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Abstract. The Proper Forcing Axiom is a powerful extension of the Baire Category
Theorem which has proved highly effective in settling mathematical statements which
are independent of ZFC. In contrast to the Continuum Hypothesis, it eliminates a large
number of the pathological constructions which can be carried out using additional axioms
of set theory.
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1. Introduction

Forcing is a general method introduced by Cohen and further developed by Solovay
for generating new generic objects. While the initial motivation was to generate a
counterexample to the Continuum Hypothesis, more sophisticated forcing notions
can be used both to generate morphisms between structures and also obstructions
to morphisms between structures.

Forcing axioms assert that the universe of all sets has some strong degree of
closure under the formation of such generic objects by forcings which are suffi-
ciently non pathological. Since forcings can in general add generic bijections be-
tween countable and uncountable sets, non pathological should include preserves
uncountablity at a minimum. The exact quantification of non pathological yields
the different strengths of the forcings axioms. The first and among the weakest of
these axioms is Martin’s Aziom which was abstracted by Martin from Solovay and
Tennenbaum’s proof of the independence of Souslin’s Hypothesis [59]. Progres-
sively stronger axioms were formulated and proved consistent as advances were
made in set theory in the 1970s. The culmination of this progression was [22],
where the strongest forcing axiom was isolated.



2 Justin Tatch Moore

Forcing axioms have proved very effective in classifying and developing the the-
ory of objects of an uncountable or non separable nature. More generally they serve
to reduce the complexity of set-theoretic difficulties to a level more approachable
by the non specialist. The central goal in this area is to establish the consistency
of a structure theory for uncountable sets while at the same time working within
a single axiomatic framework.

In this article, I will focus attention on the Proper Forcing Axiom (PFA):

If @ is a proper forcing and 7 is a collection of maximal antichains
in @ with |&/| < ¥y, then there is a filter G C @ which meets each
element of <.

This axiom was formulated and proved consistent relative to the existence of a
supercompact cardinal by Baumgartner using Shelah’s Proper Forcing Iteration
Lemma. The details of the formulation of this axiom need not concern us at the
moment (see Section 5 below). I will begin by mentioning two applications of PFA.

Theorem 1.1. [7] Assume PFA. Every two Xi-dense sets of reals are isomorphic.

Theorem 1.2. [57] Assume PFA. If ® is an automorphism of the Boolean algebra
P(N)/Fin, then ® is induced by a function ¢ : N — N.

The role of PFA in these two theorems is quite different. In the first case,
PFA is used to build isomorphisms between Nj-dense sets of reals (here a linear
order is k-dense if each of its proper intervals is of cardinality ). The procedure
for doing this can be viewed as a higher cardinal analog of Cantor’s back-and-
forth argument which is used to establish that any two No-dense linear orders are
isomorphic. As we will see in Section 3.1, however, the situation is fundamentally
more complicated than in the countable case since there are many non isomorphic
N-dense linear orders.

In the second theorem, PFA is used to build an obstruction to any non trivial
automorphism of #(N)/Fin. This grew out of Shelah’s seminal result in which
he established the consistency of the conclusion of Theorem 1.2 [56, Ch. IV]. The
difference between Theorems 1.2 and 1.1 is that one can generically introduce new
elements to the quotient £(N)/Fin. This can moreover be done in such a way
that it may be impossible to extend the function ® to these new generic elements
of the domain.

In both of the above theorems, there is a strong contrast with the influence
of the Continuum Hypothesis (CH). CH implies that there are 22" isomorphism
types of Rj-dense sets of reals [14] and 22° automorphisms of Z(N)/Fin [52]
(notice that there are only 2%° functions from ¢ : N — N). This is in fact a
common theme in the study of forcing axioms.

I will finish the introduction by saying that there was a great temptation to title
this article Martin’s Mazimum. Martin’s Maximum (MM) is a natural strength-
ening of PFA in which proper is replaced by preserves stationary subsets of w.
This is the broadest class of forcings for which a forcing axiom is consistent. This
axiom was proved consistent relative to the existence of a supercompact cardinal
in [22].
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I have chosen to focus on PFA instead for a number of reasons. First, when
applying forcing axioms to problems arising outside of set theory, experience has
shown that PFA is nearly if not always sufficient for applications. Second, we
have a better (although still limited) understanding of how to apply the PFA. (Of
course this is an equally strong argument for why we need to develop the theory
of MM more completely and understand its advantages over PFA.)

Finally, and most importantly, a wealth of new mathematical ideas and proofs
have come out of reducing the hypothesis of MM in existing theorems to that of
PFA. In every instance in which this has been possible, there have been significant
advances in set theory of independent interest. For example the technical accom-
plishments of [45] led to the solution of the basis problem for the uncountable
linear orders in [46] soon after. Thus while MM is trivially sufficient to derive any
consequence of PFA, working within the more limited framework of PFA has led
to the discovery of new consequences of MM and new consistency results.

The reader is referred to [22] for the development of MM and to [9, pp. 57-60]
for a concise account of the typical consequences of MM which do not follow from
PFA. An additional noteworthy example can be found in [31]. Finally, the reader
is referred to [87] for a somewhat different axiomatic framework due to Woodin
for achieving some of the same end goals. It should be noted that reconciling
this alternate framework with MM (or even PFA) is a major open problem in set
theory.

This article is organized as follows. After reviewing some notation, I will present
a case study of how PFA was used to give a complete classification of a certain class
of linear orderings known as Aronszajn lines. After that, I will present two com-
binatorial consequences of PFA and illustrate how they can be applied through
several different examples. These principles both have a diverse array of conse-
quences and at the same time are simple enough in their formulation so as to
be usable by a non specialist. In Section 5, I will formulate PFA and illustrate
Todorcevic’s method of building proper forcings. I will utilize the combinatorial
principles from the previous section as examples to illustrate this technique. Sec-
tion 6 presents some examples of how PFA has been successfully used to solve
problems arising outside of set theory. The role of the equality 2% = Ry, which
follows from PFA, will be discussed in Section 7. Section 8 will give some examples
of how the mathematics developed in the study of PFA has been used to prove
theorems in ZFC. I will close the article with some open problems.

With the possible exception of Section 5, I have made an effort to keep the arti-
cle accessible to a general audience with a casual interest in the material. Needless
to say, details are kept to a minimum and the reader is encouraged to consult the
many references contained throughout the article. In a number of places I have
presented examples and stated lemmas simply to hint at the mathematics which
is being omitted due to the nature of the article. It is my hope that the curious
reader will take a pen and paper and try to fill in some of the details or else use
this as an impetus to head to the library and consult some of the many references.
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2. Notation and background

The reader with a general interest in set theory should consult [32]. Further in-
formation on linear orders, trees, and coherent sequences can be found in [67] and
[79], respectively. Information on large cardinals and the determinacy of games
can be found in [29]. Further information on descriptive set theory can be found
in [30].

For the most part I will follow the conventions of [32]. N = w will be taken
to include 0. An ordinal is a set « linearly ordered by € such that if g is in «,
then 0 C «. Thus an ordinal is the set of its predecessors. In particular wq, which
is the first uncountable ordinal, is the set of all countable ordinals. A cardinal is
the least ordinal of its cardinality. While R, is a synonym for w,, the former is
generally used to measure cardinality while the latter is generally used to measure
length and when there is a need to refer to the set itself. Lower case Greek letters
will be used to denote ordinals, with x, A, i, and 6 denoting cardinals.

If X is a set, then [X]* denotes all subsets of X of cardinality k. In particular,
[X]? is the set of all unordered pairs of elements of X. A graph is a pair (G, X)
where X is a set and G C [X]? (X is the vertez set and G is the edge set).

A tree is a partial order (T, <) in which the predecessors of each element of T
are well ordered by <. The ordertype of the set of strict predecessors of a t in T’
is the height of t; the collection of all elements of T of a fixed height is a level of
T. All trees will also be assumed to be Hausdorff: if s and ¢t have limit height
and the same sets of predecessors, then they are equal. In particular, trees are
equipped with a well defined meet operation A : T x T — T. A subset of a tree
is an antichain if it consists of pairwise incomparable elements (in the setting of
trees this coincides with the notion of antichain in Section 5 below).

Generally a superscript of * on a relation symbol is taken to mean “with only a
finite number of exceptions” (in a context in which this makes sense). In particular,
A C* B means that A\ B is finite.

An ideal . on a set S is a subset of &(S) which is closed under subsets and
finite unions. To avoid trivialities, all ideals in this article will be assumed to
contain all of the finite subsets of the underlying set. Fin is the ideal of all finite
subsets of N. Fin x ) is the collection of all subsets of N x N in which all but
finitely many vertical sections are empty. () x Fin is the collection of all subsets of
N x N in which all vertical sections are finite. An ideal .# is a P-ideal if (.#,C*)
is countably directed (i.e. every countable subset has an upper bound). @) x Fin is
a P-ideal; Fin x ) is not. If .# is a collection of subsets of S, then .# is the ideal
of all subsets of S which have finite intersections with all elements of .#. Observe
that (@ x Fin)* = Fin x ) and (Fin x 0)* = 0 x Fin.

Throughout this article, all topological spaces are assumed to be T5. When
discussing Banach spaces, basis will always refer to a Schauder basis. A Polish
space is a separable, completely metrizable topological space. A subset of a Polish
space is analytic if it is the continuous image of a Borel set in a Polish space. The
o-algebra generated by the analytic sets will be denoted by €.
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3. Classification and N;

3.1. The basis problem for uncountable linear orders: a case
study. In order to illustrate the influence of PFA and how it plays a role in
classification problems for uncountable structures, I will begin with an example of
a recent success in this area. Consider the following problem.

Problem 3.1. Do the uncountable linear orders have a finite basis?

That is, is there a finite set of uncountable linear orders such that every other
contains an isomorphic copy of one from this finite set?

Observe that any such basis must contain a set of reals of minimum possible
cardinality — namely X;. The following theorem, which actually predates PFA,
shows that under PFA a single set of reals of cardinality X; is sufficient to form a
basis for the uncountable separable linear orders.

Theorem 3.2. [7] Assume PFA. Every two Xi-dense sets of reals are isomorphic.
In particular any set of reals of cardinality X1 embeds into any other.

This is in stark contrast to the situation under CH.

Theorem 3.3. [14] If X C R with |X| = |R|, then there is a Y C X with
Y| = | X| such that no two distinct subsets of Y of cardinality |R| are isomorphic.
In particular if |R| = Xy, then there is no basis for the uncountable suborders of R
of cardinality less than |2 (R)|.

In fact this is part of general phenomenon: it is typically not possible to classify
arbitrary structures of cardinality 2%, (This statement is not meant to be applied
to objects such as manifolds which, while of cardinality 2%°, are really coded by a
countable — or even finite — mathematical structure.)

How does one reconcile Theorems 3.2 and 3.37 Baumgartner’s result actually
shows that given any model of ZFC, it is possible to go into a forcing extension in
which uncountability is preserved and every two Xi-dense sets of reals are isomor-
phic. In particular, two X{-dense sets of reals which may not have been isomorphic
are made isomorphic by Baumgartner’s forcing. Thus while CH implies that there
are many non-isomorphic N;-dense sets of reals, the reason for this is simply that
there is an inadequate number of embeddings between such orders, rather than
some intrinsic property of the sets of reals which prevents them from being iso-
morphic.

Now we return to our basis problem. Since w; can not be embedded into R
and since wq is isomorphic to each of its uncountable suborders, any basis for the
uncountable linear orders must also contain w; and —w;. The following classical
construction of Aronszajn and Kurepa shows that any basis for the uncountable
linear orders must have at least four elements (see [67, 5.15] for a historical dis-
cussion).

Theorem 3.4. There is an uncountable linear order which does mot contain an
uncountable separable suborder and does not contain wy or —wy.
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Such linear orders are commonly known as Aronszajn lines or A-lines. Regard-
less of the value of 280, A-lines necessarily have cardinality ;. Like uncountable
suborders of R, every A-line contains an Nj-dense suborder. Following Theorem
3.2, there was an effort to prove an analogous result for the class of A-lines. It
turned out that the answer to this pursuit lay in the following question of R.
Countryman.

Question 3.5. Does there exist an uncountable linear order C' such that C x C,
equipped with the coordinatewise partial order, is the union of countably many
chains?

Such linear orders are known as Countryman lines or C-lines. Clearly every
uncountable suborder of a C-line is a C-line. It was observed by Galvin that such
linear orders are necessarily Aronszajn. Their most remarkable property is that
if C'is a C-line, then no uncountable linear order can be embedded into both C
and —C. Indeed, if f: L — C and ¢g: L — —C were to witness such embeddings,
then the range of f x g, regarded as a subset of C x C, would be the graph
of a strictly decreasing function. As such a graph can intersect every chain in
C x C in at most a singleton, L must be countable. Thus, unlike the situation
with uncountable suborders of R under CH, there is a fundamental obstruction
preventing an embedding of C' into —C if C' is a C-line. The following theorem of
Shelah, therefore, ruled out an analog of Baumgartner’s result for X;-dense A-lines.

Theorem 3.6. [55] There is a Countryman line.

It was in this paper that precursors of Problem 3.1 began to be considered.
Shelah made two conjectures at the end of [55]:

1. It is consistent that every two Countryman lines contain uncountable subor-
ders which are either isomorphic or reverse isomorphic.

2. (PFA) It is consistent that every Aronszajn lines contains a Countryman
suborder.

Shelah’s construction led Todorcevic to prove the following theorem, indicating
that such linear orders occur quite naturally.

Theorem 3.7. [69] If eg (B < w1) is a coherent sequence such that for each 3,
eg 15 a finite-to-one function from (3 into w, then the lexicographical order on the
sequence is a Countryman line.

Here a sequence eg (8 < wq) with eg : 8 — w is coherent if whenever § < 7,
es =" ey [ B. Given such a sequence, we can also form an Aronszajn tree T =
{eg | o : o < B < wy}. Here an Aronszajn tree (or A-tree) is an uncountable
tree in which all levels and chains are countable. An A-tree which is the set of
restrictions of a coherent sequence is said to be coherent.

Before proceeding, I will mention the method from [69] for explicitly con-
structing such a coherent sequence. Let (C, : @ < w;) be a sequence such that
Co+1 = {a} and if « is a limit ordinal then C,, is a cofinal subset of @ isomorphic
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to w. Such a sequence is known as a C'-sequence. Given a C-sequence, there is a
canonical “walk” between any two ordinals o < 3 in wy:

510 ifi=0
" | min(Cs,_, \a) ifi>0and B;_; >«

The walk starts at 5 and stops once « is reached at some stage [ (I is always finite
since otherwise we would have defined an infinite descending sequence of ordinals).
Such walks have a number of associated statistics:

2o(a, B) = ({|Cp; Nal :i < 1)

Ql(a,ﬁ) = max@o(aaﬂ)
o2(c, B) =1 = [oo(ax, B)|

If we set eg(a) = p1(c, B), then this defines a coherent sequence satisfying the
hypothesis of Theorem 3.7. In fact if we define (for i = 0, 1,2)

Cloi) = ({0i(-;8) : B <wi}, <iex)

T(pi) = {oi(-,0) Ta:a< B <w}, Q)

then C(p;) is a C-line and T'(p;) is an A-tree. Not only does the above construction
yield an informative example of a C-line and an A-tree, it is the simplest instance
of a widely adaptable technique of Todorcevic for building combinatorial objects
both at the level of N; and on higher cardinals. A modern account of this can be
found in [79].

Again we return to our analysis of Problem 3.1. The following theorem of
Todorcevic shows that, under PFA, C-lines are indeed canonical objects.

Theorem 3.8. (see [48]) Assume MAy,. If C and C’' are Countryman lines which
are Xi-dense and non stationary, then either C ~ C" or —C ~ C".

Here an A-line A is non stationary if A = |J% where ¥ C [A]“ is a C-chain
which is closed under countable unions and is such that if X is in %, then the
convex components of A\ X contain no first or last elements. It is routine to show
that every A-line contains an Nj-dense non stationary suborder. On the other
hand, there are 28! isomorphism types of Rj-dense C-lines [71].

The following theorem reduced Problem 3.1 to a purely Ramsey theoretic state-
ment about A-trees.

Theorem 3.9. [1] (see [19, §4.4] for a proof) Assume PFA. The following are
equivalent:

1. Every Aronszajn line has a Countryman suborder;

2. For every Aronszajn tree T and every partition T = Ko U K1, there is an
uncountable antichain A C T and an i < 2 such that s At is in K; for all
s#tin A.
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8. For some Aronszajn tree T, if T = Ko U K1 then there is an uncountable
antichain A CT and an i < 2 such that s Nt is in K; for all s #1t in A.

Progress on Problem 3.1 then stopped until [64], where a number of additional
properties of A-trees were discovered, assuming PFA.

Theorem 3.10. [6/] Assume MAy,. If T is a coherent Aronszajn tree, then
U(T) ={K Cw :3A € o(T)(A(A) C K)}

18 an ultrafilter, where < is the collection of all uncountable antichains of T and
NA)={sAt:s#te A}

Theorem 3.11. [64] If S < T denotes the existence of a strictly increasing map
from S into T, then the class of all Aronszajn trees contains a <-antichain of
cardinality 2% and an infinite <-descending chain.

Theorem 3.12. [64] Assume PFA. The coherent Aronszajn trees are linearly
ordered by < without a first or last element. Furthermore S <T holds if and only
if there is an increasing function f :wy — w1 such that

U € %(T) if and only if f~1(U) € %(S)
(ie. Bf(%(S))=%(T)).

Finally, the following theorem was proved, thus solving Problem 3.1. This was
accomplished by proving that PFA implies (3) of Theorem 3.9.

Theorem 3.13. [46] Assume PFA. Every Aronszajn line contains a Countryman
suborder.

Corollary 3.14. Assume PFA. If X C R has cardinality X1 and C is a Country-
man line, then X, w1, —wi, C, and —C' form a basis for the uncountable linear
orders.

In the wake of Theorem 3.13, two additional results were obtained which com-
pletely clarified our understanding of the A-lines assuming PFA.

Theorem 3.15. [/8] If C is a Countryman line, then the direct limit nc of the
alternating lexicographic products C x (—C) x - -+ x (=C) is universal for the class
of Aronszajn lines.

Theorem 3.16. [}2] The Aronszajn lines are well quasi-ordered by embeddability:
if A; (i € N) are Aronszagn lines, then there are i < j such that A; embeds into
A;.

These results draw a strong analogy between the A-lines and the countable
linear orderings: C' and —C play the roles of N and —N and 7¢ plays the role of
Q. Theorem 3.15 is analogous to Cantor’s theorem that all countable dense linear
orders are isomorphic; Theorem 3.16 should be compared to the following theorem
of Laver.

Theorem 3.17. [3/] The countable linear orders are well quasi-ordered by embed-
dability.
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3.2. The Ramsey Theory of w;. The study of the Ramsey theory of w;
has played a central role in the development of PFA (see, e.g., [70]). It was noticed
early on by Sierpinski that the analog of Ramsey’s theorem for w, is false.

Theorem 3.18. [58] There is a partition [w1]* = Ko U K1 such that if X C wy is
uncountable, [X]?> N K; # 0 for each i < 2.

This was strengthened considerably by Todorcevic, using the method of mini-
mal walks discussed above.

Theorem 3.19. [69] There is a partition [w1]* = U, Ke such that if X C w
is uncountable, then [X]> N K¢ # 0 for each £ < wy.

Still, many problems in set theory boil down to Ramsey theoretic statements
about w; for restricted classes of partitions or where weaker notions of homogeneity
are required. Theorem 3.9 is a typical instance of this. Another important example
is the reformulations of the S and L space problems in terms of Ramsey theoretic
statements [51]. These problems were eventually solved with different outcomes.

Theorem 3.20. [65] [70] Assume PFA. Ewvery non Lindeldf space contains an
uncountable discrete subspace.

Theorem 3.21. [47] There is a non separable space without an uncountable dis-
crete subspace. Moreover, there is no basis for the uncountable topological spaces
of cardinality less than Ns.

I will finish the section by mentioning another classification result under PFA
which is closely aligned with the study of the Ramsey theory of ws.

Theorem 3.22. [68] Assume PFA. Every directed system of cardinality at most
Ry s cofinally equivalent to one of the following: 1, w, w1, w X w1, [wi]<%.

This classification was extended to the transitive relations on wy in [73]. It is
interesting to note that it is unknown whether a similar classification of relations
on we is possible under any axiomatic assumptions. Such a classification would
require that 2% > Ry and in particular that PFA fails (see [68]).

4. Combinatorial Principles

While direct applications of PFA require specialized knowledge of set theory, there
are an increasing number of combinatorial principles that follow from PFA which
are at the same time powerful and approachable by the non specialist. Both
applying these principles and isolating new and useful ones is an important theme
in set theoretic research (it should be stressed that one must always hold utility
as paramount here).

Two prominent examples are the P-Ideal Dichotomy [76] and Todorcevic’s for-
mulation of the Open Coloring Aziom [70]:
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PID: If X is a set and .# C [X]¥ is a P-ideal, then either

1. there is an uncountable Z C X such that [Z]¥ C .# or

2. X can be covered by countably many sets in ..

OCA: If G is a graph on a separable metric space X whose edge set is topologically
open, then either

1. there is an uncountable H C X such that [H]? C G (i.e. G contains an
uncountable complete subgraph) or

2. X can be covered by countably many sets Y such that [Y]2NG = 0 (i.e.
G is countably chromatic).

I will now present a number of typical examples of graphs and ideals to which these
principles can be applied.

Example 4.1. [2] Let G be the graph on R? consisting of all edges {(z,v), (z/,9')}
such that < 2’ and y < y’. Observe that G is open. If X is a complete subgraph
of G, then X is the graph of a partial strictly increasing function from R to R. If A
and B are uncountable subsets of R, then the subgraph of G induced by A x B is
never countably chromatic and therefore OCA implies that there is an uncountable
partial increasing function from A to B.

Example 4.2. [70] Recall that if f and g are in NV then f <* g means that
f(@) < g(i) for all but finitely many 4. It is well known that this is a countably
directed partial order. If f # g are in NV, define {f,g} € G if there are i and
j such that f(i) < g(i) and f(j) > g¢(j). This defines an open graph. Subsets
E C NN such that [E]? NG = () are quite sparse. For example such an E can not
contain an uncountable <*-well ordered set.

In [70, 0.7] it is shown that if X C NY is unbounded and countably <*-directed,
then there are f # g in X such that f < g (i.e. {f, ¢} is not in G). This can be used
to argue that OCA implies every subset of NN of cardinality R; is <*-bounded.
This is among the simplest applications of the phenomenon of oscillation which is
explored further in [44], [70] and in different contexts in [47], [79].

Example 4.3. Let ¢Q denote the collection of all subsets of @ which are well
ordered in the usual order on Q. oQ is a tree with the order defined by a < b if a
is an initial part of b. This is a separable metric space with the topology inherited
from Z(Q). Let G denote the set of all pairs {a,b} which are comparable in the
tree order on ¢@Q. This is a closed graph on ¢Q. Observe that if H C ¢Q is a
complete subgraph, then UH is in 0Q and every element of H is an initial part of
UH. In particular, G has no uncountable complete subgraphs. On the other hand,
if B C 0Q satisfies that [E]? NG is empty, then F is an antichain. Since oQ is not
a countable union of antichains [33], this example shows that the asymmetry in
the statement of OCA is necessary, even for graphs on vertex sets which are nicely
definable. By contrast, it is a ZFC theorem that the conclusion of OCA holds for
every open graph on an analytic subset of a Polish space [21]. Furthermore, OCA
holds for open graphs on projective sets as well under appropriate large cardinal
assumptions.
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For the next two examples, suppose that # is a P-ideal on a set S and ¢;
(J € 7) is a collection of functions such that ¢ is a function from J into some
countable set C' and whenever J and J' are in _¢#

{sednJ :¢,(s) #ds(s)}

is finite. Such a family of functions is said to be coherent. A coherent family of
functions is trivial if there is a single ® : S — C such that {s € J: ¢s(s) # D(s)}
is finite for all J in _Z.

Example 4.4. [70, 8.7] If S is countable, then define a graph G on the set of
pairs of elements of ¢ by {J,J'} € G if and only if there is an s in J N J’ such
that ¢;(s) # ¢y (s). If we topologize # by identifying it with the subspace
{(J,95) : J € _Z} of P(S) x P(S x S), then G is an open graph in a separable
metric topology. If G is countably chromatic, then the coherent family is trivial.
If 77 C . is uncountable and satisfies that [%”]2 C @G, then 47 is unbounded in
(7,<*). Notice that any such ¢ contains such a subset of cardinality ®; and
therefore this alternative of OCA implies that (_#,C*) contains an unbounded
subset of cardinality N;. Such an J# is quite closely related to the obstruction to
non trivial automorphisms of &(N)/Fin mentioned in the introduction.

An important instance of this example is when S = N x N and ¢ = () x Fin.
If every subset of (NN, <*) of cardinality ®; is bounded (this is a consequence of
OCA), then every uncountable 57 C # contains an uncountable 7 " whose union
isin _#. Thus OCA implies every coherent family indexed by () x Fin is trivial.

Remark 4.5. In [38] it is shown that the triviality of coherent families of functions
indexed by @) x Fin has an influence on the computation of the strong homology of
certain locally compact subspaces of R™. Specifically, non-trivial coherent families
indexed by () x Fin coincide with the 1-cocycles in a certain cochain complex. This
is used to show that, assuming CH, strong homology is not additive [38]. In [13]
it is pointed out that PFA can be used rule out such 1-cocycles.

The existence of non-trivial n-cocyles in this cochain complex for any n, how-
ever, implies that strong homology fails to be additive [38, Theorem 8]. Unlike
with 1-cocycles, very little is known what hypotheses entail the non existence of n-
cocycles beyond Goblot’s Vanishing Theorem (see [38]). For instance it is entirely
possible that it is a theorem of ZFC that either 1-cocycles or 2-cocycles exist in this
cochain complex. Additionally, while it is known that there are no %-measurable
1-cocycles in this cochain complex, it is unclear whether the same can be said for
n-cocycles for n > 1.

The body of work surveyed in [37, Ch. 11-14] has not yet been developed from
a set-theoretic perspective (although see [62], [63], [74]). Recasting this material
in set-theoretic language and developing it to the level of [79] would likely be a
rewarding endeavor.

Example 4.6. [76] Given a coherent family ¢; (J € _#) of functions mapping
into {0,1}, we can define .# to be the collection of all countable I C _¢ such that
for some J in _Z,

{(J'el:{seJnJ :¢s(s)=0A¢s(s) =1} <n}
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is finite for each n in N. If 5 C ¢ is uncountable and satisfies that [s7] C 7,
then 7 is unbounded in (_#,C*). As noted above, this implies that (_#,C")
contains an unbounded subset of cardinality 8;. If ¢ is a countable union of sets
in .# . then the coherent sequence is trivial.

Example 4.7. [3] Suppose that T is an w;-tree (i.e. an uncountable tree in which
every level is countable). Define .# to be the collection of all countable subsets I
of T such that if ¢ is in T, then {s € I : s <t} is finite. The assumption that the
levels of T are countable implies that .# is a P-ideal. If Z C T is uncountable and
[Z]¥ C .7, then it follows that Z contains an uncountable antichain. If "= J,, S,
where S,, is in £, then it follows that T is a countable union of chains. Since
neither of these alternatives is compatible with 7" being a Souslin tree, PID implies
Souslin’s Hypothesis.

Example 4.8. [76] Recall that if « is a regular cardinal, then [J() is the assertion
that there is a sequence (C, : a < k) with the following properties:

1. C, C « is closed and unbounded for each a < k and Cyy1 = {a};
2. if o is a limit point of Cg, then C, = Cg N oy

3. there is no closed unbounded C' C k such that for every limit point « of C,
C,=Cna.

As in Section 3.1, we can define go : [k]?> — w using a O(k)-sequence: o2(a, 3) is
the length of the walk from 3 down to . If 8 < k and n € w, set

Kpn=f{a < B: 0a(c,3) < n}.

One can argue that if .# is the collection of all countable I which have finite
intersection with every Kg ., then .# is a P-ideal which does not satisfy either
alternative of PID. In fact,  is not the union of countably many sets in .#*, even
though each 8 < k has this property (as witnessed by {Kpg}n). The failure of
O(k) for all x is known to have considerable large cardinal strength (see [53]).

In fact the properties of the family % = {Kg, : (3 < k1) A (n < w)} which
violate PID can be abstracted so as to be applied to more general situations. For
instance this argument can be adapted to prove that PID implies that 2 = u™
whenever p is a singular strong limit cardinal [84].

5. Proper forcings and how to construct them

We will now turn to the task of formulating PFA. Recall that a forcing is a partial
order (Q with a greatest element. Elements of a forcing are generally referred to as
conditions and g < p is generally taken to mean q is an extension of p. Two condi-
tions are compatible if they have a common extension and incompatible otherwise.
A filter is a collection of conditions which is upward closed and downward directed.
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An antichain is a collection of pairwise incompatible conditions. A forcing @ is
c.c.c. if every antichain is countable.

A completely general example of a forcing is the collection of non empty open
sets in a compact topological space, with U < V defined to mean that U C V.
In this setting, points correspond to maximal filters and antichains are families of
pairwise disjoint open sets. If U is dense and open in a topological space, then
U is the union of a maximal antichain o/ of open sets V such that V' < U. This
allows one to translate forcing axioms into statements about Baire category.

Now we turn to formulating properness, which is a weakening of being c.c.c..
Unless specified otherwise, 8 will always be used to denote a regular uncountable
cardinal. Recall that H () is the collection of all sets of hereditary cardinality at
most 6. In this case (H(#), €) satisfies all of the axioms of ZFC except possibly
the powerset axiom. M C H(f) is an elementary submodel of H(0) if whenever
o(x1,...,x,) is a formula in the language of set theory and ay,...,a, are in M,
(M, €) satisfies ¢(az,...,a,) if and only if (H(0), €) satisfies ¢(a,...,an).

If Q is a forcing, then a suitable model for @ is a countable elementary submodel
of H(0) for some 6 such that 22(Q) is in M. If M is a suitable model for @, then a
condition in ¢ is (M, Q)-generic if whenever A C @ is a maximal antichain which
is in M, every extension of ¢ is compatible with an element of AN M. Finally, @ is
proper if whenever M is a suitable model for @), every condition in @ N M has an
(M, Q)-generic extension. We are now in a position to understand the formulation
of PFA given in the introduction:

If Q is a proper forcing and &7 is a collection of maximal antichains in
Q with |&7| < Ny, then there is a filter G C @ such that GN A # () for
every A in .

Thus PFA is just the statement obtained by replacing “c.c.c.” by “proper” in the
formulation of MAy,. It is not difficult to verify that in fact every c.c.c. forcing
is proper and hence that PFA implies MAy,. While proper forcings necessarily
preserve uncountability, they may collapse cardinals above X;. To a large extent,
this is where PFA derives its additional strength.

In situations where there is a need to apply PFA directly, Todorcevic has de-
veloped a general approach for building proper forcings to accomplish a given task
such as introducing an uncountable complete subgraph to a given graph or an em-
bedding between two structures. This method was introduced in [66] and further
detailed in [70] and [73]. Typically the conditions in the forcing @ consist of pairs
q = (Xg4, M) where X, is a finite approximation of the desired object and .45
is a finite €-chain of elementary substructures of some (H(#), €) for 6 suitably
large. In all cases, there are additional requirements placed on the pairs which are
specific to the application at hand. One verifies properness by proving that if M
is a suitable model for @ and M N H(6) is in .4;, then q is (M, Q)-generic. In
situations in which this construction results in a proper forcing, the forcing ) can
usually be regarded as a two step iteration of a forcing which collapses |H(6)] to
Ny by covering it with an €-chain of countable substructures, followed by a c.c.c.
forcing of finite approximations to the desired object.
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I will illustrate this method of construction by defining forcings which can be
used to show that PFA implies OCA and PID. These examples are relatively
simple in terms of the interaction between the finite working part and the chain
of models. Still, they contain all of the important features of other examples built
using these methods.

5.1. The OCA forcing. Let G be a fixed open graph on a separable metric
space X and let & denote the collection of all E C X such that [E]? NG = 0.
Define Q¢ to be the collection of all pairs ¢ = (Hy, .#;) such that:

1. H, C X is finite and [H,]? C G;

2. Ay is a finite €-chain of countable elementary submodels of H (2N°+), each
containing X and G;

3. if x # y are in Hy, then there is an N in .4 such that |[N N {z,y}| =1 (i.e.
Nq separates Hy);

4. if N isin A and z is in Hy \ N, then z is not in E for any E in & N N.

The order on Q¢ is defined by ¢ < p if H, C Hy and A}, C ;.
The following is the key lemma in establishing the properness of this forcing.

Lemma 5.1. Suppose that N; (i < k) is a finite €-chain of suitable models for
X and G and that = is an element of X* such that if i < k, then x; is not an
element of any E in & N N; and x; is in Niy1 if i < k. If D C X* is an element
of Ng which has x as an accumulation point, then there is an open U C X in Ny
satisfying:

o 2(k—1)¢2U and {z(k —1),y} is in G whenever y is in U;
e {ylk—1:(yeD)N(y(k—1) € U)} accumulates to x [ k— 1.

5.2. The PID forcing. We will now turn to a class of forcings which can
be used to force instances of PID. Suppose that .# is a P-ideal on a set S. Let 6
be sufficiently large such that .# is in H(6) and for each countable N < H(6), let
Iy be an element of .# such that I C* Iy whenever [ is in .# NN (this is possible
since N is countable and .# is a P-ideal). Define Q. to be the collection of all
pairs g = (Z,, A,) such that:

1. Z, C S is finite;
2. A is a finite e-chain of suitable models for .# which separates Zg;
3. if Nisin A and z is in Z, \ N, then z is not in J for any J in £+ N N.

The order on @ ~ is slightly more complicated than in the case of Qg. Define ¢ < p
it Z, C Zy, N, C N, and whenever N is in .4,

NN (Z,\ Z,) C Iy.
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This last condition ensures that if G C Qs is a filter, then every countable subset
of quG Zgisin J.

The following is the key combinatorial lemma which is used in the proof that
Q.# is proper (see [73, 7.8]).

Lemma 5.2. Suppose that ¢ is a o-ideal on a set S, N; (i < k) is a finite €-
chain of suitable models for ¢, and x is in Sk such that x; is not in any element
of # NN; and z; is in Nypq if i <k—1. If D C S* is in Noy and contains x, then
there is a T C D in Ny which contains x and is _# *-splitting:

{reS:HeT((uli)zCt)}

is not in 7 whenever u is in T and i < k.

6. Some applications of PFA

I will now mention some applications PFA. The focus will be on applications
outside of set theory and on those which are more recent. Two other applications
of note are Shelah’s solution to Whitehead’s Problem [54] (which required only
MAy, ) and Woodin’s resolution of Kaplanski’s Conjecture concerning automatic
continuity of homomorphisms of C([0,1]) into commutative Banach algebras [86].
In addition, an extensive list of applications of MAy, can be found in [23].

6.1. Automorphisms of the Calkin algebra. Let H be a separable
infinite dimensional Hilbert space and let Z(H) and J¢ (H) be the bounded and
compact operators on H, respectively. The Calkin algebra is the quotient € (H) =
HB(H)/H# (H), regarded as a C*-algebra.

Every unitary operator in € (H) gives rise to an automorphism of ¢ (H) via
conjugation; such automorphisms are said to be inner. In [11], Brown, Douglas,
and Filmore asked whether there are any other automorphisms of ' (H). This
turns out to be independent of ZFC:

Theorem 6.1. [50] Assume CH. There is an outer automorphism of € (H).
Theorem 6.2. [16] Assume OCA. Every automorphism of €(H) is inner.

At the core of Farah’s proof of Theorem 6.2 is the construction and the analysis
of coherent families of unitaries which are derived from a given automorphism of
@ (H). Such families are analogs of the coherent families of functions from Example
4.4.

Theorem 6.2 is a new direction in a natural progression of theorems concern-
ing automorphisms and homomorphisms of quotient structures which began with
Shelah’s work on the automorphism group of &(N)/Fin in [56, IV]. The reader is
referred to [17], [18] for a detailed account of the work in this area prior to [16].
Also Farah, Weaver, and others have recently begun an investigation into how PFA
and other set theoretic methods can be applied to operator algebras; see [20], [85].
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6.2. Bases in quotients of Banach spaces. The following problem in
Banach space theory has its roots in Banach’s original monograph [6] (the problem
appears explicitly only sometime later; see, e.g., [49]).

Problem 6.3. Does every infinite dimensional Banach space have an infinite di-
mensional quotient with a basis?

Johnson and Rosenthal proved that the answer to this problem is positive in
the class of separable Banach spaces [28]. Whether it is true in general has become
known as the Separable Quotient Problem (so called because it is equivalent to
asking whether every infinite dimensional Banach space has an infinite dimensional
separable quotient). In fact, the proof of [28] yields the following stronger result.

Theorem 6.4. Assume that every subset of NN of cardinality at most 0 is <*-
bounded. Fvery Banach space of density at most 6 has an infinite dimensional
quotient with a basis.

In this vein it is also natural to ask whether a non separable Banach space has
a non separable quotient with a basis. This question was addressed in part by the
following result.

Theorem 6.5. [78] Assume MAy, and PID. Every Banach space of density Ny
has a quotient with a basis of length wy .

6.3. Von Neumann’s problem on the existence of strictly pos-
itive measures. Given a complete Boolean algebra 4, it is natural to ask
under what circumstances % admits a strictly positive probability measure. Two
necessary requirements are that % be c.c.c. and that it be weakly distributive.
Von Neumann asked whether these conditions are also sufficient.

Problem 6.6. [/3, Problem 163] Does every complete Boolean algebra which is
c.c.c. and weakly distributive necessarily support a strictly positive measure?

A positive answer implies Souslin’s Hypothesis and therefore is not provable
in ZFC [36]. Maharam divided von Neumann’s problem into two complementary
problems.

Problem 6.7. [36] Does every weakly distributive c.c.c. complete Boolean algebra
support a strictly positive continuous submeasure?

Problem 6.8. [36] Does every complete Boolean algebra equipped with a strictly
positive continuous submeasure admit a strictly positive measure?

This division was significant in part because it was possible to show that, unlike
Souslin’s Hypothesis, the answer to Problem 6.8 could not be changed by forcing
and therefore was unlikely to be independent of ZFC. This is analogous to the
division of Theorem 1.2 discussed in Section 8 below.

Recently two results completely resolved the situation.

Theorem 6.9. [5] Assume PID. If B is a complete Boolean algebra which is c.c.c.
and weakly distributive, then B supports a strictly positive continuous submeasure.
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Theorem 6.10. [61] There is a complete Boolean algebra supporting a strictly
positive continuous submeasure which does not support a measure.

This application of PFA also demonstrates the merits of its large cardinal
strength. While the conclusion of Theorem 6.9 does not apparently have any
relationship to large cardinals, it was demonstrated after the fact that the conclu-
sion of Theorem 6.9 does entail the existence of an inner model which satisfies a
large cardinal hypothesis.

Theorem 6.11. [19] Assume that if & is a complete Boolean algebra which is
c.c.c. and weakly distributive, then % supports a strictly positive continuous sub-
measure. Then there ts an inner model with a measurable cardinal k such that

o(k) =rTT.

6.4. The determinacy of Gale-Stewart games. An application of
PFA of a rather different nature is derived entirely through its consistency strength.
Recall that in a Gale-Stewart game, two players play natural numbers alternately,
resulting in an infinite sequence n; (i < oo) of elements of N. The winner of the
game is determined based on whether the resulting sequence is in a predetermined
set I' C NY. The principle question, in this level of abstraction, is under what
circumstances such a game is determined — i.e. when does one of the two players
have a strategy to win the game? The Axiom of Choice implies that there are
sets I' C NN which specify undetermined games. On the other hand, by a classical
theorem of Gale and Stewart, closed games are determined.

The interest in such games arises from the fact that the regularity properties
of subsets of R™ — such as Lebesgue measurability and the Baire Property —
can be reformulated in terms of the determinacy of games (see [30, §20-21]). The
assertion that the conclusion of OCA holds for open graphs on a given set of reals
X can also be regarded as a regularity property of X and has a corresponding game
associated to it [21]. In fact the determinacy of games for a point class has come to
be regarded as the ultimate form of a regularity property. The first major success
in understanding which games could be determined was the following result.

Theorem 6.12. [39] Assume there is a measurable cardinal. Then every analytic
game is determined.

With a considerably more complicated proof, it was possible to prove Borel
determinacy within ZFC.

Theorem 6.13. [/0] Every Borel game is determined.

Unlike Borel games, however, the determinacy of analytic games does require
a large cardinal assumption (see [29, §31]).

While there are natural examples of definable subsets of Polish spaces which
are not Borel (see [8]), all simply definable sets tend to be projective. Here the
projective sets in a Polish space X are the smallest algebra of subsets of X which
contain the open sets and which is closed under continuous images. In a major
breakthrough, Martin and Steel were able to prove projective determinacy from
what turned out to be an optimal large cardinal hypothesis.
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Theorem 6.14. [/1] If there are infinitely many Woodin cardinals, then all pro-
jective games are determined.

While PFA does not imply the existence of large cardinals, it does entail the
existence of inner models which satisfy substantial large cardinal hypotheses. This
allowed for the proof of the following result.

Theorem 6.15. [60] Assume PFA. The inner model L(R) satisfies that all sets
I' € NN are determined. In particular, all projective sets are Lebesque measurable
and have the Baire Property.

7. The role of 2% = R,

One of the important early results on PFA was that it implies 2% = R, [9] [82].
This is significant in part because it provides a natural limitation to the number
of maximal antichains one can expect to meet in a proper forcing.! Since then a
number of different proofs have been given that PFA implies 2% = N, [12] [44] [45].
In each case new ideas where required which were of independent interest. The
most significant example of this is the isolation of the principle MRP in [45] which
in turn played a key role in the solution of the basis problem for the uncountable
linear orders [46] and which has since found other applications [12] [83].

What is clear from experience is that in order to prove structural results at the
level of Wi, one must deal with combinatorics similar to that involved in proofs
that 2% = R,. What is less clear is to what extent this connection can be made
more explicit.

Problem 7.1. Is there a consistent classification of structures of cardinality Ny
which implies 280 = Ry ?

The classification of A-lines presented in Section 3.1 provides an intriguing test
question. It is also an open problem whether the combinatorial principles presented
in Section 4 already entail that 2% < Ry. (While OCA implies b = Ry, it is known
that PID is consistent with CH, relative to the existence of a supercompact cardinal
[76].)

Problem 7.2. Does OCA imply 280 = Ry ?
Problem 7.3. Does PID imply 2% < Ry ?

Both OCA and PID can be used to classify gaps and therefore do imply that
b < N,. Recall that a pair of sequences f¢ (£ < k), g, (n < A) form a (k, A*)-gap
in NY/Fin if:

e whenever { < ¢ < kand n<n' <A, then fe <* fo <* g,y <* g, and

Tt was known before the proof that PFA implies 280 = Ry that R; can not be replaced by
Ny in the formulation of PFA. It had also already been known that the stronger MM implies
280 = Ry [22].
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e there does not exist an h in NV such that if ¢ < x and n < ), then fe <*
h <* gy.

Theorem 7.4. [27] There is an (w1,w])-gap.

Theorem 7.5. [27] The following are equivalent for a regular cardinal k:
e There is a (k,w*)-gap.
e There is an (w, K*)-gap.
e There is an unbounded chain in (NN, <*) of ordertype k.

Theorem 7.6. [70] [76] Assume either OCA or PID. If & and \ are regular
cardinals and there is a (k, \*)-gap, then either k = w, A =w, or k = A =w;. In
particular, b < No.

In [44], it was shown that the conjunction of OCA and the initial formulation
of OCA presented in [2] does imply 2%° = R,.

8. The role of PFA in proving theorems in ZFC

One of the remarkable features of the study of forcing axioms and their conse-
quences is that one often obtains ZFC theorems of independent interest as byprod-
ucts. One instance of this is the following result which is implicit Shelah’s original
proof of the consistency of the conclusion of Theorem 1.2 [56, IV], but which was
first made explicit in [81].

Theorem 8.1. If ® is an automorphism of P (N)/Fin, then either ® is induced
by a map ¢ : N — N or else @ does not have a € -measurable lifting.

We also have the following analogous result for the Calkin algebra.

Theorem 8.2. [16] If ® is an automorphism of € (H), then either ® is inner or
else ® does not have a € -measurable lifting.

This is part of a more general phenomenon: one can show in ZFC that certain
objects or morphisms must fail to have nice regularity properties and PFA can
then be used to build regularity properties into such objects or morphisms. For
instance, Theorem 1.2 can be viewed as the combination of Theorem 8.1 above
and the following theorem.

Theorem 8.3. Assume PFA. If ® is an automorphism of &(N)/Fin, then ® has
a € -measurable lifting.

The reader is referred to [18] for a detailed discussion of this phenomenon in
quotients.

The following Analytic Gap Theorem was directly inspired by the influence
of OCA on gaps in NY/Fin and also closely parallels the formulation of PID. Tt
says that the pair & = () x Fin, & = Fin x ) is essentially the only analytic gap
occurring in & (N)/Fin.
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Theorem 8.4. [72] Suppose that of C P(N) is analytic and closed under taking
subsets. If B C /L then either there is a countable <y C Bt such that every
element of </ is contained in an element of <, or else there is tree T C N<“ such
that

1. iftisin T, then {i e N:t"i € T} is an infinite element of A and
2. every branch through T is an element of <f .

Remark 8.5. While there are many similarities between #(N)/Fin and € (H),
there are important differences as well. For instance recent work of Zamora-Aviles
[88] shows that there are analytic gaps in ' (H) in which both sides are countably
directed (in an appropriate analog of C*).

One application of this theorem is the following result concerning the metriz-
ability of separable Fréchet groups.

Theorem 8.6. [80] Suppose that G is a countable topological group which is
Fréchet. If the topology on G is analytic as a subset of 2 (G), then G is metrizable.

The Ramsey theoretic approach to applications of set theory which developed
simultaneously with the theory of PFA also played a role in the results of [75].

Theorem 8.7. [75] Suppose that K is a compact subset of the Baire class 1 func-
tions on a Polish space X. The following are true:

1. K contains a dense metrizable subspace. In particular if K satisfies the
countable chain condition, then it is separable.

2. If K does not contain an uncountable discrete subspace, then K admits an
at most 2-to-1 map onto a compact metric space.

3. If K is non metrizable, then either K contains an uncountable discrete sub-
space or else K contains a homeomorphic copy of [0,1] x {0,1} with the
interval topology.

4. If K is separable and x is a point in K, then either x has a countable neigh-
borhood base or else there is a discrete subset of K of cardinality 28° which
has x as its unique accumulation point.

The Analytic Gap Theorem is especially important in the proof of 4, where it
is used to bring the Ramsey theory of perfect sets of reals into this context. This
has been further exploited in the following result which solves a special case of the
separable quotient problem.

Theorem 8.8. [{] If X is an infinite dimensional Banach space, then X* has an
infinite dimensional separable quotient.

In some cases, whether these results can be generalized to arbitrary compact
spaces in the presence of PFA remains open (see [25] for a survey of related prob-
lems, including Problem 9.6 below).
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Problem 8.9. [2/] Assume PFA. If K is compact and does not contain an un-
countable discrete subspace, must K admit an at most 2-to-1 map onto a metric
space?

Finally, I will mention the following effective analog of Theorem 6.9 above.

Theorem 8.10. [77] If a complete Boolean algebra satisfies the o-bounded chain
condition and is weakly distributive, then it supports a strictly positive continuous
submeasure.

9. Open problems

In closing, I have collected a number of open problems. When possible I have
included a reference to either recent progress or a survey of the problem.

Problem 9.1. (Efimov [15]; see [26]) Is it consistent that every infinite compact
space contains either a convergent sequence or a copy of BN? Does this follow from
PFA?

Problem 9.2. (Todorcevic; see [18]) Assume PFA. If .% and # are analytic
ideals on N such that Z(N)/ I ~ P (N)/_#, must the isomorphism be induced by
a map ¢ : N — N?

Problem 9.3. (Todorcevic; see [44]) Does either OCA or PID imply 2% < Ry ?

Problem 9.4. (Moore [48]) Suppose the following are true: (a) every two Ni-
dense non-stationary Countryman lines are isomorphic or reverse isomorphic, (b)
every Aronszajn line can be embedded into no, and (c) the Aronszagn lines are well
quasi-ordered. Does it follow that 280 = Ry 2

Problem 9.5. (see [25] [35]) Assume PFA. If a compact convex set does not
contain an uncountable discrete subspace, must it be metrizable?

Problem 9.6. (Gruenhage [24]; see [25]) Assume PFA. Do the uncountable first
countable spaces have a three element basis consisting of a set of reals of cardinality
N1 with the separable metric, the Sorgenfrey, and the discrete topologies?

Problem 9.7. [/9] Does every infinite dimensional Banach space have an infinite
dimensional quotient with a basis?

Problem 9.8. (Todorcevic [78]) Is there a consistent classification of the cofinal
types of directed sets of cardinality at most Ry which is comparable to the classifi-
cation of directed sets of cardinality at most Ry given in [68]?

Problem 9.9. (see [13] [38] [37]) Is it consistent that strong homology is additive?
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