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Dynamical systems with multiple time scales arise naturally in many do-
mains. Models of neural systems provide the principal motivation for this
paper. Most of the previous mathematical analysis of qualitative properties
of multiple time scale systems has dealt with local phenomena that occur in
low dimensions. The neural system models raise questions that lie beyond
the scope of existing work. Our aim here is to outline a theory that extends
the local theory to a description of qualitative features of the global dynamics
for systems with two time scales. We fill in portions of this outline within
the context of systems that have two slow variables and two fast variables.
Even within this low dimensional setting, most basic questions about global
properties remain unanswered.

The setting within which we work is a system of differential equations in
R™*™ of the form

&= f(z,y)
=eg(z,9)
or
ex' = f(z,y)
Y =g(z,y)

Such systems are called singularly perturbed differential equations or fast-
slow vector fields. For brevity, we say that these equations define an (m,n)
dimensional SP system. Here ¢ > 0 is a small parameter, the x variables
are called fast variables, the y variables are called slow variables and the two
systems have time variables ¢t and T with dT'/dt = €. The system for ¢ = 0
will be called the singular system or SPyfield of the corresponding SP sys-
tem. We have written the equations of an SP system in two different forms
to emphasize that it will be studied from two points of view. When we ex-
amine the fast time scale ¢, the system appears as a perturbation of a family
of vector fields parametrized by y. The perturbation parameter induces a



slow variation of the parameters, producing a slowly varying system. Bifur-
cations in the family of vector fields induce transitions of trajectories from
the neighborhood of one family of attractors to another on the fast time
scale. The asymptotic properties of the simplest types of such transitions
have been studied extensively. The second system has as its limit a differen-
tial algebraic equation in which the differential equations for the evolution of
x become algebraic equations. This limit makes good sense as a singularly
perturbed system for describing trajectories that track regular portions of
the 0 level set of g. In these regions, one can solve the equation g = 0 for
x using the implicit function theorem and obtain a system of equations that
describes the evolution of y. At places on the 0 level set of g where g, is
singular, the differential algebraic system may not have solutions at all. To
make sense of the solutions, it is necessary to follow the evolution of the
fast vector field from these points. The fast evolution of y can be viewed
as “jumps” from one slow manifold to another. Piecing together trajectories
from the continuous evolution along the 0 level set of g with these jumps
produces a hybrid system of the sort studied by Back, Guckenheimer and
Myers [2].

Generic properties of singularly perturbed systems have been studied pre-
viously, but much of this work has been devoted to local properties, the study
of particular classes of solutions and phenomena that involve only one or two
transitions between attractors of the fast subsystems. Arnold et al. [1],
Grasman [7] and Mishchenko [12] give surveys of much of this theory. We
note that the analysis of the forced van der Pol equation by Cartwright and
Littlewood [3] can be viewed as a seminal example of a long time analysis of
a system with three time scales. Takens [15, 16, 17, 18] was perhaps the first
to consider the development of a systematic theory, mainly in the context of
systems for which the fast subsystems had gradient structures. Rinzel [14]
has used systems with two time scales as models for bursting oscillations of
electrical activity in biological systems. His work does not attempt to build a
comprehensive theory for singularly perturbed systems. Here, we take initial
steps to construct a systematic global theory of singularly perturbed systems,
including those that display oscillations on fast time scales. We sketch topo-
logical aspects of the theory and touch briefly on the asymptotic analysis
of various phenomena. To make our task more manageable, we focus our
attention to phenomena that occur in SP fields with m = 2 and n = 2. This
allows us to draw upon the relatively complete theory of codimension two



bifurcations of two dimensional vector fields and to avoid considerations of
chaotic dynamics occurring within fast subsystems.

1 Preliminaries

Our goal is to characterize the qualitative properties that occur in “generic”
SP systems. Our interpretation of genericity will be partly dependent upon
context. Let X, be a system in R™"™ of the form

y = eg(z,y) (1)

with two time scales. We regard X, as a smooth (C*°) map X, : R™*" —
R™ x R™. The range of X is written as a product to reflect the roles of the
two factors in the product. Since the singular limit X, is a family of vector
fields in R™ parametrized by R", the most stringent definition of equivalence
of two systems will be that there is a smooth coordinate change of R™"
that commutes with the projection R™*" — R"™ and maps one vector field to
another. These coordinate changes have the form (h(z,y), k(y)). The local
classification of normal forms given by Arnold et al. [1] is based upon this
definition of equivalence. The limit ¢ = 0 is indeed singular. The solutions
to the equation defining an SPyfield do not approximate the solutions of an
SP system for € > 0 since the slow variables of an SPy field remain constant.
Therefore, we make the following definition.

Definition: Let X, be the SP vector field (1). A curve vy C R™ x R" is
a trajectory of the SPy field Xj if it is the limit of a one parameter family of
trajectories v, for € > 0. The limit is assumed to be the limit of the curves
as subsets of R™ x R™ with respect to the Hausdorff metric on subsets.

The dynamics of a vector field can be decomposed into a phase por-
trait consisting of chain recurrent invariant sets and sets of trajectories that
connect pairs of chain recurrent sets. Trajectories of the SPy field can be
decomposed into segments during which the trajectories remain in an invari-
ant set of the fast subsystem and segments in which the trajectories makes
transitions between invariant sets. We call these segments (slow) S segments
and (fast) F segments respectively. The time scales associated with S seg-
ments and F segments of the SPy field trajectories have an infinite separation.
Trajectories that lie on equilibrium manifolds of the fast subsystem can be
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Figure 1: A trajectory of a (1,2) dimensional SP system approaches a mani-
fold of stable equilibria, leaves this manifold in an SF transition at a fold of
the manifold and then approaches a second equilibrium manifold in an FS
transition. The trajectory is plotted in a heavier line style than the equilib-
rium manifolds.

regarded as evolving on the slow time scale. If M is an equilibrium mani-
fold on which D,g is nonsingular, then the slow vector field that describes
this evolution is called the reduced field. The reduced field at x € M is the
unique vector v tangent to M at x with the property that v projects onto
f(z) by the projection of R™ x R™ onto its first factor R™. We distinguish
F'S transitions where an S segment precedes a F segment from SF transitions
in which an S segment follows a F segment. The local theory is primarily
an asymptotic analysis of the generic SF transitions that one expects to find
from equilibrium manifolds of the SP field to F' segments.

The long time scale will refer to times that are long in the slow time
scale t. On the long time scale, we expect that there will be trajectories that
pass through many transitions. A global theory of SP systems will segment
trajectories so that normal forms can be fit to each segment uniformly as
€ — 0. Through the analysis of the normal forms, this leads to a matched
asymptotic expansion for the trajectories. For the long time scale, we want
to perform an epoch analysis in which the slow time evolution of trajectories



is collapsed to a sequence of discrete maps that send points at the onset of
an F'S transition to the onset of the next FS transition. We call these maps
induced maps. They need not be invertible like the cross-section maps of a
flow, and they may be multivalued.

2 Transitions based on bifurcations of two
parameter families of vector fields

Bifurcation theory of dynamical systems provides a guide to the types of
FS transitions that we expect to find in SPq fields. Classification of FS
transitions in (m,n) dimensional SP systems can therefore be based upon
the classification of bifurcations of n parameter families of m dimensional
vector fields. In this section, we review the classification of codimension one
and two bifurcations of two parameter families of two dimensional vector
fields and discuss their relationship with FS transitions of (2,2) dimensional
SP systems.

Bifurcations are classified by codimension [8], and the codimension re-
flects the dimension of the set of trajectories undergoing an FS transition.
Codimension one bifurcations of attractors give rise to F'S transitions that are
found in open subsets of trajectories of an SP field, while higher codimen-
sion bifurcations give rise to F'S transitions that are found only on nowhere
dense sets of trajectories of SPy fields. In the setting of (2,2) dimensional SP
systems, this means that codimension two bifurcations occur only at isolated
trajectories of an SPq field. Moreover, the invariant sets of the fast subsystem
are all equilibrium points, periodic orbits or polycycles composed of closed
curves containing equilibrium points.

The codimension one bifurcations of two dimensional vector fields are

1. Saddle-nodes equilibria or folds: These bifurcations give rise to trajec-
tories that make jump transitions from an equilibrium manifold of an
SPy field. The asymptotic properties of SP trajectories near folds have
been described in substantial detail [1]. The vector field

T = €
y o= —y-u



is a normal form for a(1,1) dimensional SP system with a fold. The
matched asymptotic expansions for trajectories of this system are based
upon a partition of the plane into three regions: an e-dependent neigh-
borhood U, of the origin, a neighborhood of the regular portion of the
curve defined by 3% + 2 = 0, and regions of the plane where y >> e.
Scaling the system with the coordinate transformation y = €'/3Y,
r = €3X and t = ¢ /3T produces the system

X =1
Y = -Y?-X

which is independent of €. Therefore, trajectories of this system can
be used as a scaled model for the behavior of the vector field in U.,.
Explicit solutions of the equation Y’ = —Y?2 — T can be expressed in
terms of Airy functions [7].

. Hopf bifurcations: Hopf bifurcations are characterized by an equilib-
rium manifold of an SPy field along which complex eigenvalues of the
fast field at the equilibrium cross the imaginary axis transversally. In
an SP system, trajectories have difficulty tracking an emerging branch
of periodic orbits at Hopf bifurcations. Consider the case of a supercrit-
ical Hopf bifurcations in which a family of stable limit cycles emerges
from stable equilibria. The trajectory of the SP system comes so close
to the equilibria prior to the the Hopf bifurcation that it remains close
to the branch of post-critical unstable equilibria for a substantial period
of time. The asymptotics of this “delayed loss of stability” have been
analyzed by Nejshtadt [13]. The smoothness or analyticity of the vector
field significantly affects the asymptotics of delayed loss of stability in
generic SP systems. With analytic systems, Nejshtadt [13] calculates
of the length of delay following bifurcation in terms of a complex-time
extension of the system.

. Saddle-connections: Homoclinic and heteroclinic bifurcations are global
and have not been studied extensively within the context of SP systems.
Homoclinic bifurcations appear in generic families as one mechanism
for the termination of a family of stable limit cycles. Rinzel [14] ob-
served the corresponding phenomenon in SP systems at the termination
of spiking in models for bursting oscillations of neural oscillators. The
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Figure 2: A trajectory of a (2,1) dimensional SP system passes through a
Hopf bifurcation and then exhibits a delay in tracking the manifold of periodic
orbits emerging from the Hopf bifurcation.

asymptotics of this transition have not been analyzed beyond the dy-
namics of the SPy field itself close to its homoclinic bifurcation. Here
are a few preliminary comments about the analysis of the periods of
oscillation in a trajectory passing through a homoclinic bifurcation. In
a generic reduced system with a homoclinic orbit, there is a manifold
E of equilibria for the fast system that are hyperbolic saddles. These
saddles have stable and unstable manifolds that intersect transversally
at a set of slow variables that form a codimension one submanifold H
of E. Fenichel [5] proves that the hyperbolic structure of the manifold
E persists for € > 0. The manifold E is the limit of a family of normally
hyperbolic manifolds E. as ¢ > 0. Its stable and unstable manifolds
continue to intersect transversally. In a neighborhood of E, Fenichel
defines coordinates for which the families of strong stable and unstable
manifolds are invariant.

Periodic orbits of a reduced vector field close to a homoclinic orbit can
be decomposed into a pair of segments, one lying in a neighborhood
U of the manifold F and the second lying in the complement of U.
The portion of trajectories lying outside U are regular orbits that vary
smoothly with x and have bounded duration as € — 0. The dominant
portion of the increase in period of the reduced system comes from the



Figure 3: A trajectory of a (2,1) dimensional SP system passes a homoclinic
orbit. A curves of sources is depicted by a dotted line and a curve of saddles
is depicted by a a dashed line. The surface of periodic orbits and the stable
and unstable manifolds of the saddles are shown. The homoclinic orbit is
contained in the closure of all three of these surfaces.

passage of trajectories through U. In the reduced system, the length of
time that a trajectory spends in U is determined by the smallest magni-
tude of its coordinates along the unstable manifold of the saddle point.
Assume that there are coordinates for the reduced system in which the
fast equations are defined by 2; = \;(y)z;. Assume that \;(y) > 0 for
i=1,...,u and that \;(z) < 0 for i = u+ 1,...,n (For generic sys-
tems, we can expect that coordinate systems of this form can at best
be determined with finite degrees of smoothness [10].) In each unsta-
ble direction, the z; increase exponentially in magnitude, implying that
the time a trajectory spends in U is comparable to max(— In(z;)/\;,
1 =1,...,u. If the slow variable evolves at a constant rate, then each
cycle of the oscillation of the trajectory will carry it closer to the stable
manifold of E. The cycles of the oscillation get longer, resulting in a
larger change in the slow variable from one cycle to the next. Thus the
growth of the period of the oscillations is faster than they would be if
there were a constant change in parameter values between cycles. We
conjecture that the period between cycles should be asymptotic to a
function of the form ay In(1/€) + as In(In(1/€)) + as.

Heteroclinic bifurcations of fast systems can be expected to lead to
discontinuities in the fast transition maps that occur along fold singu-
larities, though we are unaware of any examples of this phenomenon in



the literature.

4. Saddle-nodes of periodic orbits: Manifolds of periodic orbits may have
folds in generic one parameter families of vector fields. These folds are
singularities for the projection map of the manifold onto the parameter
space of the family. The return map for the family of periodic orbits has
a discrete time saddle-node bifurcation. The asymptotic analysis of the
return map is analogous to that for saddle-nodes of equilibrium points.
The behavior of the “phase” variable that is ignored by the return map
has not been studied. Note that the isochrons (strong stable manifolds)
of a limit cycle for a planar system make an angle with the cycles that
is proportional to the characteristic exponent of the cycle. Semistable
limit cycles typically do not have isochrons.

The consequences of codimension two bifurcations in the fast subsystems
of a (2,2) dimensional SP field have hardly been studied. The only case
that gives rise to a local bifurcation is the cusp [1]. The list of codimension
two bifurcations is manageable for a case by case asymptotic analysis, so we
present it here as a challenge to readers.

1. Cusps: Projection of the equilibrium manifold M of a generic SPy field
onto a space of slow variables will have singularities that are folds (codi-
mension 1) and cusps (codimension 2). A normal form for a mapping
with a cusp is f(z1,79) = (23 + 2271, 79). An SPy vector field with a

cusp is
i o= =2ty + oy
Y1 = €¢
Yo = €Cy

As with the fold bifurcation, there is a region near the origin in which
the time scales for the dynamics of x differ from those when the slow
variables y; are far from the origin. A scaling argument similar to
the one used for folds indicates the size of this region. We solve the
equations for g; and substitute these solutions into the equation for .
We then look for a region of the phase space in which all of the terms
have comparable magnitude. Such a region exists for x ~ O(e'/?),
Y1 ~ O(2/%), yo ~ O(e%/%), and t ~ O(¢~2/%). Trajectories that track
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the equilibrium manifold in this region will relax towards the stable
equilibrium surface on the slower time scale t ~ O(e~%°) than the unit
time scale for the typical evolution of x.

. Takens-Bogdanov bifurcations: Consider the equilibrium manifold M
of a generic SPy field with more than n > 1 fast variables. The lineariza-
tion of the fast subsystem along M defines a smooth map of M into
the space of m x m matrices. There are no constraints on this map
from the equilibrium conditions, so there will be a codimension two
submanifold of M at which the linearization of the fast subsystem has
zero as an eigenvalue of algebraic multiplicity two. The generic points
of this submanifold are called Takens-Bogdanov points. They lie on the
codimension one fold surface of M at places where the number of sta-
ble and unstable eigenvalues of the linearization of the fast subsystem
changes along the fold surface. The unfolding of the Takens-Bogdanov
bifurcation as a codimension two bifurcation of planar vector fields is
well known. There are small amplitude periodic orbits and homoclinic
bifurcations associated with the Takens-Bogdanov bifurcation.

. Degenerate Hopf bifurcations: The normal form for Hopf bifurcations
contains a “nonlinear” term that determines whether the equilibrium
point is weakly stable or unstable in the marginal directions. Degen-
erate Hopf bifurcation occurs when this quantity vanishes. A point
of degenerate Hopf bifurcation in a generic two parameter family of
vector fields signals the change from subcritical to supercritical Hopf
bifurcation for families that cross the bifurcation curve transversally.

. Resonant homoclinic bifurcations: In generic one parameter families of
vector fields, the stability of the periodic orbits near a homoclinic orbit
are determined by the properties of the saddle point that is the limit of
the homoclinic orbit. In two dimensional vector fields, the trace of the
linearization of the saddle point determines whether the periodic orbits
are attracting or repelling. Resonant homoclinic bifurcation occurs
when the trace vanishes. This occurs in generic multiparameter families
of vector fields. Associated with the resonant homoclinic bifurcations
in generic two parameter families are paths of saddle-node bifurcations
of limit cycles that end at the codimension two point, meeting the curve
of homoclinic bifurcations with a tangency that is flat.
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5. Saddle-node loop: Consider the phase portrait of a two dimensional
vector field near a point with a saddle-node equilibrium at which the
linearization of the field has a negative eigenvalue along with its zero
eigenvalue. The stable set of the equilibrium is diffeomorphic to a half
plane, and the unstable set of the equilibrium is a single trajectory.
If the unstable set is contained in the interior of the stable set, then
the saddle-node bifurcation has been called a homoclinic saddle-node,
“saddle-node in cycle” or SNIC. This is a codimension one bifurcation
that persists with perturbation of the saddle-node. If the unstable set
is contained in the boundary of the stable set, this is a codimension
two bifurcation that has also been called a homoclinic saddle-node or
saddle-node loop. Passing through the codimension two point in the
parameter space of a generic two parameter family is a curve of saddle-
node bifurcation, and there is a curve of homoclinic bifurcations that
terminates at the saddle-node point. Algorithms for computing these
codimension two bifurcations have been discussed by Schechter.

6. Triple cycles: Just as the equilibrium manifolds of SPy fields have pro-
jections with cusps as codimension two singularities, families of limit
cycles for SPy fields have projections with codimension two singularities
corresponding to cusps. The cusps appear by restricting the projection
to the family of fixed points in a cross-section to the SP field.

7. Double saddle connections: There are several cases of transversal in-
tersections of curves of independent codimension one bifurcations that
occur in two parameter families of vector fields. The case of two inter-
secting curves of homoclinic bifurcations for the same saddle point leads
to a more complicated situation with additional subsidiary bifurcation
curves appearing. In two dimensional vector fields, this bifurcation
has subsidiary homoclinic bifurcations with both “convex” and “non-
convex” homoclinic orbits. In the parameter space, there are two curves
of homoclinic bifurcation passing through the codimension two point
for homoclinic orbits that enclose a convex angle at the saddle point.
There are also two branches of homoclinic bifurcation for non-convex
homoclinic orbits that terminate at the codimension two point.
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3 The Long Time Scale: Induced Maps

We turn to the analysis of the long time scale dynamics of an SP system.
In particular, we would like to describe the long time invariant sets of an
SP system. This task is complex because the ¢ = 0 limit of an SP system
is indeed singular. For example, in a (2,2) dimensional system undergoing
supercritical Hopf bifurcation, the transition from the equilibrium manifold of
the SPy field to its manifold of limit cycles will have trajectories that connect
every unstable point along the equilibrium manifold with every point on the
limit cycle in the same fast subsystem. (This observation is a corollary of the
theory of Nejshtadt [13] that analyzes the delay of SP trajectories in tracking
the family the of limit cycles following the Hopf bifurcation.) The pathology
represented by this example is not pursued further here. Instead, we restrict
our attention to the simpler setting for (2,2) dimensional systems with only
equilibrium attractors.

Manifolds of stable equilibria for (2,2) dimensional systems are two di-
mensional and have one dimensional boundaries at which trajectories undergo
F'S transitions. If v is a curve that is in the boundary of a manifold of stable
equilibria, then we follow the evolution of v through the F'S transition until
meets the next manifold M of stable equilibria and begins flowing once more.
Singular phenomena may be encountered along the F segments emanating
from v or in the relationship of v to the slow flow along M. The induced map
of the system will be a one dimensional map from v to the boundary of M.

The Poincaré-Bendixson Theorem implies that the limit set of a bounded
trajectory of a planar vector field is a periodic orbit or contains an equilib-
rium point. This implies that the trajectories forming the boundary of the
basin of attraction of a sink for a structurally stable vector field are either
in the stable manifold of saddles, tend to infinity or emerge from sources
that are equilibrium points or unstable limit cycles. This observation ap-
plies to systems with saddle-nodes if the saddle-node points and their strong
stable manifolds are included in the list of trajectories that form boundaries
of basins of attraction. If we follow the unstable separatrices of saddle-node
points in a generic (2,2) dimensional SP system, discontinuities for the in-
duced map will be created at separatrices that lie in the stable manifold of a
saddle. Transversal crossing of two saddle-node bifurcation curves also leads
to discontinuity of induced maps. When equilibrium points of a system dis-
appear in a saddle-node of equilibria, there is a discontinuous change in a
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basin of attraction. This change creates the possibility for new global bifur-
cations involving saddle connections of the fast subsystems to appear. The
phenomenon may be related to a codimension two bifurcation that can be
detected by bifurcation analysis. For example, if the unstable separatrix of
a saddle-node p connects to a saddle point ¢, there may be another saddle
separatrix approaching p that connects to ¢ when it “breaks through” the
saddle-node region.

Although we don’t discuss systems with limit cycle attractors in detail
here, we remark that new saddle connections may be created by the destruc-
tion of the cycles without the involvement of a codimension two bifurcation.
If v is a periodic orbit undergoing a saddle-node of limit cycle bifurcation,
and if there are saddle separatrices forward and backwards asymptotic to 7,
then there can be infinite number of heteroclinic bifurcations that accumulate
at the saddle-node bifurcation point.

Most of the attention that has been directed at analysis of singularly per-
turbed systems examines the geometry of how trajectories leave equilibrium
manifolds of an SPy field. There has been little analysis of how these sets
of trajectories approach a new equilibrium manifold. We regard a FS tran-
sition as having as limit a map h : OM — N, with M the boundary of a
manifold of attractors M, and N another manifold of attractors for the SP
field. The geometry of h(OM) relative to the slow flow on N is important
in determining the singularities of the induced map from M to ON. Since
the slow flows are independent of the fast subsystems, there are no implicit
constraints on the geometry of M relative to the flow on N. The slow time
scale dynamics of trajectories that make an infinite number of transitions
can be analyzed in terms of the induced maps.

We describe three phenomena that occur in generic (2,2) dimensional
SP systems following an FS transition between manifolds of equilibria. In
this setting, M is a curve, and the points of this curve arrive on the two
dimensional manifold NV in an arbitrary position relative to the phase portrait
of the slow flow on N. There may be points where

1. h(OM) is tangent to the slow flow on N. This leads to turning points
of induced maps.

2. h(OM) may intersect a limit cycle of the reduced flow on N transver-
sally. This leads to a countable sequence of discontinuities of the in-
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Figure 4: The trajectories of a fold curve on one manifold of equilibria flow
to another manifold of equilibria. The image of the fold curve after the FS
transition is tangent to the reduced vector field on the lower manifold of
equilibria at an isolated point.

duced map if the limit cycle is unstable and points near it do not remain
on N forever under its slow flow.

3. h(OM) may intersect a saddle separatrix for the slow flow. This pro-
duces discontinuities and singularities in induced maps. The singulari-
ties are described by power laws determined by the eigenvalues of the
saddle.

Within the context of “hybrid systems”, each of these phenomena has been
discussed by Guckenheimer and Johnson [9].

Combining all of the induced maps for equilibrium manifolds of a generic
(2,2) dimensional SP system yields a one dimensional mapping ¢. The do-
main of ¢ is a one dimensional manifold that may well have several com-
ponents. Furthermore ¢ can have discontinuities, singularities and critical
points associated to the phenomena described above. The extensive theory
of one dimensional iterations [4] can be used to characterize the types of at-
tractors that may occur for the induced map. The examples of attractors for
two dimensional hybrid systems described by Guckenheimer and Johnson [9]
are readily translated into examples of SP systems whose long time dynamics
display varied types of attractors.
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4 Concluding Remarks

Our outline of a global theory of singularly perturbed systems is incomplete
and sketchy. Much more needs to be done to describe the important geomet-
ric structures that occur in generic SP systems (and families of SP systems)
and to elucidate their properties with regard to transversality. Jones and
Kopell’s analysis of periodic orbits in generalizations of the Hodgkin-Huxley
model [11] for the action potential is a good example of what needs to be
done. The importance of the applications that give rise to SP systems jus-
tifies the effort required to flesh out this outline, even though the theory
will necessarily be complicated and lack the coherent elegance of singularity
theory [6]. The use of singularly perturbed systems to model neural systems
is compelling. Neural systems operate with a hierarchy of time scales and
SP systems provide a natural way to represent this hierarchy.

Dynamical systems analysis of applications usually requires simulation
that relies upon numerical integration. For SP systems, numerical integra-
tion presents the problem that “standard” numerical integration techniques
require time steps that are small with respect to the fast time scale in the
system. Numerical integration techniques for stiff systems and differential
algebraic equations address the problem of computing slow-time trajectories
of a reduced system, but the problems associated with integration along non-
equilibrium attractors of an SP system and with SF transitions have not been
studied numerically. We contend that effective solutions to these problems
can be constructed through the further development of the global theory
outlined in this paper, together with algorithms that exploit the geometric
structures found in generic SP systems.
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