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Abstract. In some geometrically interesting cases, a structure on a manifold
M can be lifted to a related structure on the groupoid M(1) of paths on M . The
well-known relation between connections on M and parallel transport operators
provides a motivating example. We examine the problem of lifting geometric con-
structions such as principal bundles with connection to path space. Additionally,
we undertake a sort of inverse problem: determining the geometric structure on M
which corresponds to a connection on M(1). This allows us to infer the existence
of a higher categorical structure when certain geometric entities appear on M . In
the process, we develop the basics of calculus on smooth categories, focusing on the
central role played by functorial differential forms.

1. The Smooth Path Groupoid of M

It frequently happens in differential geometry that a certain structure is best thought
about as living on the space of paths in M . Nevertheless, calculations with such
a structure are usually done with a more complex (but equivalent) structure on M
itself. For example, a geometer might define a connection as a certain type of first-
order differential operator, or a kind of G-equivariant n-plane distribution, or any of a
myriad of other “first order” definitions. Yet when it comes to reasoning geometrically
about a connection, we often think of a “zeroth-order” object: the associated parallel
transport operator, a particularly nice smooth function on the space of paths in M .
Another fine example is given in [Brylinski], where a volume form on a 3-manifold
M induces a sort of symplectic structure on the space of knots in M . These lifts to
path space are geometrically pleasing, but the functional analysis involved in actually
computing on a space like the smooth paths in M is frequently off-putting.

The philosophy of this paper is that many interesting geometric structures are
more easily understood on the path space M(1) of M rather than on M itself. We
would then like to know when a certain structure on M corresponds to something nice
on M(1). Conversely, we should know what common geometric structures on M(1) look
like on M . It would also be handy to have computational tools that let us compute
directly with the geometric structures on M(1) when they appear.
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We will focus on two related problems. The first is fundamental: what are the
right generalizations of “differential forms” and “exterior derivative” for computing
on M(1)? The second is a recurring problem in differential geometry and mathematical
physics: how does the geometry governing trivializations, connections, and curvature
lift to path space? Along with this is a sort of inverse question: what geometric data
on M can be associated to a connection on M(1)?

Throughout this paper, we will let M denote a finite-dimensional smooth man-
ifold. The source and target projections in any category will be denoted s and t,
respectively. G will always denote a finite-dimensional Lie group, and HomG(X,Y )
the G-equivariant maps from X to Y .

Because this paper is concerned with local problems (the “calculus” as opposed
to the “geometry”), we assume that the manifold M is contractible. The analysis
of these problems when M has nontrivial topology is the subject of the forthcoming
paper Geometry on Categories.

Before we begin, let us dispatch with the question of just which path groupoid to
use. In order to leverage the functional analysis of [Gross], we will let M〈1〉 denote the
category of piecewise smooth paths on M . Although most of our computations will
take place on M〈1〉, we are only interested in parametrization-independent construc-
tions. We use M(1) to mean the category of paths modulo reparametrization. This is
not quite a groupoid since we do not factor out by thin homotopy, though it will turn
out that all our constructions are thin-homotopy invariant. For most purposes the
path groupoid could be replaced with a loop space of M or the category of smooth
holonomic paths in the infinite jet bundle J∞M −→ M with only minor changes to
the theorems. In fact, part of the appeal in the categorical approach to path space
geometry is that analytic nuances appear to be somewhat irrelevant, replaced by
algebraic constraints.

2. Functorial de Rham Theory

In this section, we analyze the lift of the de Rham sequence to path space. Throughout
this section, Ωk

M will denote the sheaf of C-valued differential k-forms on M . For the
purpose of computation it is useful to work on the category of parameterized paths

M〈1〉. Pullback by the functor M〈1〉 F−→ M(1) which forgets parametrization is a map

of sheaves ΩM(1)
F∗
−→ ΩM〈1〉 . The parametrization-independent forms ω ∈ ΩM〈1〉 are

exactly the image of F∗, and are therefore characterized by

(iXω)γ = 0

for all vectorfields X ∈ ker dF|γ. Geometrically, such vectorfields are tangent to the
curve γ and vanish on the boundary. A flow in the direction of X does not change
the image of γ, so they project to the zero vector on TγM

(1).
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The simplest way to obtain a k-form on path space is by integrating away a degree
of freedom from a (k + 1)-form on M .

2.1. Definition. Let ω ∈ Ωk+1
M and γ : [0, 1] −→M . Then the transgression of ω is

the k-form

(τω)γ(v1, . . . , vk) =

∫ 1

0

ωγ(t)(
dγ

dt
(t), v1(t), . . . , vk(t)) dt

where vi ∈ TγM
(1).

When working on M(1), we will only be interested in functorial constructions. In
particular, we wish to single out a subset of differential forms on path space which
behave nicely with respect to the underlying categorical structure.

2.2. Definition. A k-form ω ∈ Ωk
M(1) is called functorial when

ωβ◦α(X) = ωα(X|α) + ωβ(X|β)

and
ωα−1 = −ωα

for all composable curves α, β and all k-plane fields X on β ◦ α.

The name is justified by the fact that the exterior derivative of a functor is a
functorial 1-form. Since we will only be interested in functorial constructions for the
remainder of this paper, we adopt the convention that Ωk

C is the sheaf of functorial
k-forms whenever C is a smooth category.

We already have a large source of functorial differential forms:

2.3. Lemma. The transgression of a k-form is functorial, so τ defines a map

Ωk
M

τ−→ Ωk+1
M(1)

Proof. Immediate from the definition of the integral.

Functorial k-forms have a local nature to them, since the value at β ◦ α can be
directly computed from the values at β and α individually and independently. This
means that any functorial k-form is determined by an infinitesimal neighborhood of
the map which takes x ∈ M to the constant path x̄. In particular, it should mean
that functorial k-forms can be described as sections of some bundle over M itself.

Heuristically, the idea is as follows. By making an infinitely fine subdivision of each
path, we can describe a functorial k-form on M(1) by a standard k-form on M with an
extra input for an infinitesimal path. But tangent vectors are the germs of paths, so
we should end up with something like a (k+ 1)-form on M describing “evaluation on
infinitesimal paths” for our functorial k-form on M(1). Since this (k + 1)-form carries
all of the information about the original k-form, the map should be both left and
right invertible. The following theorems justify this intuition:
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2.4. Theorem. Let ω ∈ Ωk
M〈1〉(g) be a functorial and parametrization-independent

k-form. Then there is a (k + 1)-form on M defined by

(εω)x(v0, . . . , vk) = lim
t→0+

1

t
· ωγ|[−1,t]

(ṽ1, . . . , ṽk)

where γ is any smooth path parametrized by [−1, 1] with γ|[−1,0] thin-homotopic to x̄,
γ̇0 = v0, and where ṽi is any extension of vi to a vectorfield along γ with

ωγ|[−1,0]
(ṽ1, . . . , ṽk) = 0

Proof. The functorality equation for ω implies that ωγ|[−1,t]
is on the order of t, so the

limit is at least finite. This also means that only the first-order germ of γ contributes
to the limit, so the choice of path γ extending v0 is irrelevant. Now suppose that
v′1, . . . , v

′
k is an alternate extension of ṽ1, . . . , ṽk, and expand the difference in powers

of t:
v′i − ṽi = wi · t+ o(t2)

There are no terms of order zero since v′i also extends vi. We then have

ωγ|[−1,t]
(v′1, . . . , v

′
k) = ωγ|[−1,t]

(ṽ1, . . . , ṽk) + t ·
∑

i

ωγ|[−1,t]
(ṽ1, . . . , wi, . . . , ṽk) + o(t2)

However, since ωγ|[−1,t]
is itself of order t, the only term which contributes to the limit

is the first.
We have therefore shown that the limit is well-defined, but a priori we only end

up with a section of TM∗ ⊗ Ωk
M . To get antisymmetry, it suffices to show that

(εω)x(v0, v0, v1, . . . , vk−1) = 0. After choosing γ extending v0, extend v0 to a vector-
field T tangent to γ and vanishing on the endpoints1. The limit defining εω is

lim
t→0+

ωγ|[−1,t]
(T, . . . )

but since ω is parametrization-independant, iTω = 0. Thus, εω is totally antisym-
metric.

Proof.

2.5. Corollary. The map ε descends to M(1).

2.6. Corollary. ε and τ are two-sided inverses.

1This is possible only because we chose γ with γ|[−1,0] thin-homotopic to a trivial path. This
allows us to extend v0 without otherwise affecting ω, since for the entire proof, the value of ω on
[−1, t] is equal to its value on [0, t]. The author apologizes for the tastelessness of this detail.
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Proof. Throughout, we let x and γ be as in the above theorem, and v = v0. Let
ω ∈ Ωk

M be given. Then

(iv(ετω))x = lim
t→0

1

t

∫ t

0

(i dγ
du
ω)γu du = (ivω)x

so ετ = id.

Now let η ∈ Ωk
M(1) . By functorality and the definition of the Riemann integral,

ηγ =

∫ 1

0

(
i dγ

du
(εη)

)
γu

du = (τεη)γ

Proof. For calculus on categories, the exterior derivative is not sufficient. Instead,
we would like a differential operator which respects the categorical structure. In
particular, the derivative should have a component “inside Hom(x, y)” and also a
component describing the “motion of x and y”. In the case of M(1),

2.7. Definition. The functorial exterior derivative is defined by

d = ε|∂ − d

where |∂ means the evaluation at the endpoints. Explicitly, if X = v1 ∧ · · · ∧ vk ∈∧k TγM
(1) then

(dω)γ(X) = (εω)tγ (dt(X)))− (εω)sγ (ds(X))− dωγ(X)

where d is the standard exterior derivative.

2.8. Theorem. The diagram

1 // CM
ι //

τ

��

Ω0
M

d //

τ

��

Ω1
M

τ
��

d // Ω2
M

τ
��

d // Ω3
M

τ
��

d // . . .

1 // C
M(1)

ε

OO

ι // CM(1)

ε

OO

ι // Ω0
M(1)

ε

OO

d // Ω1
M(1)

ε

OO

d // Ω2
M(1)

ε

OO

d // . . .

commutes, where CM is the sheaf of locally constant functions on M , C
M(1) the sheaf

of locally constant functions on M(1) and CM(1) the sheaf of smooth functions which
are locally constant on each Hom-set of M(1).



6

Proof. Let ω ∈ Ωk
M be given and fix a [0, 1]-parametrized path γ ∈ M(1) to focus on.

Without loss of generality, we may choose coordinates x0, x1, . . . such that ∂/∂x0 =
dγ/dt. In these coordinates, ω takes the form

ω =
∑

|I|=k−1, 0 6∈I

ω0,I dx
0 ∧ dxI +

∑
|J |=k, 0 6∈J

ωJ dx
J

where I and J are multi-indices. Let us first compute τdω. The derivative is

dω =
∑

|I|=k−1, 0 6∈I
i≥1

−∂ω0,I

∂xi
dx0 ∧ dxi ∧ dxI +

∑
|J |=k, 0 6∈J

∂ωJ

∂x0
dx0 ∧ dxJ + . . .

where the unwritten terms do not involve dx0 and will therefore vanish under inte-
gration. Since dγ = ∂

∂x0dt, ∫
γ

∂f

∂x0
dx0 = f(tγ)− f(sγ)

so we have

τdω =
∑

|I|=k−1, 0 6∈I
i≥1

(
−

∫ 1

0

∂ω0,I

∂xi
dt

)
dxi ∧ dxI +

∑
|J |=k, 0 6∈J

ωJ |∂γ dx
J

On the other hand,

τω =
∑

|I|=k−1, 0 6∈I

(∫ 1

0

ω0,I dt

)
dxI

Using the fact that ε inverts τ , we have

dτω = −dτω + ω|∂γ =
∑

|I|=k−1, 0 6∈I
i≥0

(
−

∫ 1

0

∂ω0,I

∂xi
dt

)
dxi ∧ dxI +

∑
|J |=k

ωJ |∂γ dx
J

The i = 0 terms in the first sum are cancelled by the 0 ∈ J terms from the second
sum, so dτω = τdω.

2.9. Corollary. d2 = 0.
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3. The Problem in the Nonabelian Case

Many interesting geometric problem can be formulated as statements about connec-
tions on principal G-bundles over M , where G is a Lie group. We would like to
describe how these problems appear when lifted to path space, and also find the “in-
finitesimal” version of a principal G-bundle with connection on path space. In the
language of the previous section, we would like to describe nonabelian transgression
and infinitesimal evaluation maps.

There are several problems which prevent this from being straightforward. In the
case of a nonabelian Lie group G, there is no nice analog of the de Rham sequence in
all degrees. We only have the sheaf morphisms

1 −→ GM
ι−→ C∞

M (G)
∗θ−→ Ω1

M(g)
curv−→ Ω2

M(g)

where f ∗θ = f−1df is the pullback of the Maurer-Cartan form, and curv ω = dω +
1
2
[ω∧ω] computes the curvature of ω. These maps satisfy (ιc)∗θ = 0 and curv (f ∗θ) =

0. The sequence is almost exact, in the sense that if the image of a section ξ is trivial
then ξ is in the image of the previous map. Even more, by the fundamental theorem
of calculus if f ∗θ = g∗θ then f = (ιc) · g. Unfortunately, there are problems in the
next degree: even if curv ω = curv η it can happen that ω and η are not related by
a gauge transformation from C∞

M (G) (which is the nonabelian version of exactness).
The existence of these nonequivalent connections with identical curvatures was stud-
ied in [Wu] and [Gross] as the field copy problem. It arises naturally when studying
the relation between field strengths and gauge potentials in Yang-Mills theory. In
[Gross], the non-exactness of the sequence at this point is interpreted to mean that
the curvatures of a nonabelian Yang-Mills field do not yield a complete set of ob-
servables. This is in stark contrast to the abelian case of electromagnetism, where
measuring the field strength (curvature) gives us all observable information about
the electromagnetic potential. To handle the nonabelain case, [Gross] proposes an
alternate set of observables, which in the language of this paper form a functorial,
nonabelian connection on a principal G-bundle over path space. A related theme is
found in [Polyakov] when the author describes a string-theoretic physics on M by a
gauge-theoretic physics on M(1).

Of course we may still want to know if a certain 2-form ω ∈ Ω2
M(g) is the curvature

of any connection, even disregarding the aformentioned issues of uniquness. But even
this simpler question has serious problems. In the abelian case, a 2-form ω is a
curvature if and only if dω = 0. The analogous nonabelian condition is the Bianchi
identity dA(curv A) = 0, where

dAω = dω + [A ∧ ω]
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But this equation cannot even be formulated without already knowing a connection
A with curv A = ω. There is no other obvious necessary condition to determine if a
2-form is a curvature, so we appear to be stuck.

To summarize, there are two problems with the nonabelian de Rham sequence at

Ω1
M(g)

curv−→ Ω2
M(g). The first is the lack of a map Ω2

M(g)
d?−→ Ω3

M(g) with d−1
? (0) =

im curv. The second problem is that the equality curv ω = curv η does not imply
the gauge equivalence

η = Ad(f−1)(ω) + f ∗θ

with f ∈ C∞
M (G). Since gauge equivalence is the nonabelian version of cohomologous,

any notion of exactness is ruined.
Undaunted by these problems, let us look for a “morally correct” way around

them. If the τ and ε maps from the previous section could be given nonabelian
generalizations, then the composition

Ω2
M(g)

τ
��

Ω3
M(g)

Ω1
M(1)(g) curv // Ω2

M(1)(g)

ε

OO

would provide a function which vanishes precisely on those 2-forms which are curva-
tures. Still better, recall that curv η = 0 implies η = F ∗θ for a unique F up to gauge
equivalence. Therefore when ε(curv (τω)) = 0, τω = F ∗θ and εF is a connection on
M with curvature ω. For this last computation, we utilized the commutativity of the
(unfortunately nonexistent) diagram

Ω1
M(g)

curv // Ω2
M(g)

τ
��

C∞
M(1)(G)

∗θ //

ε

OO

Ω1
M(1)(g)

Of course, the problems at Ω1
M(g)

curv−→ Ω2
M(g) prevent us from implementing the

solution just described. Nevertheless, in the next two sections we will approach
the problem by describing the functorial nonabelian de Rham sequence on M(1) and
analyzing its infinitesimal behavior. This will eventually lead us to a solution of a
related problem, with G replaced by a certain 2-group.

4. Functorial G-Bundles

In this section, we allow M to have nontrivial topology.
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The classical nonabelian analog of transgression is the equivalence between G-
connections and G-valued parallel transport operators. Parallel transport describes
a G-equivariant motion in a bundle from the fiber over one point to the fiber over
another point, determined by the connection and the path chosen to between the
points. Locally, if the connection form is ω ∈ Ω1

M(g) then the associated parallel
transport operator is

P ω(γ) = exp

∫
γ

ω

where exp
∫

is the path-ordered product. If we assume γ is [0, 1] parametrized, the
explicit definition is

exp

∫
γ

ω = lim
N→∞

N∏
k=1

exp

(
1

N
· ωγ( k

N )

(
dγ

dt

(
k

N

)))
The exp on the right-hand side of the equation is the exponential map g

exp−→ G. Since
parallel transport operators are related to connections by this exponential transgres-
sion map, they are a natural starting point for understanding the nonabelian case.
To this end, let us spend some time understanding the bundles on which parallel
transport operators live in an invariant way.

To each bundle G −→ E
π−→ M there is an associated trivial bundle G −→

Erel
πrel−→ M(1) with fiber

π−1
rel(γ) = HomG

(
π−1(sγ), π−1(tγ)

)
The bundle Erel is functorial in the following sense. Let α, β ∈ M(1), be a pair

of composable paths, and take x ∈ π−1
rel(α), y ∈ π−1

rel(β). Then there is a composite
element y ◦ x ∈ π−1

rel(β ◦ α) due to the natural map

HomG(y, z)× HomG(x, y)
◦−→ HomG(x, z)

Any connection ∇ on E induces a parallel transport operator

P∇ ∈ Γ
(
Erel −→ M(1)

)
Since P∇(β ◦ α) = P∇(β) ◦ P∇(α), the section of Erel corresponding to parallel
transport respects the functorial structure of the bundle.

To summarize, each G-bundle E on M induces a trivial and functorial bundle Erel

over M(1). Each connection ∇ on E induces a functorial section P∇ of Erel.
The construction is entirely reversable:

4.1. Theorem. If G −→ Ê
π̂−→ M(1) is a trivial functorial bundle then there is

an associated bundle G −→ E
π−→ M such that Erel

∼= Ê. Furthermore, to every
functorial trivialization P of Ê there is a unique connection ∇ on E with P∇ = P .
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Proof. Let Ê be as above, and choose a Čech cover {Ui} on M along with marked
points xi ∈ Ui. On each Ui, pick a local trivialization by selecting a function ψi with
ψi(x) ∈ HomG(xi, x). The local trivializations are related by the cochain2

ψ−1
j ◦ ψi

def
= ϕij : Ui ∩ Uj −→ HomG(xi, xj)

ϕij satisfies the cocycle condition

id = (∂ϕ)ijk = ϕki ◦ ϕjk ◦ ϕij ∈ HomG(xi, xi)

and therefore defines a principal G-bundle on M .
Now let P be a functorial section of Ê. We will construct a connection on E by

describing a path-lifting procedure derived from P . First, note that for the constant
paths x̄,

P (x̄) = id ∈ HomG(x, x)

For any path γ : [0, 1] −→ M , let γt(s) = γ(ts). For each path γ on M we define a
lift into E as follows. Pick g0 ∈ π−1(γ(0)) and define

γP (t) = P (γt)(g0)

γP (0) = g0 and γP (t) ∈ π−1(γ(t)). Furthermore, this lift is constructed to be equiv-
ariant with respect to the choice of g0. In other words, P is the parallel transport of
a connection ∇ on E.

4.2. Corollary. To each functor M(1) F−→ G there is a unique principal G-bundle
E with connection ∇ on M such that F = P∇.

Proof. Since F is a functor, it gives a functorial trivialization of the trivial bundle
Ê = M(1) ×G.

5. Nonabelian Infinitesimal Functors

We now would like to generalize the notion of “functorial k-form” to the nonabelian
case, at least for small values of k. For k = 1, a functorial 1-form should be alge-

braically the same as the derivative of a functor. Given a smooth functor M(1) f−→ G,
the Maurer-Cartan form f ∗θ satisfies the infinitesimal functorality condition

f ∗θβ◦α = f ∗θα + Ad(f−1
α )(f ∗θβ)

2Readers who are surprised by the appearance of the G-torsor HomG(xi, xj) rather than G
itself may note that ϕij can be turned into a G-cochain in the usual sense by choosing an explicit
isomorphism of the fiber over each xi with G.
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5.1. Definition. A functorial 1-form ω on M(1) is a 1-form ω ∈ Ω1
M(1)(g) and a

functor M(1) f−→ G which satisfy

ωβ◦α = ωα + Ad(f−1
α )(ωβ)

More generally, if G is a 2-group3 with G = Hom(1,−), H = ob G, and Φ the
action of H on G then a G-valued 1-form on M(1) is given by a 1-form ω ∈ Ω1

M(1)(g)
and a functor f : M −→ H which satisfy

ωβ◦α = ωα + Φ(f−1
α )(ωβ)

G-valued functorial 1-forms are therefore the same as AdG-valued 1-forms, where
AdG is the sub-2-group of inner automorphisms in AutG. This perspective becomes
important when we examine the image of functorial forms under ε.

There is no difficulty extending the map ε to the nonabelian case.

5.2. Theorem. For any Lie group G, the following diagram of sheaves

1 // GM
ι //

τ

��

C∞
M (G)

∗θ //

τ

��

Ω1
M(g)

τ

��

curv // Ω2
M(g) Ω3

M(g)

1 // G
M(1)

ε

OO

ι // GM(1)

ε

OO

ι // C∞
M(1)(G)

ε

OO

∗θ // Ω1
M(1)(g) curv //

ε

OO

Ω2
M(1)(g)

ε

OO

commutes, and following any two horizonal arrows results in the trivial map.

The problem arises when we try to define a transgression map Ω2
M(g)

τ−→ Ω1
M(1)(g).

Because of the field copy problem, a nonabelian curvature does not carry enough
information to reconstruct its connection. Yet if we could lift the curvature to path
space, a connection could always be found. Therefore, it is impossible to find a good
Ω2

M(g)
τ−→ Ω1

M(1)(g). To solve this problem, let us analyze the infinitesimal evaluation

map Ω1
M(1)(g)

ε−→ Ω2
M(g) more carefully.

In the following, we let ω = (ω, ψ) be a functorial 1-form on M(1). When we apply
the infinitesimal evaluation map ε to ω and obtain a 2-form on M , it is clear that
some information will be lost: ω′ = (ω, ψ) and ω′ = (ω, ψ′) will evaluate to the same
2-form even if they do not represent equivalent connections over M(1). If we want to
be able to reconstruct ω, we must also compute εψ ∈ Ω1

M(g/Zg). That is to say, a
G-connection on M(1) corresponds on M to a pair

(A,F ) ∈ Ω1
M(g/Zg)⊕ Ω2

M(g)

This is precisely the data defining a 2-connection on an AdG-2-bundle in the sense of
[HGT].

3We only concern ourselves with strict 2-groups (crossed modules) in this paper. Extensive
background on 2-groups may be found in [HDA5].
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5.3. Definition. Let G be a 2-group with G = Hom(1,−) and H = ob G, and write
g for the Lie algebra of G. Then a g-valued k-form on M is defined by

Ωk
M(g) = Ωk−1

M (h)⊕ Ωk
M(g)

5.4. Theorem. Let the local data for a connective structure on an AdG-bundle over
M be given as A ∈ Ω1

M(g/Zg) and F ∈ Ω2
M(g). Then there is a connection form

ω ∈ Ω1
M(1)(g) given by

ωγ(v) =

∫ 1

0

Ad(exp

∫
γ|[0,t]

A)−1

(
Fγ(t)(

dγ

dt
(t), v(t)

)
dt

where γ : [0, 1] −→M and v ∈ TγM
(1). Furthermore, ω is the transgression of A and

F in the sense that εω = (A,F ) ∈ Ω2
M(adG).

Proof. By definition, ω satisfies

ωβ◦α = ωα + Ad

(
(exp

∫
α

A)−1

)
(ωβ)

so the 1-form part of εω is simply A. As for the 2-form part, just as in the abelian
case if dγ/dt(0) = w then

lim
h→0+

1

h

∫ h

0

Ad(exp

∫
γ|[0,t]

A)−1

(
Fγ(t)(

dγ

dt
(t), v(t)

)
dt = Fγ(0)(w, v)

In other words, whenever an AdG-2-bundle with 2-connection appears on M , there
is a corresponding G-bundle with connection on M(1). One could then choose to
work with familiar geometric structures on the pathspace of M or with less familiar
(but “more finite”) geometric structures on M itself, depending on the nature of the
problem.

Given the functorial connection ω, it is easy to read off geometric information
about the related AdG-valued 2-connection. For example,

5.5. Lemma. The condition ψ∗θ = dt(ω) is equivalent to the vanishing of the fake
curvature of εω.

Proof. Let A = εψ and F = εω be the infinitesimal 1- and 2-form parts of ω.
ε(ψ∗θ) = curv A, so the equation ψ∗θ − dt(ω) = 0 infinitesimally becomes

dA+
1

2
[A ∧ A]− dt(F ) = 0
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5.6. Theorem. If the curvature dω+ 1
2
[ω∧ω] and fake curvature ψ∗θ− dt(ω) vanish

then ω = Ψ∗θ for some functor Ψ : M(1) −→ G lifting ψ.

Proof. Let f : M(1) −→ G be an antiderivative of ω, so that f ∗θ = ω. The existence
of such an f follows from an extension of Cartan’s lemma to path space due to L.

Gross. We will abuse notation by picking a lift G/ZG `−→ G and writing ψ for
`(ψ). The vanishing of the fake curvature implies that f ∗θ = ψ∗θ mod Zg, so by
choosing the constant of integration we may assume that f = λ ·ψ for some function
λ : M(1) −→ ZG. Since λ is central and ψ is a functor, f is a functor if and only if λ
is. We proceed by differentiating fβ◦α · f−1

α · f−1
β , multiplying on the left by f−1

β◦α and
on the right by fβ · fα:

f−1
β◦α · d(fβ◦α · f−1

α · f−1
β ) · fβ · fα = f ∗θβ◦α − f ∗θα − f−1

α · f ∗θβ · fα

= ωβ◦α − ωα − Ad(f−1
α )(ωβ)

= ωβ◦α − ωα − Ad(ψ−1
α )(ωβ) = 0

since ω is functorial. It follows that fβ◦α = cfβ · fα for some constant c ∈ G. In fact,
c must be central: since fx̄ = fx̄◦x̄ = cf 2

x̄ ,

c = f−1
x̄ = λ−1

x̄ · ψ−1
x̄ = λ−1

x̄ ∈ ZG
Finally, set Ψ = cf . Then Ψ∗θ = ω and

Ψβ◦α = cfβ◦α = c2fβ · fα = Ψβ ·Ψα

which completes the proof.

The assumption of vanishing fake curvature is somewhat ungainly. In the generic
case where the holonomy of ω is surjective, vanishing curvature implies vanishing
fake curvature. Even in the non-generic cases, when the curvature of ω vanishes
there is still a functorial antiderivative, but the relation of this antiderivative to ψ is
surprisingly subtle. A detailed account of the situation is to appear in an upcoming
paper Pathspace Geometry and the Field Copy Problem.

Altogether, this discussion proves

5.7. Theorem. For any Lie group G, the following diagram of sheaves

1 // AdGM
ι //

τ

��

C∞
M (AdG)

∗θ //

τ

��

Ω1
M(adG)

τ

��

curv // Ω2
M(adG)

2curv //

τ

��

Ω3
M(g)

1 // G
M(1)

ε

OO

ι // GM(1)

ε

OO

ι // C∞
M(1)(G)

ε

OO

∗θ // Ω1
M(1)(g) curv //

ε

OO

Ω2
M(1)(g)

ε

OO

commutes, and following any two horizonal arrows results in the trivial map. Here,

2curv(A,F ) = dF + [A ∧ F ]

It would be impossible to conclude without the obvious conjecture:
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5.8. Conjecture. There is a sequence A1 = G, A2 = AdG, . . . with Ak an n-group
such that the diagram in the previous theorem extends rightward to Ωk+1

M (ak) and
downward to M(k−1).
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