Solution to Exercise 1 in Section 3.C.

The CW complex hypothesis will be used only to have the homotopy extension property available when needed.

We are given a multiplication map $\mu: X \times X \rightarrow X$ with an element $e \in X$ such that the maps $x \mapsto \mu(e, x)$ and $x \mapsto \mu(x, e)$ are homotopic to the identity map of X. By an application of the homotopy extension property we can deform μ so that one of these maps, say $x \mapsto \mu(e, x)$, is actually equal to the identity. We can thus assume that $\mu(e, x)=x$ for all x from now on.

By assumption we have a homotopy $f_{t}: X \rightarrow X$ from $x \mapsto \mu(x, e)$ to the identity. Let $\eta: I \rightarrow X$ be defined by $\eta(t)=f_{t}(e)$. This is a loop at the basepoint e. If η represents the trivial element of $\pi_{1}(X, e)$, then we can use the homotopy extension property to homotope f_{t} to be a basepoint-preserving homotopy from $x \mapsto \mu(x, e)$ to the identity. Once f_{t} is basepoint-preserving, we can extend it to a homotopy $F_{t}: X \vee X \rightarrow X$ with $F_{t}(e, x)=x$ and $F_{t}(x, e)=f_{t}(x)$ for all x. Extending F_{t} to a homotopy defined on all of $X \times X$ with $F_{0}=\mu$, we then have a homotopy from μ to a new μ with the desired property that $\mu(e, x)=x=\mu(x, e)$ for all x.
It remains to arrange that the loop η is nullhomotopic. For γ an arbitrary loop at the basepoint e, consider the homotopy $g_{t}: X \rightarrow X, g_{t}(x)=\mu(\gamma(t), x)$. This has g_{0} and g_{1} equal to the identity, and $g_{t}(e)$ traces out a loop γ^{\prime}. The formula $f_{s}(\gamma(t))$ defines a homotopy from $f_{0}(\gamma(t))=\mu(\gamma(t), e)=g_{t}(e)=\gamma^{\prime}(t)$ to $f_{1}(\gamma(t))=\gamma(t)$ with $f_{s}(\gamma(0))=$ $f_{s}(\gamma(1))=f_{s}(e)=\eta(s)$, so we have $\left[\gamma^{\prime}\right]=[\eta][\gamma][\eta]^{-1}$ in $\pi_{1}(X, e)$. Thus by a suitable choice of γ we can construct a homotopy g_{t} from the identity to itself such that $g_{t}(e)$ traces out a loop representing any given element of $\pi_{1}(X, e)$. In particular we can realize the element $[\eta]^{-1}$ by taking γ to be the inverse loop of η. Then if we follow the homotopy f_{t} by the homotopy g_{t} we obtain a new homotopy f_{t} that still goes from $x \mapsto \mu(x, e)$ to the identity and has $f_{t}(e)$ representing the trivial element of $\pi_{1}(X, e)$. By the previous paragraph this finishes the proof.

