
MATH 4530 – Topology. Practice Problems For Final solutions

Write the proofs in complete sentences.
(1) Apply Theorem 12.6 [L] (See also Remark 12.7 [L], Theorem 72.1 [M]) and compute the fun-

damental group of RP2](Klein Bottle) where ] means the connected sum defined in Section 12.1
[L].

Solution

(2) Let h : S 1 → S 1 ⊂ R2 − {~0} be a continuous map. Show that deg h = n(h, ~0). The deg h is defined
in Prelim II and n(h, ~0) is the winding number of h around ~0 defined in Section 13 [L].

Solution Let S 1 = {e2πiθ} ⊂ C − {0}. It is natural to define n(h, ~0) := n(h ◦ p|I, ~0) (Definition
13.3 [L]) where p : R → S 1 is the standard covering. Let n := n(h, ~0), i.e. if g̃ is a lift of
g := h ◦ p|I, then g̃(1) − g̃(0) = n. On the other hand, for a generator γ = [p|I] of π1(S 1, 1)
and if m := deg h, we have h∗γ = [h ◦ p|I] = [(ᾱ ∗ p|I ∗ α)m] for a path from 1 to h(1)
in S 1. Since h ◦ p|I is path homotopic to (ᾱ ∗ p|I ∗ α)m, their lifts to R at the same point
are path homotopic too. Therefore the ending points are the same. Thus if β̃ is a lift of
(ᾱ ∗ p|I ∗α)m = ᾱ ∗ p|mI ∗α, then β̃(1)− β̃(0) = n. A lift of p|mI is given by q̃ : I→ R, t 7→ mt.
If α̃ is a lift of α, then β̃ := ¯̃α ∗ (q̃ + α̃(0)) ∗ (α̃ + m) is a lift of ᾱ ∗ p|mI ∗ α. β̃(1) = α̃(1) + m
and β̃(0) = α̃(1), thus β̃(1) − β̃(0) = m = n.

(3) Consider the group G = 〈x, y | x2, y2, xy = yx〉.
(a) Show that G � Z2 × Z2.
(b) Find a space B such that π1(B, b) � G and its simply-connected covering space. Justify your

answer.

Solution
(a) Consider ϕ : G → Z2 ×Z2, defined by extending x 7→ (1, 0), y 7→ (0, 1) to a homomor-

phism.
(b) We know that π1(RP2) = Z2 and that π1(X × Y) � π1(X) × π1(Y). So if you think of
RP2 as a square with sides appropriately identified, you can think of B as four squares
glued together accordingly. Since the map identifying antipodal points S 2 → RP2 is
a covering map and S 2 is simply-connected, S 2 × S 2 is a simply-connected covering
space of RP2 × RP2.

(4) Find a space X with the fundamental group which is isomorphic to 〈x, y, z | yz = zy〉.

Solution First think about just y and z. We want them to be the generators that commute, so
that gives us a torus. Now we want another generator x that does not commute with either
x or y. We can achieve this by attaching a loop to some point of the torus. So we get the
space that is a torus and a circle sharing a point.

(5) Show that if a space X has the property that every continuous map f : X → X has a fixed point,
then each retract Y of X has the property too.

Solution Let r : X → Y be the retraction map. Let g : Y → Y be any continuous map.
Define g′ : X → X to be the extension of g, say g′ = g ◦ r. Clearly g′ is continuous, so there
is a fixed point, say g′(x0) = x0. Let y0 = r(x0), then y0 = r(x0) = r(g′(x0)) = g′(x0) =

g(r(x0)) = g(y0), where the middle equality is true since g′(x0) ∈ Y . Hence, y0 is the fixed
point in Y under g.
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(6) Find an example that Borsuk Lemma 13.15 (3) [L] doesn’t hold if the map f is not injective.

Solution WLOG assume a and b are the north and the south pole of S 2 and the center of the
sphere is at the origin. Consider a map g : [0, 2]→ S 2 given by g(0) = g(1) = g(2) = 1, 0, 0,
from g([0, 1]) is a clockwise loop around the equator and g([1, 2]) is a counter-clockwise
loop around the equator. Clearly, g is nulhomotopic, but a and b lie in different components
of S 2 − g([0, 2]).

(7) Let G be a topological group. Show that π1(G, 1G) is a commutative (abelian) group.

Solution

(8) Prove or disprove the following statement:
(a) If X is connected, then π1(X, x1) is isomorphic to π1(X, x2) for every x1, x2 ∈ X.
(b) If A and B are deformation retract of C, then A are B are homotopy equivalent (i.e. have the

same homotopy type.)
(c) If p : E → B is a covering map with p(e) = b and π1(B, b) is abelian, then π1(E, e) is abelian,

too.

Solution
(a) False. Need path-connectedness to make the sentence true. The counter example would

be as follows. The toplogist’s sine curve is the space which is connected but not path-
connected. Each path connected component is simply connected so add half circle
going from (0, 1) to (0,−1) counterclockwise. Then the fundamental group of one
component is Z but the other one is trivial.

(b) True.
(c) True. By Thm 54.6, we know that p∗ : π1(E, e0)→ π1(B, b0) is a monomorphism.

(9) Let GL(2,R) denote the general linear group, the group of invertible 2 × 2 matrices with real
coefficients. Let O(2) denote the orthogonal group, the 2 × 2 orthogonal matrices. Finally, SO(2)
is the special orthogonal group, those matrices Q ∈ O(2) satisfying det(Q) = 1. Let I denote the
two-by-two identity matrix.
(a) Determine whether or not GL(2,R) is connected. Justify your response.
(b) The Gram-Schmidt orthogonalization process allows us to write a matrix A ∈ GL(2,R)

uniquely as a product A = QR where Q ∈ O(2) is orthogonal and R is upper triangular with
positive entries on the diagonal. Use this to produce a deformation retraction from GL(2,R)
to O(2).

(c) Show that SO(2), with matrix multiplication, is homeomorphic(as a topological space) to and
isomorphic (as a group) to S 1 = (R,+)/Z.

(d) Using the fact that O(2) = SO(2) × {1,−1}, compute π1(GL(2,R), I).

Solution:
(a) Consider the continuous map det : GL(2,R) → R − {0}, A 7→ det A. This map is

surjective. If GL(2,R) is connected, then R− {0}must be connected since the image of
a continuous map from a connected space is connected. But R − {0} is not connected.
Thus GL(2,R) is not connected.
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Solution
(b) (i) Let T+ be the set of all upper triangular matrices in GL(2,R) with positive diago-

nal entries. Consider the deformation retract H : R× [0, 1]→ R, (x, t) 7→ tx of R
to a point {0}. Consider the homeomorphism ln : R>0 → R, x 7→ ln x. Use ln to
identify R>0 and R, and get a deformation retract H′ : R>0× [0, 1]→ R>0 of R>0
to a point {1}. Use H and H′ to give the deformation retract F : T+× [0, 1]→ T+

of T+ to
{(

1 0
0 1

)}
.

(ii) Consider the map m : O(2) × T+ → GL(2,R), (Q,R) 7→ QR, which is a con-
tinuous bijective map. It is an open map, since if U × V ⊂ O(2) × T+, then
m(U × V) = UV = ∪v∈VUv which is a union of open sets. Thus it is a homeo-
morphism.

(iii) Now the map (idO(2), F) : O(2)×T+× [0, 1]→ O(2)×T+ is a deformation retract
of O(2) × T+ to O(2). By the homeomorphism m, we have found the desired
deformation retract.

(c)

SO(2) =

{(
cos t sin t
− sin t cos t

)
, 0 ≤ t < 2π

}
.

Define a map f from S 1 = {eiθ, 0 ≤ θ < 2π} to SO(2) by

eiθ 7→

(
cos θ sin θ
− sin θ cos θ

)
.

It is a continuous map since it can be obtained from the continuous map g :

[0, 2π] → SO(2), t 7→
(

cos t sin t
− sin t cos t

)
by factoring through the standard quotient map

p : [0, 2π] → S 1. The bijectivity can be checked directly. Since it is a map from
compact to Hausdorff, it is a homeomorphism. It is a group homomorphism because

f (eit) · f (eis) =

(
cos t cos s − sin t sin s cos t sin s + sin t cos s
− cos t sin s + sin t cos s cos t cos s − sin t sin s

)
=

(
cos(t + s) sin(t + s)
− sin(t + s) cos(t + s)

)
(d) π(GL(2,R), I) = π(O(2), I) = π(SO(2), I) = π(S 1, 1) = Z.

(10) Let A be a compact contractible subspace of S 2. Show that A does not separate S 2.

Solution Consider any two points, a, b ∈ S 2 \A. Define f : A→ S 2−a−b to be the identity
map. Then by Borsuk lemma, a and b lie in the same component of S 2 \ f (A) = S 2 \ A.
Since a, b were chosen randomly, all points of S 2 \ A lie in the same component and so A
does not separate S 2.
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