# MATH 4530 – Topology. HW 3 Solution

(1) Show that *X* is a Hausdorff space if and only if the *diagonal*  $\Delta := \{(x, x) \mid x \in X\} \subset X \times X$  is closed with respect to the product topology.

### **Solution:**

- $\Leftarrow$ : Assume that the diagonal is closed. Consider a, b ∈ X with a ≠ b, note that  $(a, b) ∈ X × X \setminus \Delta$ . Now since  $\Delta$  is closed with respect to the product topology,  $\exists$  open set  $U = U_1 × U_2 ∈ \mathcal{T}_{X × X}$  such that  $U \cap \Delta = \emptyset$ . This implies that we found  $U_1, U_2 ∈ \mathcal{T}_X$  satisfying  $a ∈ U_1, b ∈ U_2$  and  $U_1 \cap U_2 = \emptyset$ . So X is Hausdorff.
- ⇒: Assume that X is Hausdorff. Given a point  $(a,b) \in X \times X$ , with  $a \neq b$ , we will show that (a,b) is not a limit point of  $\Delta$ . Consider the open sets  $U_1, U_2 \in \mathcal{T}_X$ , with  $a \in U_1, b \in U_2$  and  $U_1 \cap U_2 = \emptyset$  (such sets exit since X is Hausdorff). Then  $U_1 \times U_2 \subset X \times X \setminus \Delta$  is an open set in the product topology containing the point (a,b). Since  $\Delta$  contains all its limit points, it is closed.
- (2) Find all points that the sequence  $\{x_n = 1/n \mid \mathbb{Z}_{>0}\}$  converges to with respect to the following topology of  $\mathbb{R}$ . Justify your answer.
  - (a) Standard Topology
  - (b) Finite Complement Topology
  - (c) Discrete Topology
  - (d) Lower Limit Topology

#### **Solution:**

- (a)  $\{0\}$ . For any open set (a, b) around 0, we have  $1/n \in (a, b)$  for all n > 1/b.
- (b)  $\mathbb{R}$ . Since the complement of any non-empty open set, U, in the finite complement topology is finite, we must have U contains infinitely many points of the sequence  $\{x_n\}$ .
- (c) Ø. For any point in discrete topology, we can consider an open set containing just that point.
- (d) {0}. For any open set [a, b) around 0, we have  $1/n \in [a, b)$  for all n > 1/b.
- (3) Let X and Y be topological spaces. Prove that  $f: X \to Y$  is continuous if and only if for every subset A of X, we have  $f(\overline{A}) \subset \overline{f(A)}$ .

# **Solution:**

(⇒) f is continuous, so by Ex 3.14 [?], for every closed subset  $C_Y$  in Y,  $f^{-1}(C_Y)$  is closed in X.

$$\Rightarrow f^{-1}(\overline{f(A)})$$
 is closed in  $X$  and  $A \subset f^{-1}(\overline{f(A)})$ 

$$\Rightarrow \overline{A} \subset f^{-1}(\overline{f(A)})$$
 by the definition of closure.

$$\Rightarrow f(\overline{A}) \subset \overline{f(A)}$$
 by the definition of preimages

- (⇐) Let  $C_Y$  be a closed set in Y. Let  $A := f^{-1}(C_Y)$ . To show that  $f^{-1}(C_Y)$  is closed, we just need to show  $\bar{A} = A$ . By the assumption,  $f(\bar{A}) \subset \overline{f(A)} = \overline{C_Y} = C_Y$ . Thus  $\bar{A} \subset f^{-1}(C_Y) = A$ . Since  $\bar{A} \supset A$  by the definition of closure, we have  $\bar{A} = A$ .
- (4) Define a map  $f: \mathbb{R} \to \mathbb{R}$  by

$$x \mapsto \begin{cases} |x| & \text{if } x \text{ is rational} \\ -|x| & \text{if } x \text{ is irrational.} \end{cases}$$

Show that f is continuous at x = 0 but not continuous at other points.

**Solution:** First let's prove continuity at 0. Consider any basis element of  $\mathbb{R}$  containing f(0) = 0, say (-a, b). Note that the pre-image of (-a, b) contains the open interval  $(-\min\{a, b\}, \min\{a, b\})$ , and hence f is continuous at 0. Now for any positive  $p \in \mathbb{R}$ , consider an open set (p/2, p+1). Note that the pre-image of this set consists only of rational points and thus does not contain any open subsets around p. So, f is not continuous for p positive. Similarly, for any negative  $p \in \mathbb{R}$ , consider an open set (p-1, p/2). Note that the pre-image of this set consists only of irrational points and thus does not contain any open subsets around p. So, f is not continuous for p negative.

- (5) Let *X* and *Y* be sets. Let  $\pi_1: X \times Y \to X$  and  $\pi_2: X \times Y \to Y$  be the projections to the first and the second factors.
  - (a) (**Set Theory**) For a given set Z with maps  $f_1: Z \to X$  and  $f_2: Z \to Y$ , find a map  $g: Z \to X \times Y$  such that  $f_1 = \pi_1 \circ g$  and  $f_2 = \pi_2 \circ g$ . Show that such g is unique.
  - (b) Suppose X and Y are topological spaces. Show that  $\pi_1$  and  $\pi_2$  are continuous maps with respect to the product topology  $\mathcal{T}_{prod}$  on  $X \times Y$ . Show that any topology  $\mathcal{T}$  on  $X \times Y$  such that  $\pi_1$  and  $\pi_2$  are continuous, must be finer than the product topology.
  - (c) Suppose X and Y are topological spaces. For a given topological space Z with continuous maps  $f_1: Z \to X$  and  $f_2: Z \to Y$ , show that the map g you found in (a) is continuous with respect to the product topology on  $X \times Y$ .
  - (d) Explain why there is no finer topology on  $X \times Y$  than the product topology such that (c) holds.

## **Solution:**

- (a)  $g: Z \to X \times Y$  is given by  $g(z) = (f_1(z), f_2(z))$ , which clearly satisfies the required conditions. Let  $g': Z \to X \times Y$  be a map satisfying the conditions. Let  $g'(z) = (g'_1(z), g'_2(z))$ . Then the conditions make sure that  $g'_1 = f_1$  and  $g'_2 = f_2$ .
- (b) For any open set  $U_1$  in X,  $\pi_1^{-1}(U_1) = U_1 \times Y$  which is an open set in the product topology. The same works for  $\pi_2$ . Say  $\mathcal{T}$  is some topology on  $X \times Y$  such that  $\pi_1$  and  $\pi_2$  are continuous. Then  $U_1 \times Y$  and  $X \times U_2$  must be open sets in  $(X \times Y, \mathcal{T})$ , thus  $U_1 \times U_2 = (U_1 \times Y) \cap (X \times U_2) \in \mathcal{T}$ . Thus  $\mathcal{T}_{prod} \subset \mathcal{T}$ .
- (c) For any open set  $U_1 \times U_2$  in  $X \times Y$ , we need to show that  $g^{-1}(U_1 \times U_2) \subset Z$  is open.

$$z \in g^{-1}(U_1 \times U_2) \Leftrightarrow g(z) \in U_1 \times U_2 \Leftrightarrow f_1(z) \in U_1 \text{ and } f_2(z) \in U_2$$

$$\Leftrightarrow z \in f_1^{-1}(U_1) \text{ and } z \in f_2^{-1}(U_2) \Leftrightarrow z \in f^{-1}(U_1) \cap f^{-1}(U_2).$$

- Thus  $g^{-1}(U_1 \times U_2) = f_1^{-1}(U_1) \cap f_2^{-1}(U_2)$  which is open since  $f_1$  and  $f_2$  are continuous. (d) Apply the construction in (a) to  $Z = X \times Y$  and  $\pi_1$  and  $\pi_2$ . Then  $g = \mathrm{id}_{X \times Y}$ . Say we put some
- (d) Apply the construction in (a) to  $Z = X \times Y$  and  $\pi_1$  and  $\pi_2$ . Then  $g = \mathrm{id}_{X \times Y}$ . Say we put some topology  $\mathcal{T}$  in  $X \times Y$ . Since  $\mathrm{id}_X : (X \times Y, \mathcal{T}_{prod}) \to (X \times Y, \mathcal{T})$  must be continuous,  $\mathcal{T}$  cannot be finer than the product topology.
- (6) Show that the open interval  $(-\pi/2, \pi/2)$  of  $\mathbb{R}$  with the subspace topology is homeomorphic to  $\mathbb{R}$ . Show that any open interval (a, b) is homeomorphic to  $\mathbb{R}$ .

**Solution:** Define  $f:(-\pi/2,\pi/2)\to\mathbb{R}$  to be  $f(\theta):=\tan\theta$  which is one to one and continuous. The function  $\tan^{-1}$  is also continuous. Thus f is a homeomorphism. Now any two interval (a,b) and (c,d) are homeomorphic, by

$$(a,b) \xrightarrow[x-a]{} (0,b-a) \xrightarrow[x/(b-a)]{} (0,1) \xrightarrow[(d-c)x]{} (0,d-c) \xrightarrow[x+c]{} (c,d).$$

So (a, b) is homeomorphic to  $(-\pi/2, \pi/2)$  and  $(-\pi/2, \pi/2)$  is homeomorphic to  $\mathbb{R}$ , so (a, b) is homeomorphic to  $\mathbb{R}$ .

(7) Suppose that X, Y, Z are topological spaces. Let  $f: X \to Y$  and  $g: Y \to Z$  be maps of sets. Prove or disprove the following statement:

- (a) If  $f: X \to Y$  is continuous and the composition map  $g \circ f: X \to Z$  is continuous, then  $g: Y \to Z$  is continuous.
- (b) If  $g: Y \to Z$  is continuous and the composition map  $g \circ f: X \to Z$  is continuous, then  $f: X \to Y$  is continuous.

**Solution:** Let  $\mathbb{R}_s$  be  $\mathbb{R}$  with standard topology and let  $\mathbb{R}_{f.c.}$  be  $\mathbb{R}$  with finite complement topology. The following diagrams will give the counterexamples for (a) and (b), respectively :



where all maps are identity maps. You can actually replace  $\mathbb{R}_s$  and  $\mathbb{R}_{f.c.}$  with any  $(X, \mathcal{T})$  and  $(X, \mathcal{T}')$  such that  $\mathcal{T}$  is finer than  $\mathcal{T}'$ .

#### REFERENCES

- [M] Munkres, Topology.
- [S] Basic Set Theory, http://www.math.cornell.edu/~matsumura/math4530/basic set theory.pdf
- [L] Lecture notes, available at http://www.math.cornell.edu/~matsumura/math4530/math4530web.html