MATH 4530 – Topology. Prelim II, Solutions TAKE HOME

1. Degree

Let $S^1 := \{e^{2\pi i\theta}\} \subset \mathbb{C}$. We define the **degree** of a continuous map $S^1 \to S^1$ as follows. Let $x_0 \in S^1$ and let α be a path from $1 \in S^1$ to x_0 .

(1) Show that if γ is a generator of $\pi_1(S^1, 1)$, then $\hat{\alpha}(\gamma)$ is a generator of $\pi_1(S^1, x_0)$. See Appendix *1.

Solution: Let $[f] \in \pi_1(S^1, x_0)$. Then $\hat{\alpha}^{-1}([f]) = [\alpha] * [f] * [\bar{\alpha}] \in \pi_1(S^1, 1)$. Since γ is a generator for $\pi_1(S^1, 1)$, there is some n such that $[\alpha] * [f] * [\bar{\alpha}] = \gamma^n$ which implies

$$[f] = [\bar{\alpha}] * \gamma^n * [\alpha] = ([\bar{\alpha}] * \gamma * [\alpha])^n = \hat{\alpha}(\gamma)^n.$$

(2) Show that $\hat{\alpha}(\gamma)$ depends only on x_0 but not on paths α .

Solution: Take another path β from 1 to x_0 . Then $\beta * \bar{\alpha}$ is a loop at 1. Now $\hat{\beta}(\gamma) = [\bar{\beta}] * \gamma * [\beta] = [\bar{\beta}] * [\beta * \bar{\alpha}] * \gamma * [\beta * \bar{\alpha}]^{-1} * [\beta] = [\bar{\beta}] * [\beta] * [\bar{\alpha}] * \gamma * [\alpha] * [\bar{\beta}] * [\beta] = \hat{\alpha}(\gamma).$

By (2), it is OK to write $\gamma_{x_0} := \alpha[\gamma]$ for a path α from 1 to x_0 . Now let $h: S^1 \to S^1$ be a continuous map. Let $x_0 \in S^1$ and let $x_1 := h(x_0)$. Define *degree* of h to be an integer d such that

$$h_*(\gamma_{x_0}) = (\gamma_{x_1})^d$$
.

It is well-defined because, by (1), γ_{x_1} is a generator of $\pi_1(S^1, x_1)$ respectively.

(3) Show that d is independent of the choice of x_0 .

Solution: Let $y_0 \in S^1$ and let β be a path from x_0 to y_0 . Let $y_1 := h(y_0)$, then $\beta' := h \circ \beta$ is a path from x_1 to y_1 .

$$\gamma_{y_{1}} = [\bar{\beta}'] * \gamma_{x_{1}} * [\beta']$$

$$h_{*}(\gamma_{y_{0}}) = h_{*}([\bar{\beta}] * \gamma_{x_{0}} * [\beta]) = [\bar{\beta}'] * h_{*}(\gamma_{x_{0}}) * [\beta'] = [\bar{\beta}'] * (\gamma_{x_{1}})^{d} * [\beta'] = ([\bar{\beta}'] * \gamma_{x_{1}} * [\beta'])^{d} = (\gamma_{y_{1}})^{d}.$$

(4) Show that d is independent of the choice of γ .

Solution: By *1, a generator is either γ or γ^{-1} . We we use γ^{-1} , then

$$(\gamma^{-1})_{x_0} = (\gamma_{x_0})^{-1}, \quad (\gamma^{-1})_{x_1} = (\gamma_{x_1})^{-1}.$$

Thus $h_*((\gamma_{x_0})^{-1}) = ((\gamma_{x_1})^d)^{-1} = ((\gamma_{x_1})^{-1})^d$.

By (3) and (4), we have defined the degree of a map h, which is independent of all choices. Now we consider the properties of this degree:

(5) Show that if $h, k: S^1 \to S^1$ are homotopic, they have the same degree.

Solution: It follows from Theorem 11.1 Lecture Notes.

(6) Show that $\deg h \circ k = \deg h \cdot \deg k$.

Solution: It follows from (8) and (7).

1

(7) Compute the degree of the map $h(z) = z^n$ where $n \in \mathbb{Z}$.

Solution: HW 9 (5).

(8) (Optional) Show that if $h, k : S^1 \to S^1$ have the same degree, then they are homotopic.

Solution:

- Consider $h_*: \pi_1(S^1, 1) \to \pi_1(S^1, h(1))$ and $k_*: \pi_1(S^1, 1) \to \pi_1(S^1, k(1))$. By the assumption, there is n such that $h_*(\gamma) = \gamma_{h(1)}^n$ and $k_*(\gamma) = \gamma_{k(1)}^n$.
- Let $\gamma := [p|_{\mathsf{I}}]$ where $p : \mathbb{R} \to S^1, t \mapsto e^{2\pi i t}$ is the standard map and $\mathsf{I} := [0, 1]$. Consider the following lifting diagram,

 $h \circ p|_{1}$ and $k \circ p|_{1}$ are the lifts of $h \circ p|_{1}$ and $k \circ p|_{1}$ at $h_{0} \in p^{-1}(h(1))$ and $k_{0} \in p^{-1}(k(1))$ respectively. Let $h_{1} := h \circ p|_{1}(1)$ and $k_{1} := k \circ p|_{1}(1)$.

- Since $h_*(\gamma) = [h \circ p|_1] = \gamma_{h(1)}^n$ and $k_*(\gamma) = [k \circ p|_1] = \gamma_{k(1)}^n$, we have $h_1 h_0 = k_1 k_0 = n$.
- I wanted to find a path-homotopy between $h \circ p|_{I}$ and $k \circ p|_{I}$, but because the starting points and ending points are different, I can find it. So I will shift one of them. Define

$$\widetilde{h \circ p}|_{\mathsf{I}}(s) := \widetilde{h \circ p}|_{\mathsf{I}}(s) - h_0 + k_0.$$

Now it is a path from k_0 to k_1 . You can check it by evaluating at 0 and 1. Thus there is a path-homotopy \tilde{F} from $h \circ p|_{I}$ to $k \circ p|_{I}$, because \mathbb{R} is a contractible space.

- Consider $\tilde{h}(x) := h(x) \cdot e^{2\pi i (k_0 h_0)}$. Then $\tilde{h} \circ p|_{\mathbb{I}}$ is the lift of $\tilde{h} \circ p|_{\mathbb{I}}$ at k_0 . Then we check that $p \circ \tilde{F}$ is a path homotopy from $\tilde{h} \circ p|_{\mathbb{I}}$ to $k \circ p|_{\mathbb{I}}$. Now since $p \circ \tilde{F}$ is a *path*-homotopy, it factors through (p, id) , giving a homotopy F from \tilde{h} to k.
- Now the homotopy from h to \tilde{h} is easy to find:

$$G(x,t) := h(x)e^{2\pi i t(k_0 - h_0)}$$

- By constructing F and G, we have shown that h is homotopic to k.
- (5) says the degree is a homotopy invariant, i.e. if h, k have the different degrees, they can not be homotopic to each other. Together with (7) and (8), it classifies all homotopy equivalence classes of maps $S^1 \to S^1$. (6) says associating degrees have a certain algebraic structure.

Appendix

*1 An infinite cyclic group G is a group isomorphic to $(\mathbb{Z}, +)$. We say $g \in G$ is a generator, if $G = \{g^n \mid n \in \mathbb{Z}\}$. If g is a generator, then g^{-1} is also a generator and any generator is either g or g^{-1} .