Mathematics 6310

The Primitive Element Theorem

Ken Brown, Cornell University, October 2010

Given a field extension K / F, an element $\alpha \in K$ is said to be separable over F if it is algebraic over F and its minimal polynomial over F is separable. Recall that this is automatically true in characteristic 0 .

Theorem 1. Suppose $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with each α_{i} algebraic over F and $\alpha_{2}, \ldots, \alpha_{n}$ separable. Then K is a simple extension of F, i.e., $K=F(\gamma)$ for some $\gamma \in K$. In particular, every finite extension is simple in characteristic 0 .

Any γ as in the theorem is said to be a primitive element for the extension. You can find a proof of the theorem (or a slightly weaker version of it) in Section 14.4 of your text (Theorem 25 on p. 595), but this proof uses the full machinery of Galois theory. What follows is a more elementary proof, taken from van der Waerden.

Proof. If F is finite, then so is K, and we can take γ to be any generator of the cyclic group K^{\times}. So we may assume that F is infinite. We may also assume that $n=2$, since an easy induction reduces the general case to this case. So let $K=F(\alpha, \beta)$, with α and β algebraic over F and β separable. We will show that a random linear combination of α and β is primitive. More precisely, fix $\lambda \in F$, and let $\gamma:=\alpha+\lambda \beta$. We will show that γ is primitive for all but finitely many choices of λ.

To show that γ is primitive, it suffices to show that the simple extension $F(\gamma)$ contains β and hence also $\alpha=\gamma-\lambda \beta$. To this end, we will show that (except for finitely many exceptional λ) the minimal polynomial of β over $F(\gamma)$ cannot have degree ≥ 2. Let f be the minimal polynomial of α over F, and let g be the minimal polynomial of β over F. Let L / K be an extension in which f and g both split completely. Note first that β satisfies $f(\gamma-\lambda \beta)=0$, i.e., β is a root of the polynomial $h \in F(\gamma)[x]$ defined by

$$
h(x):=f(\gamma-\lambda x)
$$

The minimal polynomial of β over $F(\gamma)$ therefore divides both g and h, so we'll be done if we show that the greatest common divisor of g and h in $F(\gamma)[x]$ cannot have degree ≥ 2. Suppose the greatest common divisor does have degree ≥ 2. Then g and h have a common root $\beta^{\prime} \neq \beta$ in L. [This is where we use the separability of β.] Then $f\left(\gamma-\lambda \beta^{\prime}\right)=0$, i.e.,

$$
\begin{equation*}
\gamma-\lambda \beta^{\prime}=\alpha^{\prime} \tag{1}
\end{equation*}
$$

for some root α^{\prime} of f in L. Remembering that $\gamma=\alpha+\lambda \beta$, we can rewrite (1) as

$$
\alpha+\lambda \beta-\lambda \beta^{\prime}=\alpha^{\prime}
$$

or $\lambda=\left(\alpha^{\prime}-\alpha\right) /\left(\beta-\beta^{\prime}\right)$. Thus the bad values of $\lambda \in F$ are those that can be written as

$$
\lambda=\frac{\alpha^{\prime}-\alpha}{\beta-\beta^{\prime}}
$$

in L, for some root α^{\prime} of f and some root $\beta^{\prime} \neq \beta$ of g. There are only finitely many such λ.

Exercise. Use the method of proof of the theorem to find a primitive element for $\mathbb{Q}(i, \sqrt[3]{2})$ over \mathbb{Q}. [With a little calculation, one can show that $\lambda=1$ is a good choice in the proof of the theorem, so $i+\sqrt[3]{2}$ is in fact primitive, as claimed in class.]

