 4.

We comment on one additional feature of the
data in Figure 13; namely, the apparent “steps” in
the frequency of successive oscillations. There are
sudden large drops in the frequency, and the tread
of each step is slightly concave downward. A po-
tential explanation for these steps is the presence
in the frozen system of regions of multistability
in which there are oscillations that make differ-
ing number of oscillations surrounding the equi-
librium in the direction of the unstable complex
eigenvalues. If each of the branches of stable oscil-
lations terminate in a saddle-node of limit cycles,
then we expect that the singularly perturbed sys-
tem will make abrupt transitions among the differ-
ent stable oscillations. As noted above, such be-
havior occurs near homoclinic orbits of focal type
(Glendinning and Sparrow 1984).

4. Spike Frequency Adaptation in the
Stomatogastric Ganglion

We conducted experiments on the LP neuron from
California spiny lobsters, Panulirus interruptus,
obtained from Marinus Inc., Los Angeles, or from
Don Tomlinson (San Diego). All drugs and salts
were obtained from Sigma Chemical Co. The
stomatogastric ganglion was dissected from the
animal and prepared for the experiments as de-
scribed in Selverston et al. (1976). LP cells were
isolated from all detectable synaptic input as de-
scribed by Flamm and Harris-Warrick (1986). Fol-
lowing isolation, a LP neuron was impaled with
two microelectrodes, one for current injection and
one for voltage recording. In between current in-
jection protocols, the cell was held at a constant
membrane potential of -55 mV during the entire
experiment; this is similar to the normal resting
potential of this neuron under control conditions.

Using the asymptotic analysis described above,
we sought to identify the dynamical mechanisms
associated with the slowing and termination of fir-
ing in the LP neuron. Current was injected into
the isolated neuron in the stairstep protocol de-
scribed above to depolarize the cell and induce
it to start firing action potentials. During cur-
rent pulses of constant magnitude, spike frequency
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Fig. 13. Instantaneous frequency data from

model for the parameter values in column C of

Izt = 4 nA. Optimal least squares fits for the

square root and fractional linear functions of

overlaid on the data points in the three grap

of the norm of the residuals divided by the number of data

points for each fit is as follows. logarithmic: 0.0436; square
root: 0.0923; fractional linear: 0.0265.

adaptation occurred, and with low amplitude cur-
rent injection the firing eventually ceased. The
depolarizing current injection was maintained long
enough for the firing to cease or for the firing rate
to approach an apparent asymptotic value. From
voltage recordings of these experiments, we com-
puted the lengths of successive interspike intervals
and constructed optimal least square fits of func-
tions of the forms given in Table 4 to their instan-
taneous spike frequency. Figure 14 shows voltage
recordings from three of these experiments, two
of which are traces that shut down after a 1 nA
step increase in the injected current and one which
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Fig. 14. Voltage recordings from the LP cell showing spike
frequency adaptation. In A and B the injected current is
increased by 1 nA near the beginning of the trace and then
held constant, while in C it is decreased by 1 nA

shows an increase in firing rate as a result of a 1
nA step decrease in the injected current. Inter-
spike intervals are measured as the time from the
preceding action potential to the current action
potential.

The LP exhibit an
intermediate-time process of adaptation over the

neuron seems to
first few seconds after the step current injection
that is not described in the model. Since we are
interested in studying the long-time behavior of
the slowly activated adapting current, we elimi-
nated the first two or three seconds of data after
each current step from the current-clamp exper-
iments. Data for four typical terminating traces
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Fig. 15. Instantaneous frequency data from experiments on the LP cell. The same data is plotted in both the left and
right columns. Optimal least squares fits to the logarithmic and fractional linear functions of Table 4 are overlaid on the
data points in the left and right columns respectively. Traces A and B are from an experiment where the cell was subject
to 20 mM cobalt; trace A: I.z: = 4 nA, trace B: Ic.z; = 5 nA. For traces C and D cobalt was absent; trace C: I.y; = 2.6
nA, trace D: I.z+ = 2.8 nA. The sum of the norm of the residuals divided by the number of data points for each pair of fits
are as follows. (The first value is for the logarithmic fit and the second for the fractional linear fit.) A: 0.0666, 0.0642; B:

0.0322, 0.0368; C: 0.0647, 0.0630; D: 0.0650, 0.0658.

are shown in Figure 15. Two of these traces come
from experiments done in the presence of 20 mM
Cobalt, which blocks the calcium currents in the
LP cell. It should be noted that in all of the traces
shown in Figure 15 (and indeed, in virtually all
of the terminating traces that we analyzed), the
“step” feature described above is, although less
pronounced than in the model, clearly wvisible.
This suggests that the LP cell achieves termi-
nation of firing by passage through a subcritical
Hopf bifurcation close to a homoclinic orbit of fo-
cal type and that this mechanism 1s independent
of calcium. As described above, there are two
contributing factors for spike frequency adapta-

tion as a system approaches such a bifurcation:
the magnitude of the real part of the unstable
eigenvalue and the distance of closest approach to
the equilibrium. The first of these factors would
dictate that the spike frequency should behave
as a fractional linear function as termination is
approached, while the second would indicate a
logarithmic function. Fits for both of these types
of functions are shown in Figure 15 and the cor-
responding error measures are indicated in the
caption. As can be seen, both of these types of
functions had approximately the same success in
fitting the data. In contrast, fits of this data to the
square root function predicted by the saddle-node



termination scenario (not shown) were approxi-
mately twice as bad.

5. Discussion

The timing of action potentials is critical for the
functioning of central pattern generators in neu-
ral systems. In systems with a time scale slower
than that associated with periodic spiking, the
onset and termination of spiking can be associ-
ated with bifurcations that occur when the slow
time scale has been “frozen.” Mathematically, the
neural system is viewed as a singularly perturbed
system. Rinzel (1987), Wang and Rinzel (1995)
and Bertram et al (1995) have given topological
characterizations of bursting patterns in terms of
singularly perturbed systems. This analysis al-
lows many bursting patterns associated with dif-
ferent bifurcations to be distinguished, but there
are some cases in which the underlying dynamical
mechanisms can only be determined by quantita-
tive analysis. We consider two such mechanisms
here, the termination of spiking via homoclinic bi-
furcations and saddle-node bifurcations of equilib-
ria that interrupt a cyclic oscillation. In each of
these cases, the frequency of oscillation slows as
one approaches the termination of spiking. We
analyze the rate at which the frequency of oscil-
lation slows in the two cases and illustrate our
analysis on neuronal models. We then apply the
asymptotic analysis to experimental data on the
LP neuron, leading to a tentative conclusion that
the dynamical mechanism associated with termi-
nation of spiking in this cell lies close to a sub-
critical Hopf bifurcation with a homoclinic orbit
of focal type. Although the logarithmic relation
predicted by the homoclinic termination scenario
fit the data as well as the fractional linear fit, the
steps in decrease of instantaneous spike frequency
support the subcritical Hopf scenario. We have
not investigated whether these apparent steps of
instantaneous spike frequency might be due to
stochastic effects. There is sufficient noise in the
subthreshold regions of the data to mask growing
oscillations that would provide further evidence
for the Hopf scenario. The LP neuron data are
not well fit by the square root function, suggest-
ing that, at least with the experimental conditions
we employed, adaptation and spike termination
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does not occur by a saddle-node bifurcation. Note
that slow adaptation was similar both in normal
saline (Figures 15C and 15D) and in saline with
20 mM Co?* to eliminate C'a®t currents (Fig-
ures 15A and 15B). Most models of slow spike
frequency adaptation depend at least in part on
intracellular Ca?t accumulation and activation of
Ca?*-dependent outward currents (see, for exam-
ple, Hartline and Graubard, 1992). Our results
show that the very slow component of spike fre-
quency adaptation in the LP cell does not depend
on Ca®t currents.

We can make further predictions about neu-
ronal behavior associated with homoclinic and
saddle-node bifurcations in a frozen system. Ho-
moclinic bifurcations are associated with bistabil-
ity in a system. A typical behavior in systems with
homoclinic bifurcation is that following the bifur-
cation, the system evolves to a stable state that
is far from the oscillatory cycle. This new stable
state is one that existed for some range of param-
eters prior to the bifurcation, so one expects that
there is a parameter range in which the system
shows bistability. In contrast, saddle-node bifur-
cations often occur in systems where there is a
single attracting stable state for each value of the
parameters. It may be possible to find evidence
for bistability or its absence in slowly varying sys-
tems by subjecting the systems to brief distur-
bances (e.g., current pulses) that alter the state of
the system. If there is bistability, appropriate dis-
turbances will move the system from the basin of
attraction of one stable state to that of the other.
The LP cell shows marked bistability, as mani-
fest in very slow bursting to plateau oscillations,
in the presence of Co?T over a limited range of
external current injection, as well as in the pres-
ence of dopamine (Peck and Harris-Warrick, un-
published). This further supports the location of
the LP cell near a homoclinic bifurcation.
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