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Abstract

This paper investigates a family of diffeomorphisms of the two dimensional torus
derived from a model of an array of driven, coupled lasers (Braiman et al. 1995). It
gives a negative answer to a question raised by Baesens et al. (1991a) about two param-
eter families of diffeomorphisms and flows of the two dimensional torus by exhibiting
resonance regions in which the two parameter family has no Hopf or Taken-Bogdanov
points. The example can be interpreted as a general model for single-mode coupling of
two strongly nonlinear oscillators driven near resonance. We give a complete analysis
of the steady state bifurcations in this model that depends upon four parameters and
a description of the observed global bifurcations in a two parameter subfamily.

1 Introduction

The phase dynamics of a system of n oscillators take place on the n-dimensional torus.
Coupled oscillators exhibit mode locking and resonance in which trajectories approach a
limit that lies on a torus whose dimension is smaller than n. For a pair of oscillators (n = 2),
the geometry associated with mode-locking is quite well understood. Flows on the two
dimensional torus with global cross-sections have return maps that are diffeomorphisms of
a circle. The theory of rotation numbers characterizes the flows that exhibit mode-locking
as those whose return maps have rational rotation numbers. Rotation numbers are defined
as elements of R/Z, or equivalently can be regarded as real numbers whose integer part
is determined by the lift of a diffeomorphism of the circle to a diffeomorphism of the line
(Herman 1979). The work of Arnold (1965), Herman (1979) and Yoccoz (1984) gives a very
thorough analysis of the dynamics of families of diffeomorphisms of the circle. We shall say
that a pair of oscillators has a strong resonance if the corresponding circle diffeomorphism
has a fixed point, or equivalently the oscillators are mode-locked with a rotation number

∗Mathematics Department, Cornell University
†Cornell Theory Center and the Institute of Mathematical Problems in Biology, Pushchino, Russia

1



that is an integer. There is a close correspondence between the analysis of diffeomorphisms
of the circle with fixed points and the theory of flows of the circle. For diffeomorphisms
that are close to rotations, this correspondence has a simple expression in terms of the Euler
integration algorithm: the time ε map of the equation ẋ = f(x) is approximated by the
diffeomorphism F (x) = x+ εf(x). The equilibrium points of f and the fixed points of F are
identical. Using a similar correspondence, we can learn much about mode-locking of several
oscillators by approximating their return maps by flows.

The mathematical theory of families of torus flows and diffeomorphisms in higher di-
mensions is less complete. Baesens et al. (1991b) defined resonance regions of a family of
torus diffeomorphisms to be the set of parameters for which the system has periodic orbits.
They studied the bifurcations within and on the boundary of resonance regions of two pa-
rameter families of two dimensional torus maps. Their starting point was the family of twist
maps, a model for uncoupled oscillators in which the relative frequencies of the oscillators
are parameters. They explored nonlinear perturbations of twist map families as models of
the typical behavior of weakly coupled oscillators. They gave extensive descriptions of the
topology of resonance regions in the parameter spaces and of the global bifurcations that in-
teracted with the resonance regions. The resulting picture displays the structure of a higher
dimensional analog of a resonance tongue for a family of circle diffeomorphisms. The dy-
namics of diffeomorphisms of the two dimensional torus is much less constrained than that
of the circle, so there is much more variability in the bifurcation diagrams of the resonance
regions. Figure 1 shows the bifurcation diagram of a two parameter family of flows on the
two torus that corresponds to a simple resonance region. A simple resonance region of a
family of diffeomorphisms is one in which no parameter value yields more than two peri-
odic orbits of the resonance type of the region. Figure 1 displays several global bifurcation
curves at which the number of periodic orbits of the flows change. The diagram is generic
in the sense that all of the singular points of the bifurcation diagram are codimension two
bifurcations of flows whose qualitative structure is unchanged by perturbations of the family
of flows. (Perturbations of the time t map of these flows as a family of diffeomorphisms
introduce much additional complexity, including the presence of chaotic invariant sets.) In
all of the cases they examined, the resonance regions of torus maps contained codimension
one Hopf bifurcations and codimension two Takens-Bogdanov bifurcations of periodic orbits.
The Takens-Bogdanov bifurcations of diffeomorphisms are characterized as periodic orbits
for which the linearization has one as an eigenvalue of algebraic multiplicity two. Baesens
et al. (1991a) proved that Takens-Bogdanov points must occur in the boundaries of simple
resonance regions and asked the question as to whether all resonance regions have Takens-
Bogdanov points.

This paper analyzes a family of flows of the two dimensional torus without Hopf bifur-
cations or Taken-Bogdanov bifurcations. While our results are about flows, they translate
directly into comparable results about diffeomorphisms through the correspondence between
flows and the Euler time ε step of the flows. Thus, we give a negative answer to the ques-
tion asked above. More specifically, if ẋ = f(x) defines a flow on the torus T 2, then the
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equilibrium points of f are the fixed points of the diffeomorphisms F (x) = x+ εf(x) for all
0 < ε < sup(|Df(x)|−1). Moreover, the stability of the equilibrium points of f and the fixed
points of F agree. The examples we analyze arose in the study of solid-state laser arrays
where entrainment is due to external periodic forcing (Braiman et al. 1995, Khibnik et al.
1998). They are defined by the equations

ẋ1 = a+ b− c sin(x1)− d sin(x2 − x1)
ẋ2 = a− b− c sin(x2)− d sin(x1 − x2)

(1)

where we fix c and d and regard a and b as the active parameters of the family. In the
laser models, a and b represent the frequencies of the two lasers, c is the amplitude of
external forcing and d is the coupling strength. These equations are derived by applying
singular perturbation theory to a more complex model and then restricting the reduced
equations to an invariant torus. The single equation ẋ = a+ c sin(x) is the result of applying
this procedure to a single resonantly forced oscillator. This is the vector field analog of
a family of diffeomorphisms displaying strong resonance. When |a| ≤ |c|, the system has
equilibrium point(s) corresponding to strongly resonant oscillations. When |a| > |c|, there
are no equilibria and the system is no longer resonant. The system we study represents
two such oscillators with slightly different resonant frequencies. The frequency difference
is represented by the parameter b. The two oscillators are coupled by a term that depends
symmetrically upon the phase difference of the two oscillators. We have not tried to pinpoint
other physical problems that lead to this system, but we think that its behavior is typical
of symmetry breaking perturbations of weakly coupled, resonantly forced oscillations of two
identical oscillators.

Rescaling time in the the vector fields (1) multiplies each of the parameters by a scalar.
Thus the bifurcation set of the family has a conical structure, and it suffices to study a
three parameter family to determine all of the dynamics of the system. For example, setting
c2 + d2 = 1 is a normalization that fixes the size of the resonance region in the (a, b) plane
and allows us to easily explore both the limits of strong coupling of weakly forced oscillators
(c = 0) and weak coupling of strongly forced oscillators (d = 0). Here we focus upon global
bifurcations that occur for weak coupling of strongly forced oscillators (|d/c| � 1.)

2 Local Bifurcations

This section discusses the local bifurcations of the two parameter family of vector fields (1)
obtained by varying a and b. For each value of c and d, the local bifurcations form curves in
the (a, b) parameter space that we describe. There are three types of local codimension one
bifurcations of equilibria: saddle-nodes, Hopf bifurcations and resonant saddles. Resonant
saddles are not always regarded as bifurcations since they do not affect the local topological
properties of a phase portrait near an equilibrium point, but they play an important role in
some kinds of global bifurcations. Since they are significant for the global bifurcations of the
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family (1), we include their analysis here. The different local bifurcations occur when the
Jacobian matrix J of Equations (1) −c cos(x1 ) + d cos(x1 − x2 ) −d cos(x1 − x2 )

−d cos(x1 − x2 ) −c cos(x2 ) + d cos(x1 − x2 )


has a zero eigenvalue, pure imaginary eigenvalues or a pair of real eigenvalues whose sum is
zero, respectively. Zero eigenvalues occur when

det(J) = c2 cos(x1) cos(x2)− cd cos(x1 − x2)(cos(x1) + cos(x2)) = 0

and pure imaginary or resonant eigenvalues imply that

trace(J) = 2d cos(x1 − x2)− c(cos(x1) + cos(x2)) = 0

Pure imaginary and real, resonant eigenvalues are distinguished by the sign of det(J):
imaginary eigenvalues occur when det(J) > 0 and real, resonant eigenvalues occur when
det(J) < 0. When det(J) and trace(J) are both zero, we say that Takens-Bogdanov bifur-
cation occurs. This is a codimension two bifurcation. Our first result has a simple proof,
but it answers negatively a question posed by Baesens et al. (1991a).

Theorem 1 Assume that c 6= 0 and d 6= 0. The vector field defined by

ẋ1 = a+ b− c sin(x1)− d sin(x2 − x1)
ẋ2 = a− b− c sin(x2)− d sin(x1 − x2)

has no Hopf or Takens-Bogdanov bifurcations as a and b vary.

Proof: Assume that c and d are both non-zero. The curve defined by trace(J) = 0
consists of points with either pure imaginary eigenvalues (Hopf points) or points at which
there are real eigenvalues of opposite sign and equal magnitude (resonant saddles). When
trace(J) = 0, J is readily seen to have negative determinant since cos(x1−x2) = c(cos(x1) +
cos(x2))/(2d) implies det(J) = c2(cos(x1) cos(x2)−(cos(x1)+cos(x2))2/2) = −c2((cos(x1))2+
(cos(x2))2)/2 < 0 unless cos(x1) = cos(x2) = 0. However, cos(x1) = cos(x2) = 0 implies
| cos(x1 − x2)| = 1, contradicting the equation trace(J) = 0. Thus trace(J) = 0 implies that
det(J) < 0 and that the only points where trace(J) = 0 are resonant saddles. This proves
the theorem.

We next examine the geometry of the bifurcation curves in more detail, beginning with the
resonant saddles. The gradient of trace(J) is (c sin(x1)−2d sin(x1−x2), c sin(x2)+2d sin(x1−
x2). Points where c 6= 0 and the gradient vanishes satisfy sin(x1) + sin(x2) = 0. This implies
that x2 = x1+π or x2 = −x1. In the first case, we have cos(x1)+cos(x2) = 0 and trace(J) = 0
implies that d = 0. In the second case, cos(x2) = cos(x1), cos(x1 − x2) = 2 cos2(x1) − 1
and sin(x1 − x2) = 2 cos(x1) sin(x1). Substitution of these expression into the equations
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trace(J) = 2d cos(x1 − x2) − c(cos(x1) + cos(x2)) = 0 and c sin(x1) − 2d sin(x1 − x2) = 0
yields −2c cos(x1) + 4d(cos(x1))2 − 2d = 0 and sin(x1)(c− 4d cos(x1)) = 0. If cd sin(x1) 6= 0,
this pair of equations has no solution. We conclude that the singularities of the curves
defined by trace(J) = 0 occur when x1 = x2 = 0 and c = d or when x1 = x2 = π and
c = −d. A simple computation of the Hessian of trace(J) shows that the singular points
are index 1 Morse critical points of the function trace(J). For |c| > |d|, we assert that the
set of resonant saddles is a connected curve of trivial homotopy type on the torus of the
(x1, x2) variables. To see this, note that, when d = 0, the solutions of trace(J) = are given
by cos(x1) + cos(x2) = 0 or x1 = π±x2. Singularities of this curve occur at (π, 0) and (0, π).
When d > 0 is small, the deformations of the solutions near the singularities are readily
computed by expanding the cosine functions as Taylor series to obtain the approximate
equations 4d = x2

1− (x2− π)2 near the point (0, π) and 4d = −(x1− π)2 + x2
2 near the point

(π, 0). If |c| < |d|, the set of resonant saddles has two components, each of which is a closed
curve of homotopy type (1, 1) on the (x1, x2) torus. This is readily seen by setting c = 0
in the equation trace(J) = 0 to obtain the curves given by x1 − x2 = ±π. The following
theorem summarizes this discussion.

Theorem 2 Assume |c| > |d|. As (a, b) vary, the curve of resonant saddle points of vector
fields (1) is connected and nonsingular. The curve of resonant saddle points has two nonsin-
gular components if |c| < |d|. If |c| = |d|, the curve of resonant saddle points has a double
point.

The geometry of the saddle-node bifurcation curves is somewhat more complex than that
of the resonant saddle curves. We prove the following result.

Theorem 3 For |c/d| > 2, the saddle-node curve of the family (1) has two components.
For 0 < |c/d| < 2, the saddle-node curve has three components. All the components are
homotopically trivial and have nonsingular projections onto the (x1, x2) torus.

Proof: The defining equation for saddle-node bifurcations is det(J) = c2 cos(x1) cos(x2)−
cd cos(x1 − x2)(cos(x1) + cos(x2)) = 0. The gradient of det(J) is

(−c2 sin(x1) cos(x2) + cd(sin(x1 − x2)(cos(x1) + cos(x2)) + cos(x1 − x2) sin(x1)),
−c2 sin(x2) cos(x1)− cd(sin(x1 − x2)(cos(x1) + cos(x2)) + cos(x1 − x2) sin(x2)))

Thus, the singularities of of the saddle-node bifurcation curves in their domains occur when
the 3× 2 matrix cos(x1) cos(x2) cos(x1 − x2)(cos(x1) + cos(x2))

− sin(x1) cos(x2) sin(x1 − x2)(cos(x1) + cos(x2)) + cos(x1 − x2) sin(x1)
− sin(x2) cos(x1) sin(x2 − x1)(cos(x1) + cos(x2))− cos(x1 − x2) sin(x2)


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has rank one. Computing the minors of this matrix and using sin2(xi) = 1− cos2(xi) yields
the following pair of equations:

cos2(x1) cos(x2) sin(x1)− cos3(x1) sin(x2)− cos(x2) sin(x2) = 0
cos2(x2) cos(x1) sin(x2)− cos3(x2) sin(x1)− cos(x1) sin(x1) = 0

(2)

If sin(x1) and sin(x2) are not both zero, then eliminating sin(x1) and sin(x2) from the equa-
tions (2) yields

cos4(x1) + cos(x1) cos(x2) + cos4(x2) = 0 (3)

Using sin2(xi) = 1 − cos2(xi) once again to eliminate sin(xi) from the first equation of the
system (2), we obtain

cos4(x1) cos2(x2)+2 cos3(x1) cos3(x2)+cos4(x1) = cos6(x1)+cos2(x1)+2 cos3(x1) cos(x2) (4)

Using the computer program Maple to simultaneously solve equation (3) and equation (4)

produces three solutions: cos(x1) = cos(x2) = 0, cos(x1) = − cos(x2) = ±
√

(1/2) and

solutions with cos(x1) a root of the polynomial p(z) = z8 − 3z6 + 4z4 − 2z2 + 1. All roots of
p(z) are complex, so there are no roots in the third family. If cos(x1) = cos(x2) = 0, then

cos(x1−x2) = ±1 and hence d = 0. If cos(x1) = − cos(x2) = ±
√

(1/2), then cos(x1−x2) = 0
and hence c = 0. We conclude that the only singularities of the saddle-node curves occur
when sin(x1) and sin(x2) are both zero. In this case det(J) = 0 implies that c/d = ±2.
Calculating the Hessian of det(J), we find that this is a Morse singularity of index one for
the zero level set of the function det(J).

We finish the proof of the theorem by perturbation calculations from the families with
c = 0 and d = 0 that determine the number of components of the saddle node curves in
the (x1, x2) torus. For d = 0 and c > 0, the 0 level curve of det(J) = 0 consists of the
four circles xi = ±π/2. An easy calculation shows that the function det(J) is a Morse
function in the neighborhood of each of the intersection points (x1, x2) = (±π/2,±π/2).
We proved that the saddle-node curves for 0 < d � c are non-singular, so they will be
approximated by hyperbolas near (x1, x2) = (±π/2,±π/2) when d > 0 is small. To de-
termine the topology of the saddle node curves, we only need to determine which direc-
tion the crossing curves for d = 0 split as we perturb to c > 0. Expanding the Taylor
series of det(J) near the points (x1, x2) = (±π/2,±π/2), we find that the saddle-node
curve becomes two homotopically trivial closed curves, one surrounding the origin and
one surrounding the point (x1, x2) = (π, π). The perturbation arguments for the case
0 < c � d are similar. When c = 0, the 0 level curve of det(J) = 0 is given by four
circles x1 ± x2 = π and x1 − x2 = ±π/2. There are six points of intersection of these circles
at (x1, x2) = (π/4, 3π/4), (3π/4, π/4), (−π/4,−3π/4), (−3π/4,−π/4), (π, 0) and (0, π). The
function det(J) is a Morse function at each of these points. As c is perturbed to be positive,
the saddle-node curve becomes three homotopically trivial closed curves which contain the
points (11π/8, 3π/8), (3π/8, 11π/8) and (0, 0) in their interiors.
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Since the saddle-node curves lie at singularities of the map from the (x1, x2) torus to the
(a, b) parameter plane, additional singularities appear when the curves are projected into
the (a, b) parameter plane. The singularity in the (x1, x2) torus that occurs when c/d = ±2
is mapped to a curve that has the local structure of the level set of u2 = v4 in suitable
coordinates. Furthermore, cusps and swallowtails appear along the saddle-node curves in
the (a, b) plane. These do not seem to be simple to compute exactly, so we report observations
from numerical calculations of the saddle-node curves. The outer component of the saddle-
node curve in the (a, b) plane appears to be convex and nonsingular for all values of c 6= 0 and
d 6= 0. For |c/d| > 3, the inner component of the saddle-node curve has four cusps. These
are located on the a and b coordinate axes. When |c/d| = 2

√
2, there are a pair of swallowtail

singularities that occur on the a axis. For |c/d| < 2
√

2, the inner component of the saddle
node curve has eight cusps, of which two lie on the b axis and two lie on the a axis. As
|c/d| decreases through 2, the two cusps on the a axis merge with one another and branches
of the two cusps reconnect smoothly with one another. For 0 < |c/d| < 2, there are two
inner components of the saddle-node curve that are reflections of one another in the a axis.
Each of these inner components has three cusps. Additionally, the two components intersect.

Denote ct =
√

2(
√

5 − 2)
√√

5 + 1 ≈ 0.60057. There are six points of intersection between
the inner two components if ct < |c/d| < 2. If 0 < |c/d| < ct, there are only two points of
intersection between these curves. This completes our description of the local bifurcations
of the equilibria for this family of vector fields. Figure 2 is a collection of diagrams showing
the saddle-node and resonant saddle curves in the (a, b) plane for different values of c/d.

3 Periodic Orbits and Global Bifurcations

We begin the discussion of periodic orbits of the family (1) by discussing what happens for
large values of (a, b). The return maps of torus flows with global cross-sections (and hence no
equilibrium points) have rotation numbers (Guckenheimer and Holmes 1983). The rotation
number of a return map determines whether the flow has periodic orbits and characterizes
the homotopy types of those orbits. More precisely, while traversing a large circle a2+b2 = r2

in the (a, b) plane, the flows are perturbations of rotations whose return maps assume all
rotation numbers. Heuristically, we picture a family of “Arnold tongues,” one for each
rational number, that extend into the (a, b) plane from infinity. Formally, we define the (p, q)
Arnold tongue to be the set of flows that have a periodic orbit of homotopy type (p, q). The
tongues are disjoint from one another. The primary objective of this section is to describe the
boundaries of the Arnold tongues. Our results are not rigorous, but rather an interpretation
of numerical computations based upon the assumption that the two parameter family (1)
with varying a and b has only generic bifurcations for most values of c and d. Here we focus
upon values of c/d > 3 for which the saddle-node curve has only two components and four
cusp points and report the results of these investigations. A more complete investigation is
required to characterize other cases and the codimension three bifurcations that occur with
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smaller values of c/d.
We discuss briefly the case d = 0, viewing this as a singular limit as c/d increases. When

d = 0, the system (1) separates into two uncoupled equations. The resonance region is the
square |a|+ |b| = 1. All points on the boundary of the resonance region except its corners are
flows that have one saddle node equilibrium point. In the interior of the resonance region,
all flows are “fully mode locked” with four equilibrium points and no periodic orbit. Outside
the resonance region in the strip |a + b| ≤ 1, the flow has periodic orbits of homotopy type
(0,±1). Outside the resonance region in the strip |a− b| ≤ 1, the flow has periodic orbits of
homotopy type (±1, 0). When |a + b| > 1 and |a − b| > 1, the flow has a rotation number
ρ 6= 0. The corners of the saddle-node curve are in the closure of all the Arnold tongues in
the quadrant of |a± b| > 1 adjacent to the corner.

Now assume that c/d > 3. The local bifurcation diagram of the (a, b) plane is shown in
the top row of Figure 2. The resonance region is bounded by a nonsingular curve of saddle
node bifurcations So that lies close to the square |a|+ |b| = 1. There is a second saddle-node
curve Si inside So with four cusps located on the coordinate axes. The curve R of resonant
saddles lies between the two saddle-node curves near the cusp points, though much of R lies
inside Si if c/d is large enough. The Arnold tongues are perturbations of the Arnold tongues
for d = 0. Apart from the tongues with homotopy types (±1, 0) and (0,±1), they all collect
in the vicinity of the cusps. To make our discussion more concrete, we focus on the region
near the cusp on the positive b axis in the (a, b) plane. The structure of the bifurcations
near the other cusps is similar. The largest tongues near this cusp have homotopy types
(1, 0), (0,−1) and (1,−1). The tongues with homotopy types (1, 0) and (0,−1) are wide and
separate the tongues with homotopy types p > 0 > q from those that approach the other
cusps. The (1,−1) tongue is special because it is the only tongue that intersects the interior
of Si near the positive b axis.

The bifurcation diagram is symmetric with respect to the b axis, so we further restrict our
attention to the left side of the b axis where the tongues have homotopy types with p < −q.
Arnold tongues A(p,q) with homotopy type (n,−(n+ 1)) have a somewhat different structure
from those with homotopy types (p, q) with −q > p + 1. Figure 3 portrays the structure of
these tongues. Our first comments apply to all of the Arnold tongues A(p,q) without restric-
tions on (p, q). The boundary of A(p,q) is formed from curves of codimension one bifurcations
with endpoints at codimension two bifurcations. There are two types of codimension one
bifurcations that terminate families of periodic orbits: saddle-nodes of periodic orbits and
homoclinic bifurcations. Four types of codimension two bifurcations appear on the boundary
of these tongues: saddle-node loops, resonant homoclinic bifurcations, transversal intersec-
tions of saddle-node bifurcations of equilibria with saddle-node bifurcations of periodic orbits
and saddle-node fan points. The intersection of each tongue A(p,q) with So is a connected arc
So(p,q) bounded by two codimension two points at which there are transverse intersections of
So with curves of saddle-nodes of periodic orbits that bound A(p,q) in the exterior of So. In
addition, there are a pair of saddle-node loop points sh in So(p,q) at which the saddle-node
equilibrium has a homoclinic orbit that lies in the boundary of its two dimensional unstable
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manifold. Along So between the points sh, the flows have a single periodic orbit which is
stable. Emanating from the points sh are curves of homoclinic bifurcations that extend into
the interior of the resonance region. These homoclinic curves terminate on the saddle-node
curve Si at saddle-node fan points sf (Baesens et al. 1991b, p.432). Each of these complex
codimension two bifurcation points sf lies at the end of homoclinic bifurcation curves of a
countable number of Arnold tongues A(p,q). The saddle-node fans also lie at the endpoints of
heteroclinic bifurcation curves that are described below. For tongues A(p,q) with −q > p+ 1,
both homoclinic curves bounding the tongue terminate at the same saddle-node fan point.
The homoclinic curves of the tongues A(n,−(n+1)) end at adjacent saddle-node fan points.
No periodic orbits of homotopy type (p, q), |pq| > 1, are found in the interior of Si. The
points where the homoclinic curves cross the resonant saddle curve R are resonant homo-
clinic bifurcation points. At each of these a bifurcation curve of saddle-nodes of periodic
orbits meets the homoclinic curve and terminates. In the phase space, the periodic orbits
emerging from the homoclinic orbits are unstable outside the resonant saddle curve R, while
those emerging from the homoclinic curves inside R are stable. The Arnold tongues A(p,q) are
separated by flows with quasiperiodic minimal sets. Outside the curve So, these flows have
dense trajectories. In the annulus between So and Si, the flows are Cherry flows (Baesens et
al. 1991b) with minimal sets that are solenoids.

We next describe the additional bifurcations associated with the Arnold tongue A(1,−1)

of homotopy type (1,−1). This resonance region contains codimension one heteroclinic
bifurcations and codimension two heteroclinic cycles that appear inside the region bounded
by Si. For parameters that lie on the b axis, the systems (1) have a reflection symmetry.
Figure 4 shows a collection of four phase portraits for decreasing values of b along this axis.
Outside So, there are a pair of periodic orbits, one of which is the invariant circle x1+x2 = 2π.
The periodic orbits that emerge at So lie on this invariant circle and destroy the unstable
periodic orbit. The intersection of Si with the b axis is a cusp at which a pair of asymmetric
saddle points p1 and p2 emerge from the invariant line, leaving behind a sink on the axis.
At a parameter value b = bhet below the cusp point, p1 and p2 have a heteroclinic cycle with
vertices at p1 and p2. The periodic orbit that exists for b > bhet disappears at b = bhet. For
bhet > b > 0, there are no periodic orbits.

The parameter regions inside the cusp of Si on the positive b axis contains sequences of
heteroclinic bifurcations associated with A(1,−1). Refer to Figure 5 for a picture of the phase
space for parameters in this region. We use the unit square as a fundamental domain for T 2.
There are four equilibrium points, a sink, a source and two saddles. The two saddle points
are labeled p1 and p2. Each saddle has one stable separatrix that goes to the sink without
intersecting the boundary of the unit square and one unstable separatrix that comes from
the source without intersecting the boundary of the unit square. The other separatrices of
the saddles p1 and p2 do intersect the boundary of the unit square in points s1, s2, u1, u2.
Points to the left of s1 and above s2 tend to the sink and those below u1 and to the right
of u2 come from the source. We need to follow points to the right of s1 and below s2 to
determine the remainder of the phase portrait of these fields.
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Let I1 = (s1, 1) be the interval on the top of the unit square to the right of s1, and let
I2 = (0, s2) be the interval on the left edge of the square below s2. We examine the return
map of I1 to the top of the unit square. Points that intersect the left side of the square above
s2 tend to the sink and do not return. Thus, if u1 > s2, there is no recurrence for the map
and all points have α- and ω- limit sets that are equilibria. When u1 < s2 and s1 < u2, there
is an interval (s1, x2) = J ⊂ I1 that does return to the top of the square with x2 denoting
the first point on the backwards trajectory of s2 to intersect the top of the square. Let θ be
the first return map to the top of the square. The map θ is monotone increasing and has a
continuous extension to the closed interval [s1, x2]. The derivative of θ appears to be smaller
than one in our numerical studies, so we assume that θ′ < 1 in the following discussion.
There are three cases to consider:

1. θ(J) ⊂ J

2. s1 ∈ θ(J)

3. θ(J) ⊂ (0, s1).

In the first of these cases, there is a fixed point that is the intersection of J with a periodic
orbit of homotopy type (1,−1). In the third case, all of the points of J tend to the sink after
a single return to the top of the square. The second case is more complicated than the first
and third. All points of J either tend to the sink or lie in the stable manifold of p1, but they
may make repeated returns to J . If θn(x2) = s1, there is a heteroclinic orbit that intersects
the top of the square in n + 1 points. As we proceed along the interior of the inner saddle-
node curve Si towards the cusp with negative values of a increasing towards 0, we move from
the third case described above to the second and then to the first. We encounter a sequence
of heteroclinic bifurcations which accumulate at parameters for which θ(s1) = s1. These
parameter values are ones for which the point p1 has a homoclinic orbit, and they bound
the Arnold tongue A(1,−1). All of these curves of heteroclinic and homoclinic bifurcations
meet at the codimension two point (a, b) = (0, bhet) of the heteroclinic cycle. The bifurcation
curves to the right of the b axis are reflections of the ones we have described to the left of
the b axis.

We want to connect our analysis of the global bifurcations inside the saddle-node curve
Si with that for the annulus bounded by the two saddle-node curves Si and So. The end
points of the heteroclinic bifurcations on Si are the codimension two saddle-node fan points
described above. At these parameters, the branch of the stable manifold of p1 passing through
s1 coincides with the unstable manifold of the saddle-node point p2. We can extend these
connections to closed curves by adjoining either branch of the unstable manifold of p1. The
two closed curves formed by adjoining one of the branches of the unstable manifold of p1

have homotopy types of the form (n−1,−n) and (n,−(n+1)). This saddle-node fan point is
the end point of homoclinic bifurcation curves bounding A(p,q) for p/q ∈ (−1 + 1

n+1
,−1 + 1

n
).

Thus the codimension two points on Si are the common endpoints of heteroclinic bifurcation
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curves inside Si and a countable set of homoclinic bifurcation curves lying in the annulus
between Si and So. This completes our description of the bifurcation diagram inside Si near
the cusp along the positive b axis in the (a, b) plane. Figure 6 depicts the bifurcation diagram
of this region of the (a, b) plane.

Our description of the bifurcations of two parameter families (1) with varying a and b
and |c/d| large contains only generic codimension one and two bifurcations. We conjecture
that this description is not only consisent but also correct. In particular, we believe that
it includes all of the bifurcations that occur in these families. The unfoldings of each of
the codimension two bifurcations have been described previously in the literature. The only
novelty is the appearance of the countable sequences of heteroclinic bifurcations that meet at
the heteroclinic cycles. It is evident that there are significant changes in the global bifurcation
diagrams as |c/d| decreases, but we have not tried to classify these or to determine which
codimension three global bifurcations are present within the family (1).
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Figure Captions:

Figure 1: This figure, reproduced from Baesens et al. (1991b), shows the geometry of
a simple resonance region of a two parameter family of torus flows. In the interior of an
annulus in the parameter plane, there are two equilibrium points of the flows. Phase portaits
for parameters in different regions are superimposed upon the bifurcation diagram.

Figure2: Bifurcation diagrams of saddle-node and resonant saddle bifurcations of the
families with varying a and b are displayed. The ratio c/d appears to the left of each
diagram.

Figure 3: The global bifurcations bounding Arnold tongues are shown. The Arnold
tongues of homotopy type (n,−(n + 1)) extend to a segment of the curve Si. Curves of
homoclinic bifurcations are labelled by H, resonant homoclinic cycle points are denoted
RH , points of saddle-node loop bifurcations by sh, and saddle-node fan points by sf . Each
saddle-node fan point lies at the end of an infinite number of Arnold tongues.

Figure 4: Phase portraits for symmetric vector fields with c = 1, d = 0.1 and a = 0 are
shown for the values of b displayed below the phase portraits. The parameter b = 1.3 lies
outside the resonance region and there are two periodic orbits. The parameter b = 1.01 lies
between So and Si. There is a source and a saddle on the invariant line and a stable periodic
orbit. When b = 0.997, there are four equilibirum points and a stable periodic orbit. As b
decreases, the periodic orbit disappears when the two saddle points have a heteroclinic cycle.
The value b = 0.9 is below this bifurcation, and all trajectories tend to equilibrium points.

Figure 5: The phase portrait of the torus for parameter values inside the curve Si. There
are four equiibirium points, two of which are saddles labelled p1 and p2. The unstable
manifold of p1 has a branch that intersects the right hand side of the square at u1 and a
branch of its stable manifold that intersects the top of the square at s1. The saddle p2 has a
branch of its unstable manifold that intersects the bottom of the square at u2 and a branch
of its stable manifold that intersects the left side of the square at s2. If s2 lies above u1, we
continue the stable manifold of p2 until it intersects the top of the square at x2. The segment
(s1, x2) returns to the top of square.

Figure 6: An overview of global bifurcations in the vicinity of the positive b axis. The
three Arnold tongues with homotopy types (0,−1), (1,−1) and (1, 0) are large, with the
tongue A(1,−1) extending into the interior of Si. The codimension two bifurcation points
along So are transversal intersections of saddle-nodes of equilibirums and limit cycles and
saddle-node loop points. The codimension two bifurcation points on the curve of resonant
saddles denoted R are resonant homoclinic bifurcations. The bifurcations on Si are saddle-
node fan points at which infinite collections of Arnold tongues terminate. Inside Si are curves
of heteroclinic bifurcations that all meet at the heteroclinic cycle point on the b axis.
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