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Preface

These are the lecture notes for Math 3210 (formerly named Math 321), Mani-
folds and Differential Forms, as taught at Cornell University since the Fall of 2001.
The course covers manifolds and differential forms for an audience of undergrad-
uates who have taken a typical calculus sequence at a North American university,
including basic linear algebra and multivariable calculus up to the integral theo-
rems of Green, Gauss and Stokes. With a view to the fact that vector spaces are
nowadays a standard item on the undergraduate menu, the text is not restricted to
curves and surfaces in three-dimensional space, but treats manifolds of arbitrary
dimension. Some prerequisites are briefly reviewed within the text and in appen-
dices. The selection of material is similar to that in Spivak’s book [Spi71] and in
Flanders’ book [Fla89], but the treatment is at a more elementary and informal
level appropriate for sophomores and juniors.

A large portion of the text consists of problem sets placed at the end of each
chapter. The exercises range from easy substitution drills to fairly involved but, I
hope, interesting computations, as well as more theoretical or conceptual problems.
More than once the text makes use of results obtained in the exercises.

Because of its transitional nature between calculus and analysis, a text of this
kind has to walk a thin line between mathematical informality and rigour. I have
tended to err on the side of caution by providing fairly detailed definitions and
proofs. In class, depending on the aptitudes and preferences of the audience and
also on the available time, one can skip over many of the details without too much
loss of continuity. At any rate, most of the exercises do not require a great deal of
formal logical skill and throughout I have tried to minimize the use of point-set
topology.

These notes, occasionally revised and updated, are available at
http://www.math.cornell.edu/~sjamaar/manifolds/.

Corrections, suggestions and comments sent to sjamaar@math.cornell.eduwill be
received gratefully.

Ithaca, New York, December 2017

v

http://www.math.cornell.edu/~sjamaar/manifolds/
mailto:sjamaar@math.cornell.edu




CHAPTER 1

Introduction

We start with an informal, intuitive introduction to manifolds and how they
arise in mathematical nature. Most of this material will be examined more thor-
oughly in later chapters.

1.1. Manifolds

Recall that Euclidean n-space Rn is the set of all column vectors with n real
entries

x �

*....
,

x1

x2

...
xn

+////
-
,

which we shall call points or n-vectors and denote by lower case boldface letters. In
R2 or R3 we often write

x �

(

x
y

)

, resp. x �

*.
,

x
y
z

+/
-
.

For reasons having to do with matrix multiplication, column vectors are not to be
confused with row vectors (x1 x2 · · · xn ). Nevertheless, to save space we shall
frequently write a column vector x as an n-tuple

x � (x1 , x2 , . . . , xn )

with the entries separated by commas.
A manifold is a certain type of subset of Rn . A precise definition will follow

in Chapter 6, but one important consequence of the definition is that at each of its
points a manifold has a well-defined tangent space, which is a linear subspace of
Rn . This fact enables us to apply the methods of calculus and linear algebra to the
study of manifolds. The dimension of a manifold is by definition the dimension of
any of its tangent spaces. The dimension of a manifold in Rn can be no higher than
n.

Dimension 1. A one-dimensional manifold is, loosely speaking, a curve with-
out kinks or self-intersections. Instead of the tangent “space” at a point one usually
speaks of the tangent line. A curve in R2 is called a plane curve and a curve in R3

is a space curve, but you can have curves in any Rn . Curves can be closed (as
in the first picture below), unbounded (as indicated by the arrows in the second
picture), or have one or two endpoints (the third picture shows a curve with an
endpoint, indicated by a black dot; the white dot at the other end indicates that

1



2 1. INTRODUCTION

that point does not belong to the curve; the curve “peters out” without coming to
an endpoint). Endpoints are also called boundary points.

A circle with one point deleted is also an example of a manifold. Think of a torn
elastic band.

By straightening out the elastic band we see that this manifold is really the same
as an open interval.

The four plane curves below are not manifolds. The teardrop has a kink, where two
distinct tangent lines occur instead of a single well-defined tangent line; the five-
fold loop has five points of self-intersection, at each of which there are two distinct
tangent lines. The bow tie and the five-pointed star have well-defined tangent lines
everywhere. Still they are not manifolds: the bow tie has a self-intersection and the
cusps of the star have a jagged appearance which is proscribed by the definition of
a manifold (which we have not yet given). The points where these curves fail to be
manifolds are called singularities. The “good” points are called smooth.

Singularities can sometimes be “resolved”. For instance, the self-intersections of
the Archimedean spiral, which is given in polar coordinates by r is a constant times
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θ, where r is allowed to be negative,

can be removed by uncoiling the spiral and wrapping it around a cone. You can
convince yourself that the resulting space curve has no singularities by peeking at
it along the direction of the x-axis or the y-axis. What you will see are the smooth
curves shown in the (y , z)-plane and the (x , z)-plane.

e1

e2

e3

Singularities are very interesting, but in this course we shall focus on gaining a
thorough understanding of the smooth points.

Dimension 2. A two-dimensional manifold is a smooth surface without self-
intersections. It may have a boundary,which is always a one-dimensional manifold.
You can have two-dimensional manifolds in the plane R2, but they are relatively
boring. Examples are: an arbitrary open subset of R2, such as an open square, or
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a closed subset with a smooth boundary.

A closed square is not a manifold, because the corners are not smooth.1

Two-dimensional manifolds in three-dimensional space include a sphere (the sur-
face of a ball), a paraboloid and a torus (the surface of a doughnut).

e1

e2

e3

The famous Möbius band is made by pasting together the two ends of a rectangular
strip of paper giving one end a half twist. The boundary of the band consists of
two boundary edges of the rectangle tied together and is therefore a single closed

1To be strictly accurate, the closed square is a topological manifold with boundary, but not a smooth

manifold with boundary. In these notes we will consider only smooth manifolds.
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curve.

Out of the Möbius band we can create a manifold without boundary by closing it
up along the boundary edge. This can be done in two different ways. According
to the direction in which we glue the edge to itself, we obtain the Klein bottle or the
projective plane. A simple way to represent these three surfaces is by the following
gluing diagrams. The labels tell you which edges to glue together and the arrows
tell you in which direction.

a a

Möbius band

a a

b

b

Klein bottle

a a

b

b

projective plane

One way to make a model of a Klein bottle is first to paste the top and bottom
edges of the square together, which gives a tube, and then to join the resulting
boundary circles, making sure the arrows match up. You will notice this cannot be
done without passing one end through the wall of the tube. The resulting surface
intersects itself along a circle and therefore is not a manifold.

A different model of the Klein bottle can be made by folding over the edge of a
Möbius band until it touches the central circle. This creates a Möbius type band
with a figure eight cross-section. Equivalently, take a length of tube with a figure
eight cross-section and weld the ends together giving one end a half twist. Again
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the resulting surface has a self-intersection, namely the central circle of the original
Möbius band. The self-intersection locus as well as a few of the cross-sections are
shown in black in the following wire mesh model.

To represent the Klein bottle without self-intersections you need to embed it in
four-dimensional space. The projective plane has the same peculiarity, and it too
has self-intersecting models in three-dimensional space. Perhaps the easiest model
is constructed by merging the edges a and b shown in the gluing diagram for the
projective plane, which gives the following gluing diagram.

a a

a

a

First fold the lower right corner over to the upper left corner and seal the edges.
This creates a pouch like a cherry turnover with two seams labelled a which meet
at a corner. Now fuse the two seams to create a single seam labelled a. Below is a
wire mesh model of the resulting surface. It is obtained by welding together two
pieces along the dashed wires. The lower half shaped like a bowl corresponds to
the dashed circular disc in the middle of the square. The upper half corresponds
to the complement of the disc and is known as a cross-cap. The wire shown in
black corresponds to the edge a. The interior points of the black wire are ordinary
self-intersection points. Its two endpoints are qualitatively different singularities
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known as pinch points, where the surface is crinkled up.

e1

e2

e3

Cartesian products. The Cartesian product M ×N of two manifolds M and N
may fail to be a manifold. (If you don’t remember what a Cartesian product is, see
Appendix A.1 for a review of set theory.) For instance, if M � N � [0, 1], the unit
interval, then M×N is the unit square, which is not a manifold. However, if at least
one of the two manifolds M and N has no boundary, then M × N is a manifold.
The dimension of M × N is the sum of the dimensions of M and N . For instance,
if M is an interval and N a circle, then M × N is a cylinder wall. If both M and N
are circles, then M × N is a torus. We can also form Cartesian products of more
than two factors: the product of n copies of a circle with itself is an n-dimensional
manifold known as an n-torus.

Connected sums. Let M and N be 2-manifolds. The connected sum is a 2-
manifold M # N produced by punching a circular hole in each of the manifolds
M and N and then gluing the two boundary circles together. For instance, the
connected sum of two tori is a pretzel-type surface with two holes.

1.2. Equations

Very commonly a manifold M is given “implicitly”, namely as the solution set
of a system

φ1(x1 , . . . , xn) � c1 ,

φ2(x1 , . . . , xn) � c2 ,

...

φm (x1 , . . . , xn) � cm ,

of m equations in n unknowns. Here φ1, φ2 , . . . , φm are functions, c1, c2 , . . . , cm

are constants and x1, x2 , . . . , xn are variables. By introducing the useful shorthand

x �

*....
,

x1

x2

...
xn

+////
-
, φ(x) �

*....
,

φ1(x)

φ2(x)
...

φm (x)

+////
-
, c �

*....
,

c1

c2

...
cn

+////
-
,
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we can represent this system as a single equation

φ(x) � c.

The solution set M is the set of all vectors x in Rn which satisfy φ(x) � c and is
denoted by φ−1(c). (This notation is standard, but a bit unfortunate because it
suggests falsely that φ is invertible, which it is usually not.) Thus

M � φ−1(c) � { x ∈ Rn | φ(x) � c }.
It is in general difficult to find explicit solutions of a system of equations. (On the
positive side, it is usually easy to decide whether any given point is a solution by
plugging it into the equations.) Manifolds defined by linear equations (i.e. where
φ is a matrix) are called affine subspaces of Rn and are studied in linear algebra.
More interesting manifolds arise from nonlinear equations.

1.1. Example. The simplest case is that of a single equation (m � 1), such as

x2 + y2 − z2
� 0.

Here we have a single scalar-valued function of three variables φ(x , y , z) � x2 +

y2 − z2 and c � 0. The solution set M of the equation is a cone in R3, which is
not a manifold because it has no well-defined tangent plane at the origin. We can
determine the tangent plane at any other point of M by recalling from calculus
that the gradient of φ is perpendicular to the surface. Hence for any nonzero x �

(x , y , z) ∈ M the tangent plane to M at x is the plane perpendicular to grad(φ)(x) �

(2x , 2y ,−2z).

As we see from this example, the solution set of a system of equations may
have singularities and is therefore not necessarily a manifold. In general, if M is
given by a single equation φ(x) � c and x is a point of M with the property that
grad(φ)(x) , 0, then x is a smooth point of M and the tangent space at x is the
orthogonal complement of grad(φ)(x). (Conversely, if x is a singular point of M,
we must have grad(φ)(x) � 0!) The standard notation for the tangent space to M
at x is TxM. Thus we can write TxM � grad(φ)(x)⊥.

1.2. Example. The sphere of radius r about the origin in Rn is the set of all x in
Rn satisfying the single equation ‖x‖ � r. Here

‖x‖ �
√

x · x �

√

x2
1

+ x2
2

+ · · · + x2
n

is the norm or length of x and

x · y � xTy � x1 y1 + x2 y2 + · · · + xn yn

is the inner product or dot product of x and y. The sphere of radius r is an n − 1-
dimensional manifold in Rn . The sphere of radius 1 is called the unit sphere and
is denoted by Sn−1. In particular, the one-dimensional unit “sphere” S1 is the unit
circle in the plane, and the zero-dimensional unit “sphere” S0 is the subset {−1, 1}
of the real line. To determine the tangent spaces of the unit sphere it is easier
to work with the equation ‖x‖2 � 1 instead of ‖x‖ � 1. In other words, we let
φ(x) � ‖x‖2. Then grad(φ)(x) � 2x, which is nonzero for all x in the unit sphere.
Therefore Sn−1 is a manifold and for any x in Sn−1 we have

TxSn−1
� (2x)⊥ � x⊥ � { y ∈ Rn | y · x � 0 },
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a linear subspace of Rn . (In Exercise 1.7 you will be asked to find a basis of the
tangent space for a particular x and you will see that TxSn−1 is n − 1-dimensional.)

1.3. Example. Consider the system of two equations in three unknowns,

x2 + y2
� 1,

y + z � 0.

Here

φ(x) �

(

x2 + y2

y + z

)

and c �

(

1
0

)

.

The solution set of this system is the intersection of a cylinder of radius 1 about
the z-axis (given by the first equation) and a plane cutting the x-axis at a 45◦ angle
(given by the second equation). Hence the solution set is an ellipse. It is a manifold
of dimension 1. We will discuss in Chapter 6 how to find the tangent spaces to
manifolds given by more than one equation.

Inequalities. Manifolds with boundary are often presented as solution sets
of a system of equations together with one or more inequalities. For instance, the
closed ball of radius r about the origin in Rn is given by the single inequality ‖x‖ ≤ r.
Its boundary is the sphere of radius r.

1.3. Parametrizations

A dual method for describing manifolds is the “explicit” way, namely by par-
ametrizations. For instance,

x � cos θ, y � sin θ

parametrizes the unit circle in R2 and

x � cos θ cosφ, y � sin θ cosφ, z � sin φ

parametrizes the unit sphere in R3. (Here φ is the angle between a vector and
the (x , y)-plane and θ is the polar angle in the (x , y)-plane.) The explicit method
has various merits and demerits, which are complementary to those of the im-
plicit method. One obvious advantage is that it is easy to find points lying on a
parametrized manifold simply by plugging in values for the parameters. A disad-
vantage is that it can be hard to decide if any given point is on the manifold or not,
because this involves solving for the parameters. Parametrizations are often harder
to come by than a system of equations, but are at times more useful, for example
when one wants to integrate over the manifold. Also, it is usually impossible to
parametrize a manifold in such a way that every point is covered exactly once.
Such is the case for the two-sphere. One commonly restricts the polar coordinates
(θ, φ) to the rectangle [0, 2π] × [−π/2, π/2] to avoid counting points twice. Only
the meridian θ � 0 is then hit twice, but this does not matter for many purposes,
such as computing the surface area or integrating a continuous function.

We will use parametrizations to give a formal definition of the notion of a
manifold in Chapter 6. Note however that not every parametrization describes a
manifold.
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1.4. Example. Define c(t) � (t2 , t3) for t ∈ R. As t runs through the real line,
the point c(t) travels along a curve in the plane, which we call a path or parametrized
curve.

The path c has no self-intersections: if t1 , t2 then c(t1) , c(t2). The cusp at the
origin (t � 0) is a singular point, but all other points (t , 0) are smooth. The tangent
line at a smooth point c(t) is the line spanned by the velocity vector c′(t) � (2t , 3t2).
The slope of the tangent line is 3t2/2t � 3

2 t. For t � 0 the velocity vector is c′(0) � 0,
which does not span a line. Nevertheless, the curve has a well-defined (horizontal)
tangent line at the origin, which we can think of as the limit of the tangent lines as
t tends to 0.

More examples of parametrizations are given in Exercises 1.1–1.3.

1.4. Configuration spaces

Frequently manifolds arise in more abstract ways that may be hard to capture
in terms of equations or parametrizations. Examples are solution curves of differ-
ential equations (see e.g. Exercise 1.11) and configuration spaces. The configuration
or state of a mechanical system (such as a pendulum, a spinning top, the solar
system, a fluid, or a gas etc.) is a complete specification of the position of each of its
parts. (The configuration ignores any motions that the system may be undergoing.
So a configuration is like a snapshot or a movie still. When the system moves, its
configuration changes.) The configuration space or state space of the system is an ab-
stract space, the points of which are in one-to-one correspondence to all physically
possible configurations of the system. Very often the configuration space turns
out to be a manifold. Its dimension is called the number of degrees of freedom of the
system.

1.5. Example. A spherical pendulum is a weight or bob attached to a fixed centre
by a rigid rod, free to swing in any direction in three-space.

The state of the pendulum is entirely determined by the position of the bob. The
bob can move from any point at a fixed distance (equal to the length of the rod) from
the centre to any other. The configuration space is therefore a two-dimensional
sphere, and the spherical pendulum has two degrees of freedom.

The configuration space of even a fairly small system can be quite complicated.
Even if the system is situated in three-dimensional space, it may have many more
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than three degrees of freedom. This is why higher-dimensional manifolds are
common in physics and applied mathematics.

1.6. Example. Take a spherical pendulum of length r and attach a second one
of length s to the moving end of the first by a universal joint. The resulting system
is a double spherical pendulum. The state of this system can be specified by a pair of
vectors (x, y), x being the vector pointing from the centre to the first weight and y
the vector pointing from the first to the second weight.

x

y

The vector x is constrained to a sphere of radius r about the centre and y to a sphere
of radius s about the head of x. Aside from this limitation, every pair of vectors
can occur (if we suppose the second rod is allowed to swing completely freely and
move “through” the first rod) and describes a distinct configuration. Thus there are
four degrees of freedom. The configuration space is a four-dimensional manifold,
namely the Cartesian product of two two-dimensional spheres.

1.7. Example. What is the number of degrees of freedom of a rigid body moving
in R3? Select any triple of points A, B, C in the solid that do not lie on one line.

A A

B

A

B

C

The point A can move about freely and is determined by three coordinates, and so
it has three degrees of freedom. But the position of A alone does not determine
the position of the whole solid. If A is kept fixed, the point B can perform two
independent swivelling motions. In other words, it moves on a sphere centred at
A, which gives two more degrees of freedom. If A and B are both kept fixed, the
point C can rotate about the axis AB, which gives one further degree of freedom.
The positions of A, B and C determine the position of the solid uniquely, so the
total number of degrees of freedom is 3 + 2 + 1 � 6. Thus the configuration space
of a rigid body is a six-dimensional manifold. Let us call this manifold M and try
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to say something about its shape. Choose an arbitrary reference point in space.
Inside the manifold M we have a subset M0 consisting of all configurations which
have the point A placed at the reference point. Configurations in M0 have three
fewer degrees of freedom, because only the points B and C can move, so M0 is a
three-dimensional manifold. Every configuration in M can be moved to a unique
configuration in M0 by a unique parallel translation of the solid which moves A
to the reference point. In other words, the points of M can be viewed as pairs
consisting of a point in M0 and a vector in R3: the manifold M is the Cartesian
product M0 × R3. See Exercise 8.6 for more information on M0.

1.8. Example (the space of quadrilaterals). Consider all quadrilaterals ABCD
in the plane with fixed sidelengths a, b, c, d.

A B

C

D

a

b

c

d

(Think of four rigid rods attached by hinges.) What are all the possibilities? For
simplicity let us disregard translations by keeping the first edge AB fixed in one
place. Edges are allowed to cross each other, so the short edge BC can spin full
circle about the point B. During this motion the point D moves back and forth on
a circle of radius d centred at A. A few possible positions are shown here.

As C moves all the way around, the point D reaches its greatest left- or rightward
displacement when the edges BC and CD are collinear. Arrangements such as
this are used in engines for converting a circular motion to a pumping motion, or
vice versa. The position of the “crank” C wholly determines that of the “rocker”
D. This means that the configurations are in one-to-one correspondence with the
points on the circle of radius b about the point B, i.e. the configuration space is a
circle.

Actually, this is not completely accurate: for every choice of C, there are two
choices D and D′ for the fourth point! They are interchanged by reflection in the
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diagonal AC.

A B

C

D

D′

So there is in fact another circle’s worth of possible configurations. It is not possible
to move continuously from the first set of configurations to the second; in fact they
are each other’s mirror images. Thus the configuration space is a disjoint union of
two circles.

This is an example of a disconnected manifold consisting of two connected components.

1.9. Example (quadrilaterals, continued). Even this is not the full story: it is
possible to move from one circle to the other when b + c � a + d (and also when
a + b � c + d).

A B

C

D

a

b

c

d

In this case, when BC points straight to the left, the quadrilateral collapses to a line
segment:
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and when C moves further down, there are two possible directions for D to go,
back up:

or further down:

This means that when b + c � a + d the two components of the configuration space
are merged at a point.

The juncture represents the collapsed quadrilateral. This configuration space is not
a manifold, but most configuration spaces occurring in nature are (and an engineer
designing an engine wouldn’t want to use this quadrilateral to make a piston drive
a flywheel). More singularities appear in the case of a parallelogram (a � c and
b � d) and in the equilateral case (a � b � c � d).

Exercises

Computer software can be helpful with some of the exercises in these notes. Useful
free software packages include Microsoft Mathematics for Windows or Grapher for Mac
OS. Packages such as Mathematica or MATHLAB are more powerful, but are not free.

1.1. The formulas x � t − sin t, y � 1 − cos t (t ∈ R) parametrize a plane curve. Graph
this curve. You may use software and turn in computer output. Also include a few tangent
lines at judiciously chosen points. (E.g. find all tangent lines with slope 0, ±1, and ∞.)
To compute tangent lines, recall that the tangent vector at a point (x, y) of the curve has
components dx/dt and dy/dt. In your plot, identify all points where the curve is not a
manifold.

1.2. Same questions as in Exercise 1.1 for the parametrized curve x � 3t/(1 + t3),

y � 3t2/(1 + t3), where 0 < t < ∞.

1.3. Parametrize in Cartesian coordinates the space curve wrapped around the cone
shown in Section 1.1.

1.4. Draw gluing diagrams of the following surfaces.
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(i) A sphere.
(ii) A torus with a hole punched in it.

(iii) The connected sum of two tori.

1.5. Sketch the surfaces defined by the following gluing diagrams. One of these surfaces

cannot be embedded in R3, so use a self-intersection where necessary.

a

a

b b

a

b

a

b
d

c

d

a1

b1

a2

b2a1

b1

a2

b2
a1

b1

a2

b2a1

b1

a2

b2

(There are at least two possible strategies. The first is to proceed in stages by gluing the
a’s, then the b’s, etc., and trying to identify what you get at each step. The second is to
decompose each diagram into a connected sum of simpler diagrams.)

1.6. Graph the surface in R3 defined by xn
� y2z for the values of n listed below.

Determine all the points where the surface does not have a well-defined tangent plane.
(You may use computer output. If you want to do it by hand, one useful preliminary step
is to determine the intersection of each surface with a general plane parallel to one of the
coordinate planes. To investigate the tangent planes, write the equation of the surface as

φ(x, y , z) � 0, where φ(x, y , z) � xn − y2z, and then find the gradient of φ.)

(i) n � 0.
(ii) n � 1.

(iii) n � 2.
(iv) n � 3.

1.7. Let M be the sphere of radius
√

n about the origin in Rn and let x be the point
(1, 1, . . . , 1) on M. Find a basis of the tangent space to M at x. (Use that TxM is the set of
all y such that y · x � 0. View this equation as a homogeneous linear equation in the entries
y1, y2 , . . . , yn of y and find the general solution by means of linear algebra.)

1.8. What is the number of degrees of freedom of a bicycle? (Imagine that it moves
freely through empty space and is not constrained to the surface of the earth.)

1.9. Choose two distinct positive real numbers a and b. What is the configuration space
of all quadrilaterals ABCD such that AB and CD have length a and BC and AD have length
b? (These quadrilaterals include all parallelograms with sides a and b.) What happens if
a � b? (As in Examples 1.8 and 1.9 assume that the edge AB is kept fixed in place so as to
rule out translations.)

1.10. What is the configuration space of all pentagons ABCDE in the plane with fixed
sidelengths a, b, c, d, e? (As in the case of quadrilaterals, for certain choices of sidelengths
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singularities may occur. You may ignore these cases. To reduce the number of degrees of
freedom you may also assume the edge AB to be fixed in place.)

A B

C

D

E

a

b

c

d

e

1.11. The Lotka-Volterra system is an early (ca. 1925) predator-prey model. It is the pair
of differential equations

dx

dt
� −rx + sxy ,

dy

dt
� py − qxy ,

where x(t) represents the number of prey and y(t) the number of predators at time t, while
p, q, r, s are positive constants. In this problem we will consider the solution curves (also
called trajectories) (x(t), y(t)) of this system that are contained in the positive quadrant
(x > 0, y > 0) and derive an implicit equation satisfied by these solution curves. (The
Lotka-Volterra system is exceptional in this regard. Usually it is impossible to write down
an equation for the solution curves of a differential equation.)

(i) Show that the solutions of the system satisfy a single differential equation of the
form dy/dx � f (x)g(y), where f (x) is a function that depends only on x and
g(y) a function that depends only on y.

(ii) Solve the differential equation of part (i) by separating the variables, i.e. by writing
1

g(y)
dy � f (x) dx and integrating both sides. (Don’t forget the integration

constant.)
(iii) Set p � q � r � s � 1 and plot a number of solution curves. Indicate the direction

in which the solutions move. You may use computer software. An online phase
portrait generator can be found at

http://www.onlinesciencetools.com/tools/phaseportrait .

http://www.onlinesciencetools.com/tools/phaseportrait


CHAPTER 2

Differential forms on Euclidean space

The notion of a differential form encompasses such ideas as elements of surface
area, volume elements, the work exerted by a force, the flow of a fluid, and the
curvature of a surface, space or hyperspace. An important operation on differen-
tial forms is exterior differentiation, which generalizes the operators div, grad and
curl of vector calculus. The study of differential forms, which was initiated by É.
Cartan in the years around 1900, is often termed the exterior differential calculus.
A mathematically rigorous study of differential forms requires the machinery of
multilinear algebra, which is examined in Chapter 7. Fortunately, it is entirely pos-
sible to acquire a solid working knowledge of differential forms without entering
into this formalism. That is the objective of this chapter.

2.1. Elementary properties

A differential form of degree k or a k-form on Rn is an expression

α �

∑

I

fI dxI .

(If you don’t know the symbol α, look up and memorize the Greek alphabet,
Appendix C.) Here I stands for a multi-index (i1 , i2 , . . . , ik ) of degree k, that is a
“vector” consisting of k integer entries ranging between 1 and n. The fI are smooth
functions on Rn called the coefficients of α, and dxI is an abbreviation for

dxi1 dxi2 · · · dxik .

(Instead of dxi1 dxi2 · · · dxik the notation dxi1 ∧ dxi2 ∧ · · · ∧ dxik is used by some
authors to distinguish this kind of product from another kind, called the tensor
product.)

For instance the expressions

α � sin(x1 + ex4 ) dx1 dx5 + x2x2
5 dx2 dx3 + 6 dx2 dx4 + cos x2 dx5 dx3,

β � x1x3x5 dx1 dx6 dx3 dx2 ,

represent a 2-form on R5, resp. a 4-form on R6. The form α consists of four terms,
corresponding to the multi-indices (1, 5), (2, 3), (2, 4) and (5, 3), whereas β consists
of one term, corresponding to the multi-index (1, 6, 3, 2).

Note, however, that α could equally well be regarded as a 2-form on R6 that
does not involve the variable x6. To avoid such ambiguities it is good practice to
state explicitly the domain of definition when writing a differential form.

Another reason for being precise about the domain of a form is that the coef-
ficients fI may not be defined on all of Rn , but only on an open subset U of Rn .
In such a case we say α is a k-form on U . Thus the expression ln(x2 + y2)z dz is

17
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not a 1-form on R3, but on the open set U � R3 \ { (x , y , z) | x2 + y2 , 0 }, i.e. the
complement of the z-axis.

You can think of dxi as an infinitesimal increment in the variable xi and of dxI

as the volume of an infinitesimal k-dimensional rectangular block with sides dxi1 ,
dxi2 , . . . , dxik . (A precise definition will follow in Section 7.2.) By volume we here
mean oriented volume, which takes into account the order of the variables. Thus, if
we interchange two variables, the sign changes:

dxi1 dxi2 · · · dxiq · · · dxip · · · dxik � −dxi1 dxi2 · · · dxip · · · dxiq · · · dxik , (2.1)

and so forth. This is called anticommutativity, or graded commutativity, or the alter-
nating property. In particular, this rule implies dxi dxi � −dxi dxi , so dxi dxi � 0 for
all i.

Let us consider k-forms for some special values of k.
A 0-form on Rn is simply a smooth function (no dx’s).
A general 1-form looks like

f1 dx1 + f2 dx2 + · · · + fn dxn .

A general 2-form has the shape
∑

i , j

fi , j dxi dx j � f1,1 dx1 dx1 + f1,2 dx1 dx2 + · · · + f1,n dx1 dxn

+ f2,1 dx2 dx1 + f2,2 dx2 dx2 + · · · + f2,n dx2 dxn + · · ·
+ fn ,1 dxn dx1 + fn ,2 dxn dx2 + · · · + fn ,n dxn dxn .

Because of the alternating property (2.1) the terms fi ,i dxi dxi vanish, and a pair of
terms such as f1,2 dx1 dx2 and f2,1 dx2 dx1 can be grouped together: f1,2 dx1 dx2 +
f2,1 dx2 dx1 � ( f1,2 − f2,1) dx1 dx2. So we can write any 2-form as

∑

1≤i< j≤n

gi , j dxi dx j � g1,2 dx1 dx2 + · · · + g1,n dx1 dxn

+ g2,3 dx2 dx3 + · · · + g2,n dx2 dxn + · · · + gn−1,n dxn−1 dxn .

Written like this, a 2-form has at most

n − 1 + n − 2 + · · · + 2 + 1 �

1

2
n(n − 1)

components.
Likewise, a general n − 1-form can be written as a sum of n components,

f1 dx2 dx3 · · · dxn + f2 dx1 dx3 · · · dxn + · · · + fn dx1 dx2 · · · dxn−1

�

n∑

i�1

fi dx1 dx2 · · · d̂x i · · · dxn ,

where d̂x i means “omit the factor dxi”.
Every n-form on Rn can be written as f dx1 dx2 · · · dxn . The special n-form

dx1 dx2 · · · dxn is also known as the volume form.
Forms of degree k > n on Rn are always 0, because at least one variable has to

repeat in any expression dxi1 · · · dxik . By convention, forms of negative degree are
0.
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In general a form of degree k can be expressed as a sum

α �

∑

I

fI dxI ,

where the I are increasing multi-indices, 1 ≤ i1 < i2 < · · · < ik ≤ n. We shall almost
always represent forms in this manner. The maximum number of terms occurring
in α is then the number of increasing multi-indices of degree k. An increasing
multi-index of degree k amounts to a choice of k numbers among the numbers
1, 2, . . . , n. The total number of increasing multi-indices of degree k is therefore
equal to the binomial coefficient “n choose k”,

(

n
k

)

�

n!

k!(n − k)!
.

(Compare this to the number of all multi-indices of degree k, which is nk .) Two
k-forms α �

∑

I fI dxI and β �

∑

I gI dxI (with I ranging over the increasing multi-
indices of degree k) are considered equal if and only if fI � gI for all I. The
collection of all k-forms on an open set U is denoted by Ωk (U). Since k-forms can
be added together and multiplied by scalars, the collection Ωk (U) constitutes a
vector space.

A form is constant if the coefficients fI are constant functions. The set of constant
k-forms is a linear subspace ofΩk (U) of dimension

(n
k

)

. A basis of this subspace is
given by the forms dxI , where I ranges over all increasing multi-indices of degree
k. (The spaceΩk (U) itself is infinite-dimensional.)

The (exterior) product of a k-form α �

∑

I fI dxI and an l-form β �

∑

J g J dx J is
defined to be the k + l-form

αβ �

∑

I ,J

fI g J dxI dx J .

Usually many terms in a product cancel out or can be combined. For instance,

(y dx + x dy)(x dx dz + y dy dz) � y2 dx dy dz + x2 dy dx dz � (y2 − x2) dx dy dz.

As an extreme example of such a cancellation, consider an arbitrary form α of
degree k. Its p-th power αp is of degree kp, which is greater than n if k > 0 and
p > n. Therefore

αn+1
� 0

for any form α on Rn of positive degree.
The alternating property combines with the multiplication rule to give the

following result.

2.1. Proposition (graded commutativity).

βα � (−1)klαβ

for all k-forms α and all l-forms β.
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Proof. Let I � (i1 , i2 , . . . , ik ) and J � ( j1 , j2 , . . . , jl ). Successively applying the
alternating property we get

dxI dx J � dxi1 dxi2 · · · dxik dx j1 dx j2 dx j3 · · · dx jl

� (−1)k dx j1 dxi1 dxi2 · · · dxik dx j2 dx j3 · · · dx jl

� (−1)2k dx j1 dx j2 dxi1 dxi2 · · · dxik dx j3 · · · dx jl

...

� (−1)kl dx J dxI .

For general forms α �

∑

I fI dxI and β �

∑

J g J dx J we get from this

βα �

∑

I ,J

g J fI dx J dxI � (−1)kl
∑

I ,J

fI g J dxI dx J � (−1)klαβ,

which establishes the result. QED

A noteworthy special case is α � β. Then we get α2
� (−1)k2

α2
� (−1)kα2. This

equality is vacuous if k is even, but tells us that α2
� 0 if k is odd.

2.2. Corollary. α2
� 0 if α is a form of odd degree.

2.2. The exterior derivative

If f is a 0-form, that is a smooth function, we define d f to be the 1-form

d f �

n∑

i�1

∂ f

∂xi
dxi .

Then we have the product or Leibniz rule:

d( f g) � f dg + g d f .

If α �

∑

I fI dxI is a k-form, each of the coefficients fI is a smooth function and we
define dα to be the k + 1-form

dα �

∑

I

d fI dxI .

The operation d is called exterior differentiation. An operator of this sort is called a
first-order partial differential operator, because it involves the first partial deriva-
tives of the coefficients of a form.
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2.3. Example. If α �

∑n
i�1 fi dxi is a 1-form on Rn , then

dα �

n∑

i�1

d fi dxi �

n∑

i , j�1

∂ fi

∂x j
dx j dxi

�

∑

1≤i< j≤n

∂ fi

∂x j
dx j dxi +

∑

1≤ j<i≤n

∂ fi

∂x j
dx j dxi

� −
∑

1≤i< j≤n

∂ fi

∂x j
dxi dx j +

∑

1≤i< j≤n

∂ f j

∂xi
dxi dx j (2.2)

�

∑

1≤i< j≤n

( ∂ f j

∂xi
−
∂ fi

∂x j

)

dxi dx j ,

where in line (2.2) in the first sum we used the alternating property and in the
second sum we interchanged the roles of i and j.

2.4. Example. If α �

∑

1≤i< j≤n fi , j dxi dx j is a 2-form on Rn , then

dα �

∑

1≤i< j≤n

d fi , j dxi dx j �

∑

1≤i< j≤n

n∑

k�1

∂ fi , j

∂xk
dxk dxi dx j

�

∑

1≤k<i< j≤n

∂ fi , j

∂xk
dxk dxi dx j +

∑

1≤i<k< j≤n

∂ fi , j

∂xk
dxk dxi dx j

+
∑

1≤i< j<k≤n

∂ fi , j

∂xk
dxk dxi dx j

�

∑

1≤i< j<k≤n

∂ f j,k

∂xi
dxi dx j dxk +

∑

1≤i< j<k≤n

∂ fi ,k

∂x j
dx j dxi dxk

+
∑

1≤i< j<k≤n

∂ fi , j

∂xk
dxk dxi dx j (2.3)

�

∑

1≤i< j<k≤n

( ∂ fi , j

∂xk
−
∂ fi ,k

∂x j
+
∂ f j,k

∂xi

)

dxi dx j dxk . (2.4)

Here in line (2.3) we rearranged the subscripts (for instance, in the first term we
relabelled k −→ i, i −→ j and j −→ k) and in line (2.4) we applied the alternating
property.

An obvious but quite useful remark is that if α is an n-form on Rn , then dα is
of degree n + 1 and so dα � 0.

The operator d is linear and satisfies a generalized Leibniz rule.

2.5. Proposition. (i) d(aα + bβ) � a dα + b dβ for all k-forms α and β and
all scalars a and b.

(ii) d(αβ) � (dα)β + (−1)kα dβ for all k-forms α and l-forms β.

Proof. The linearity property (i) follows from the linearity of partial differen-
tiation:

∂(a f + bg)

∂xi
� a

∂ f

∂xi
+ b

∂g

∂xi
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for all smooth functions f , g and constants a, b.
Now let α �

∑

I fI dxI and β �

∑

J g J dx J . The Leibniz rule for functions and
Proposition 2.1 give

d(αβ) �

∑

I ,J

d( fI g J ) dxI dx J �

∑

I ,J

( fI dg J + g J d fI ) dxI dx J

�

∑

I ,J

(

d fI dxI (g J dx J ) + (−1)k fI dxI (dg J dx J )
)

� (dα)β + (−1)kα dβ,

which proves part (ii). QED

Here is one of the most curious properties of the exterior derivative.

2.6. Proposition. d(dα) � 0 for any form α. In short,

d2
� 0.

Proof. Let α �

∑

I fI dxI . Then

d(dα) � d
(∑

I

n∑

i�1

∂ fI

∂xi
dxi dxI

)

�

∑

I

n∑

i�1

d
( ∂ fI

∂xi

)

dxi dxI .

Applying the formula of Example 2.3 (replacing fi with ∂ fI/∂xi) we find
n∑

i�1

d
( ∂ fI

∂xi

)

dxi �

∑

1≤i< j≤n

( ∂2 fI

∂xi∂x j
−

∂2 fI

∂x j∂xi

)

dxi dx j � 0,

because for any smooth (indeed, C2) function f the mixed partials ∂2 f /∂xi∂x j and
∂2 f /∂x j∂xi are equal. Hence d(dα) � 0. QED

2.3. Closed and exact forms

A form α is closed if dα � 0. It is exact if α � dβ for some form β (of degree one
less).

2.7. Proposition. Every exact form is closed.

Proof. If α � dβ then dα � d(dβ) � 0 by Proposition 2.6. QED

2.8. Example. −y dx + x dy is not closed and therefore cannot be exact. On the
other hand y dx + x dy is closed. It is also exact, because d(x y) � y dx + x dy. For a
0-form (function) f on Rn to be closed all its partial derivatives must vanish, which
means it is constant. A nonzero constant function is not exact, because forms of
degree −1 are 0.

Is every closed form of positive degree exact? This question has interesting
ramifications, which we shall explore in Chapters 4, 5 and 10. Amazingly, the
answer depends strongly on the topology, that is the qualitative “shape”, of the
domain of definition of the form.

Let us consider the simplest case of a 1-form α �

∑n
i�1 fi dxi . Determining

whether α is exact means solving the equation dg � α for the function g. This
amounts to

∂g

∂x1
� f1 ,

∂g

∂x2
� f2 , . . . ,

∂g

∂xn
� fn , (2.5)
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a system of first-order partial differential equations. Finding a solution is sometimes
called integrating the system. By Proposition 2.7 this is not possible unless α is
closed. By the formula in Example 2.3 α is closed if and only if

∂ fi

∂x j
�

∂ f j

∂xi

for all 1 ≤ i < j ≤ n. These identities must be satisfied for the system (2.5) to be
solvable and are therefore called the integrability conditions for the system.

2.9. Example. Let α � y dx + (z cos yz + x) dy + y cos yz dz. Then

dα � dy dx +
(

z(−y sin yz) + cos yz
)

dz dy + dx dy

+
(

y(−z sin yz) + cos yz
)

dy dz � 0,

so α is closed. Is α exact? Let us solve the equations

∂g

∂x
� y ,

∂g

∂y
� z cos yz + x ,

∂g

∂z
� y cos yz

by successive integration. The first equation gives g � yx + c(y , z), where c is
a function of y and z only. Substituting into the second equation gives ∂c/∂y �

z cos yz, so c � sin yz + k(z). Substituting into the third equation gives k′ � 0, so k
is a constant. So g � x y + sin yz is a solution and therefore α is exact.

This method works always for a 1-form defined on all of Rn . (See Exercise 2.8.)
Hence every closed 1-form on Rn is exact.

2.10. Example. The 1-form on the punctured plane R2 \ {0} defined by

α0 � −
y

x2 + y2
dx +

x

x2 + y2
dy �

−y dx + x dy

x2 + y2
.

is called the angle form for reasons that will become clear in Section 4.3. From

∂

∂x

x

x2 + y2
�

y2 − x2

(x2 + y2)2
,

∂

∂y

y

x2 + y2
�

x2 − y2

(x2 + y2)2

it follows that the angle form is closed. This example is continued in Examples 3.8,
4.1 and 4.6, where we shall see that this form is not exact.

For a 2-form α �

∑

1≤i< j≤n fi , j dxi dx j and a 1-form β �

∑n
i�1 gi dxi the equation

dβ � α amounts to the system

∂g j

∂xi
−
∂gi

∂x j
� fi , j . (2.6)

By the formula in Example 2.4 the integrability condition dα � 0 comes down to

∂ fi , j

∂xk
−
∂ fi ,k

∂x j
+
∂ f j,k

∂xi
� 0

for all 1 ≤ i < j < k ≤ n. We shall learn how to solve the system (2.6), and its
higher-degree analogues, in Example 10.18.
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2.4. The Hodge star operator

The binomial coefficient
(n

k

)

is the number of ways of selecting k (unordered)
objects from a collection of n objects. Equivalently,

(n
k

)

is the number of ways of
partitioning a pile of n objects into a pile of k objects and a pile of n − k objects.
Thus we see that

(

n
k

)

�

(

n
n − k

)

.

This means that in a certain sense there are as many k-forms as n − k-forms. In
fact, there is a natural way to turn k-forms into n − k-forms. This is the Hodge star
operator. Hodge star of α is denoted by ∗α (or sometimes α∗) and is defined as
follows. If α �

∑

I fI dxI , then

∗α �

∑

I

fI (∗dxI ),

with
∗dxI � εI dxIc .

Here, for any increasing multi-index I, Ic denotes the complementary increasing
multi-index, which consists of all numbers between 1 and n that do not occur in I.
The factor εI is a sign,

εI �


1 if dxI dxIc � dx1 dx2 · · · dxn ,

−1 if dxI dxIc � −dx1 dx2 · · · dxn .

In other words, ∗dxI is the product of all the dx j ’s that do not occur in dxI , times a
factor ±1 which is chosen in such a way that dxI (∗dxI ) is the volume form:

dxI (∗dxI ) � dx1 dx2 · · · dxn .

2.11. Example. Let n � 6 and I � (2, 6). Then Ic
� (1, 3, 4, 5), so dxI � dx2 dx6

and dxIc � dx1 dx3 dx4 dx5. Therefore

dxI dxIc � dx2 dx6 dx1 dx3 dx4 dx5

� dx1 dx2 dx6 dx3 dx4 dx5 � −dx1 dx2 dx3 dx4 dx5 dx6,

which shows that εI � −1. Hence ∗(dx2 dx6) � −dx1 dx3 dx4 dx5.

2.12. Example. On R2 we have ∗dx � dy and ∗dy � −dx. On R3 we have

∗dx � dy dz, ∗(dx dy) � dz,

∗dy � −dx dz � dz dx , ∗(dx dz) � −dy ,

∗dz � dx dy , ∗(dy dz) � dx.

(This is the reason that 2-forms on R3 are sometimes written as f dx dy + g dz dx +
h dy dz, in contravention of our usual rule to write the variables in increasing order.
In higher dimensions it is better to stick to the rule.) On R4 we have

∗dx1 � dx2 dx3 dx4, ∗dx3 � dx1 dx2 dx4,

∗dx2 � −dx1 dx3 dx4 , ∗dx4 � −dx1 dx2 dx3 ,
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and

∗(dx1 dx2) � dx3 dx4 , ∗(dx2 dx3) � dx1 dx4 ,

∗(dx1 dx3) � −dx2 dx4 , ∗(dx2 dx4) � −dx1 dx3 ,

∗(dx1 dx4) � dx2 dx3 , ∗(dx3 dx4) � dx1 dx2.

On Rn we have ∗1 � dx1 dx2 · · · dxn , ∗(dx1 dx2 · · · dxn ) � 1, and

∗dxi � (−1)i+1dx1 dx2 · · · d̂x i · · · dxn for 1 ≤ i ≤ n,

∗(dxi dx j ) � (−1)i+ j+1 dx1 dx2 · · · d̂x i · · · d̂x j · · · dxn for 1 ≤ i < j ≤ n.

2.5. div, grad and curl

A vector field on an open subset U of Rn is a smooth map F : U → Rn . We can
write F in components as

F(x) �

*....
,

F1(x)

F2(x)
...

Fn (x)

+////
-
,

or alternatively as F �

∑n
i�1 Fiei , where e1, e2, . . . , en are the standard basis vectors

of Rn . Vector fields in the plane can be plotted by placing the vector F(x) with its
tail at the point x. The diagrams below represent the vector fields −ye1 + xe2 and
(−x +x y)e1 + (y−x y)e2 (which you may recognize from Exercise 1.11). The arrows
have been shortened so as not to clutter the pictures. The black dots are the zeroes
of the vector fields (i.e. points x where F(x) � 0).

x

y

x

y

We can turn F into a 1-form α by using the Fi as coefficients: α �

∑n
i�1 Fi dxi . For

instance, the 1-form α � −y dx +x dy corresponds to the vector field F � −ye1 +xe2.
Let us introduce the symbolic notation

dx �

*....
,

dx1

dx2

...
dxn

+////
-
,
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which we will think of as a vector-valued 1-form. Then we can write α � F · dx.
Clearly, F is determined by α and vice versa. Thus vector fields and 1-forms are
symbiotically associated to one another.

vector field F←→ 1-form α: α � F · dx.

Intuitively, the vector-valued 1-form dx represents an infinitesimal displacement.
If F represents a force field, such as gravity or electricity acting on a particle, then
α � F · dx represents the work done by the force when the particle is displaced by
an amount dx. (If the particle travels along a path, the total work done by the force
is found by integrating α along the path. We shall see how to do this in Section 4.1.)

The correspondence between vector fields and 1-forms behaves in an interest-
ing way with respect to exterior differentiation and the Hodge star operator. For
each function f the 1-form d f �

∑n
i�1(∂ f /∂xi) dxi is associated to the vector field

grad( f ) �

n∑

i�1

∂ f

∂xi
ei �

*.......
,

∂ f

∂x1
∂ f

∂x2

...
∂ f

∂xn

+///////
-

.

This vector field is called the gradient of f . (Equivalently, we can view grad( f ) as
the transpose of the Jacobi matrix of f .)

grad( f )←→ d f : d f � grad( f ) · dx.

Starting with a vector field F and letting α � F · dx, we find

∗α �

n∑

i�1

Fi (∗dxi ) �

n∑

i�1

Fi (−1)i+1 dx1 dx2 · · · d̂x i · · · dxn ,

Using the vector-valued n − 1-form

∗dx �

*....
,

∗dx1

∗dx2

...
∗dxn

+////
-
�

*....
,

dx2 dx3 · · · dxn

−dx1 dx3 · · · dxn

...
(−1)n+1dx1 dx2 · · · dxn−1

+////
-

we can also write ∗α � F·∗dx. Intuitively, the vector-valued n−1-form ∗dx represents
an infinitesimal n − 1-dimensional hypersurface perpendicular to dx. (This point
of view will be justified in Section 8.3, after the proof of Theorem 8.16.) In fluid
mechanics, the flow of a fluid or gas in Rn is represented by a vector field F. The
n − 1-form ∗α then represents the flux, that is the amount of material passing
through the hypersurface ∗dx per unit time. (The total amount of fluid passing
through a hypersurface S is found by integrating α over S. We shall see how to do
this in Section 5.1.) We have

d∗α � d(F · ∗dx) �

n∑

i�1

∂Fi

∂xi
(−1)i+1 dxi dx1 dx2 · · · d̂x i · · · dxn

�

n∑

i�1

∂Fi

∂xi
dx1 dx2 · · · dxi · · · dxn �

( n∑

i�1

∂Fi

∂xi

)

dx1 dx2 · · · dxn .
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The function div(F) �
∑n

i�1 ∂Fi/∂xi is the divergence of F. Thus if α � F · dx, then

d∗α � d(F · ∗dx) � div(F) dx1 dx2 · · · dxn .

An alternative way of writing this identity is obtained by applying ∗ to both sides,
which gives

div(F) � ∗d∗α.

A very different identity is found by first applying d and then ∗ to α:

dα �

n∑

i , j�1

∂Fi

∂x j
dx j dxi �

∑

1≤i< j≤n

( ∂F j

∂xi
− ∂Fi

∂x j

)

dxi dx j ,

and hence

∗dα �

∑

1≤i< j≤n

(−1)i+ j+1
( ∂F j

∂xi
− ∂Fi

∂x j

)

dx1 dx2 · · · d̂x i · · · d̂x j · · · dxn .

In three dimensions ∗dα is a 1-form and so is associated to a vector field, namely

curl(F) �

(
∂F3

∂x2
− ∂F2

∂x3

)

e1 −
(
∂F3

∂x1
− ∂F1

∂x3

)

e2 +
(
∂F2

∂x1
− ∂F1

∂x2

)

e3,

the curl of F. Thus, for n � 3, if α � F · dx, then

curl(F) · dx � ∗dα.

You need not memorize every detail of this discussion. The point is rather to
remember that exterior differentiation in combination with the Hodge star unifies
and extends to arbitrary dimensions the classical differential operators of vector
calculus.

Exercises

2.1. Consider the forms α � x dx − y dy, β � z dx dy + x dy dz and γ � z dy on R3.
Calculate

(i) αβ, αβγ;
(ii) dα, dβ, dγ.

2.2. Compute the exterior derivative of the following forms. Recall that a hat indicates
that a term has to be omitted.

(i) ex y+z2
dx.

(ii)
∑n

i�1
x2

i
dx1 · · · d̂x i · · · dxn .

2.3. Calculate d sin f (x)2 , where f : Rn → R is an arbitrary smooth function.

2.4. Define functions ξ and η by

ξ(x, y) �
x

√

x2 + y2
, η(x, y) �

y
√

x2 + y2
.

Show that α0 � −η dξ + ξ dη, where α0 denotes the angle form defined in Example 2.10.

2.5. Write the coordinates on R2n as (x1 , y1 , x2 , y2 , . . . , xn , yn ). Let

ω � dx1 dy1 + dx2 dy2 + · · · + dxn dyn �

n∑

i�1

dxi dyi .

Compute ωn
� ωω · · ·ω (n-fold product). (First work out the cases n � 1, 2, 3.)
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2.6. Write the coordinates on R2n+1 as (x1 , y1 , x2 , y2 , . . . , xn , yn , z). Let

α � dz + x1 dy1 + x2 dy2 + · · · + xn dyn � dz +

n∑

i�1

xi dyi .

Compute α(dα)n
� α(dα dα · · · dα). (Use the result of Exercise (2.5).)

2.7. Check that each of the following forms α ∈ Ω1(R3) is closed and find a function g
such that dg � α.

(i) α � (yex y − z sin(xz)) dx + (xex y + z2) dy + (−x sin(xz) + 2yz + 3z2) dz.

(ii) α � 2xy3z4 dx + (3x2 y2z4 − ze y sin(ze y )) dy + (4x2 y3z3 − e y sin(ze y ) + ez ) dz.

2.8. Let α �

∑n
i�1

fi dxi be a closed 1-form on Rn . Define a function g by

g(x) �

∫ x1

0
f1(t , x2 , x3 , . . . , xn ) dt +

∫ x2

0
f2(0, t , x3 , x4 , . . . , xn ) dt

+

∫ x3

0
f3 (0, 0, t , x4 , x5 , . . . , xn ) dt + · · · +

∫ xn

0
fn (0, 0, . . . , 0, t) dt.

Show that dg � α. (Apply the fundamental theorem of calculus, formula (B.3), differentiate
under the integral sign and don’t forget to use dα � 0. If you get confused, first do the case

n � 2, where g(x) �
∫ x1

0 f1(t , x2) dt +
∫ x2

0 f2(0, t) dt.)

2.9. Let α �

∑n
i�1

fi dxi be a closed 1-form whose coefficients fi are smooth functions

defined on Rn \ {0} that are all homogeneous of the same degree p , −1. Let

g(x) �
1

p + 1

n∑

i�1

xi fi (x).

Show that dg � α. (Use dα � 0 and apply the identity proved in Exercise B.6 to each fi .)

2.10. Let α and β be closed forms. Prove that αβ is also closed.

2.11. Let α be closed and β exact. Prove that αβ is exact.

2.12. Calculate ∗α, ∗β, ∗γ, ∗(αβ), where α, β and γ are as in Exercise 2.1.

2.13. Let α � x1 dx2 + x3 dx4, β � x1x2 dx3 dx4 + x3x4 dx1 dx2 and γ � x2 dx1 dx3 dx4

be forms on R4. Calculate

(i) αβ, αγ;
(ii) dβ, dγ;

(iii) ∗α, ∗γ.

2.14. Consider the form α � −x2
2

dx1 + x2
1

dx2 on R2.

(i) Find ∗α and ∗d∗dα (where ∗d∗dα is shorthand for ∗(d(∗(dα))).)
(ii) Repeat the calculation, regarding α as a form on R3.

(iii) Again repeat the calculation, now regarding α as a form on R4.

2.15. Prove that ∗∗α � (−1)kn+kα for every k-form α on Rn .

2.16. Recall that for any increasing multi-index I � (i1 , i2 , . . . , ik ) the number εI � ±1
is determined by the requirement that

dxI dxIc � εI dx1 dx2 . . . dxn .

Let us define |I | � i1 + i2 + · · · + ik . Show that εI � (−1)
|I |+

(
k+1
2

)

.
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2.17. Let α �

∑

I aI dxI and β �

∑

J b J dx J be constant k-forms on Rn , i.e. forms with
constant coefficients aI and b J . (We also assume, as usual, that the multi-indices I and J are
increasing.) The inner product of α and β is the number defined by

(α, β) �
∑

I

aI bI .

For instance, if α � 7 dx1 dx2 +
√

2 dx1 dx3 + 11 dx2 dx3 and β � 5 dx1 dx3 − 3 dx2 dx3, then

(α, β) �
√

2 · 5 + 11 ·(−3) � 5
√

2 − 33.

Prove the following assertions.

(i) The dxI form an orthonormal basis of the space of constant k-forms.
(ii) (α, α) ≥ 0 for all α and (α, α) � 0 if and only if α � 0.

(iii) α(∗β) � (α, β) dx1 dx2 · · · dxn .
(iv) α(∗β) � β(∗α).
(v) The Hodge star operator is orthogonal, i.e. (α, β) � (∗α, ∗β).

2.18. The Laplacian ∆ f of a smooth function f on an open subset of Rn is defined by

∆ f �

∂2 f

∂x2
1

+
∂2 f

∂x2
2

+ · · · +
∂2 f

∂x2
n

.

Prove the following formulas.

(i) ∆ f � ∗d∗d f .
(ii) ∆( f g) � (∆ f )g + f∆g + 2 ∗(d f (∗dg)). (Use Exercise 2.17(iv).)

2.19. Let α �

∑n
i�1 fi dxi be a 1-form on Rn .

(i) Find formulas for ∗α, d∗α, ∗d∗α, and d∗d∗α.
(ii) Find formulas for dα, ∗dα, d∗dα, and ∗d∗dα.

(iii) Finally compute d∗d∗α + (−1)n∗d∗dα. Try to write the answer in terms of the
Laplace operator ∆ defined in Exercise 2.18.

2.20. Let α be the 1-form ‖x‖2px · ∗dx on Rn , where p is a real constant. Compute dα.

Show that α is closed if and only if p � − 1
2 n.

2.21. (i) Let U be an open subset of Rn and let f : U → R be a function satisfying
grad( f )(x) , 0 for all x in U. On U define a vector field n, an n − 1-form ν and a
1-form α by

n(x) � ‖grad( f )(x)‖−1 grad( f )(x),

ν � n · ∗dx,

α � ‖grad( f )(x)‖−1d f .

Prove that dx1 dx2 · · · dxn � αν on U.
(ii) Let r : Rn → R be the function r (x) � ‖x‖ (distance to the origin). Deduce from

part (i) that dx1 dx2 · · · dxn � (dr)ν on Rn \ {0}, where ν � ‖x‖−1x · ∗dx.

2.22. The Minkowski or relativistic inner product on Rn+1 is given by

(x, y) �

n∑

i�1

xi yi − xn+1 yn+1.

A vector x ∈ Rn+1 is spacelike if (x, x) > 0, lightlike if (x, x) � 0, and timelike if (x, x) < 0.

(i) Give examples of (nonzero) vectors of each type.
(ii) Show that for every x , 0 there is a y such that (x, y) , 0.



30 2. DIFFERENTIAL FORMS ON EUCLIDEAN SPACE

A Hodge star operator corresponding to this inner product is defined as follows: if α �

∑

I fI dxI , then

∗α �

∑

I

fI (∗dxI ),

with

∗dxI �

εI dxIc if I contains n + 1,

−εI dxIc if I does not contain n + 1.

(Here εI and Ic are as in the definition of the ordinary Hodge star.)

(iii) Find ∗1, ∗dxi for 1 ≤ i ≤ n + 1, and ∗(dx1 dx2 · · · dxn ).
(iv) Compute the “relativistic Laplacian” (usually called the d’Alembertian or wave

operator) ∗d∗d f for any smooth function f on Rn+1.
(v) For n � 3 (ordinary space-time) find ∗(dxi dx j ) for 1 ≤ i < j ≤ 4.

2.23. One of the greatest advances in theoretical physics of the nineteenth century was
Maxwell’s formulation of the equations of electromagnetism:

curl(E) � −1

c

∂B

∂t
(Faraday’s Law),

curl(H) �
4π

c
J +

1

c

∂D

∂t
(Ampère’s Law),

div(D) � 4πρ (Gauss’ Law),

div(B) � 0 (no magnetic monopoles).

Here c is the speed of light, E is the electric field, H is the magnetic field, J is the density
of electric current, ρ is the density of electric charge, B is the magnetic induction and D is

the dielectric displacement. E, H, J, B and D are vector fields and ρ is a function on R3 and
all depend on time t. The Maxwell equations look particularly simple in differential form

notation, as we shall now see. In space-time R4 with coordinates (x1 , x2 , x3 , x4), where
x4 � ct, introduce forms

α � (E1 dx1 + E2 dx2 + E3 dx3) dx4 + B1 dx2 dx3 + B2 dx3 dx1 + B3 dx1 dx2 ,

β � −(H1 dx1 + H2 dx2 + H3 dx3) dx4 + D1 dx2 dx3 + D2 dx3 dx1 + D3 dx1 dx2 ,

γ �

1

c
( J1 dx2 dx3 + J2 dx3 dx1 + J3 dx1 dx2) dx4 − ρ dx1 dx2 dx3 .

(i) Show that Maxwell’s equations are equivalent to

dα � 0,

dβ + 4πγ � 0.

(ii) Conclude that γ is closed and that div(J) + ∂ρ/∂t � 0.
(iii) In vacuum one has E � D and H � B. Show that in vacuum β � ∗α, the relativistic

Hodge star of α defined in Exercise 2.22.

(iv) Free space is a vacuum without charges or currents. Show that the Maxwell
equations in free space are equivalent to dα � d∗α � 0.

(v) Let f , g : R→ R be any smooth functions and define

E(x) �
*.
,

0
f (x1 − x4)

g(x1 − x4)

+/
-
, B(x) �

*.
,

0
−g(x1 − x4)

f (x1 − x4)

+/
-
.

Show that the corresponding 2-form α satisfies the free Maxwell equations dα �

d∗α � 0. Such solutions are called electromagnetic waves. Explain why. In what
direction do these waves travel?



CHAPTER 3

Pulling back forms

3.1. Determinants

The determinant of a square matrix is the oriented volume of the parallelepiped
spanned by its column vectors. It is therefore not surprising that differential forms
are closely related to determinants. This section is a review of some fundamental
facts concerning determinants.

Let

A �

*..
,

a1,1 . . . a1,n
...

...
an ,1 . . . an ,n

+//
-

be an n × n-matrix with column vectors a1, a2, . . . , an . The parallelepiped spanned
by the columns is by definition the set of all linear combinations

∑n
i�1 ciai , where

the coefficients ci range over the unit interval [0, 1]. A parallelepiped spanned by
a single vector is called a line segment and a parallelepiped spanned by two vectors
is called a parallelogram. The determinant of A is variously denoted by

det(A) � det(a1 , a2, . . . , an) � det(ai , j )1≤i , j≤n �

��������

a1,1 . . . a1,n
...

...
an ,1 . . . an ,n

��������
.

Expansion on the j-th column. You may have seen the following definition of
the determinant:

det(A) �

n∑

i�1

(−1)i+1ai , j det(Ai , j ).

Here Ai , j denotes the (n − 1) × (n − 1)-matrix obtained from A by crossing out
the i-th row and the j-th column. This is a recursive definition, which reduces
the calculation of any determinant to that of determinants of smaller size. The
recursion starts at n � 1; the determinant of a 1 × 1-matrix (a) is simply defined to
be the number a. It is a useful rule, but it has two serious flaws: first, it is extremely
inefficient computationally (except for matrices containing lots of zeroes), and
second, it obscures the relationship with volumes of parallelepipeds.

Axioms. A far better definition is available. The determinant can be com-
pletely characterized by a few simple axioms, which make good sense in view of
its geometrical significance and which comprise an efficient algorithm for calcu-
lating any determinant. To motivate these axioms we first consider the case of a
2 × 2-matrix A (n � 2). Then the columns a1 and a2 are vectors in the plane, and
instead of the oriented “volume” we speak of the oriented area of the parallelogram

spanned by a1 and a2. (This notion is familiar from calculus: the integral
∫ b

a f (x) dx

31
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of a function f is the oriented area between its graph and the x-axis.) How is the ori-
ented area affected by various transformations of the vectors? Adding any multiple
of a1 to the second column a2 has the effect of performing a shear transformation
on the parallelogram, which does not change its oriented area:

a1

a2

0

a1

a2 + ba1

0

Multiplying the first column by a scalar c has the effect of stretching (if c > 1) or
compressing (if 0 < c < 1) the parallelogram and changing its oriented area by a
factor of c:

a1

a2

0

ca1

a2

0

What if c is negative? In the picture below the parallelogram on the left is positively
oriented in the sense that the angle from edge a1 to edge a2 is counterclockwise
(positive). Because c is negative, the parallelogram on the right is negatively
oriented in the sense that the angle from edge ca1 to edge a2 is clockwise (negative).
Therefore multiplying a1 by a negative c also changes the oriented area by a factor
of c:

a1

a2

0
ca1

a2

0

Similarly, interchanging the columns of A has the effect of reversing the orientation
of the parallelogram, which changes the sign of its oriented area:

a1

a2

0

a1

a2

0

To generalize this to higher dimensions, recall the elementary column operations,
which come in three types: adding a multiple of any column of A to any other
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column (type I); multiplying a column by a nonzero constant (type II); and inter-
changing any two columns (type III). As suggested by the pictures above, type I
does not affect the determinant, type II multiplies it by the corresponding constant,
and type III causes a sign change. We turn these observations into a definition as
follows.

3.1. Definition. A determinant is a function det which assigns to every n × n-
matrix A a number det(A) subject to the following axioms:

(i) If E is an elementary column operation, then det(E(A)) � k det(A),
where

k �



1 if E is of type I,
c if E is of type II (multiplication of a column by c),
−1 if E is of type III.

(ii) det(I) � 1.

Axiom (ii) is a normalization convention, which is justified by the reasonable
requirement that the unit cube in Rn (i.e. the parallelepiped spanned by the columns
of the identity matrix I) should have oriented volume 1.

3.2. Example. The following calculation is a sequence of column operations, at
the end of which we apply the normalization axiom.

�������

1 1 1
4 10 9
1 5 4

�������
�

�������

1 0 0
4 6 5
1 4 3

�������
�

�������

1 0 0
4 1 5
1 1 3

�������
�

�������

1 0 0
3 1 2
0 1 0

�������
� 2

�������

1 0 0
3 1 1
0 1 0

�������
� 2

�������

1 0 0
0 0 1
0 1 0

�������
� −2

�������

1 0 0
0 1 0
0 0 1

�������
� −2.

As this example suggests, the axioms of Definition 3.1 suffice to calculate any
n × n-determinant. In other words, there is at most one function det which obeys
these axioms. More precisely, we have the following result.

3.3. Theorem (uniqueness of determinants). Let det and det′ be two functions
satisfying Axioms (i)–(ii). Then det(A) � det′(A) for all n × n-matrices A.

Proof. Let a1, a2, . . . , an be the column vectors of A. Suppose first that A
is not invertible. Then the columns of A are linearly dependent. For simplicity
let us assume that the first column is a linear combination of the others: a1 �

c2a2 + · · · + cnan . Repeatedly applying type I column operations gives

det(A) � det
( n∑

i�2

ciai , a2, . . . , ai , . . . , an

)

� det(0, a2, . . . , ai , . . . , an).

Applying a type II operation gives

det(0, a2, . . . , ai , . . . , an) � det(−0, a2, . . . , ai , . . . , an)

� −det(0, a2, . . . , ai , . . . , an),

and therefore det(A) � 0. For the same reason det′(A) � 0, so det(A) � det′(A).
Now assume that A is invertible. Then A is column equivalent to the identity
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matrix, i.e. it can be transformed to I by successive elementary column operations.
Let E1, E2, . . . , Em be these elementary operations, so that EmEm−1 · · ·E2E1(A) � I.
By Axiom (i) each operation Ei has the effect of multiplying the determinant by a
certain factor ki , so Axiom (ii) yields

1 � det(I) � det(EmEm−1 · · ·E2E1(A)) � km km−1 · · · k2k1 det(A).

Applying the same reasoning to det′(A) we get 1 � km km−1 · · · k2k1 det′(A). Hence
det(A) � 1/(k1k2 · · · km ) � det′(A). QED

3.4. Remark (change of normalization). Suppose that det′ is a function that
satisfies Axiom (i) but is normalized differently: det′(I) � c. Then the proof of
Theorem 3.3 shows that det′(A) � c det(A) for all n × n-matrices A.

The counterpart of this uniqueness theorem is an existence theorem, which
states that Axioms 3.1(i)–(ii) are consistent. We will establish consistence by dis-
playing an explicit formula for the determinant of any n × n-matrix that does not
involve any column reductions. Unlike Definition 3.1, this formula is not very
practical for the purpose of calculating large determinants, but it has other uses,
notably in the theory of differential forms.

3.5. Theorem (existence of determinants). Every n×n-matrix A has a well-defined
determinant. It is given by the formula

det(A) �
∑

σ∈Sn

sign(σ)a1,σ(1) a2,σ(2) · · · an ,σ(n) .

This requires a little explanation. Sn stands for the collection of all permutations
of the set {1, 2, . . . , n}. A permutation is a way of ordering the numbers 1, 2, . . . ,
n. Permutations are usually written as n-tuples containing each of these numbers
exactly once. Thus for n � 2 there are only two permutations: (1, 2) and (2, 1). For
n � 3 all possible permutations are

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

For general n there are

n(n − 1)(n − 2) · · · 3 · 2 · 1 � n!

permutations. An alternative way of thinking of a permutation is as a bĳective (i.e.
one-to-one and onto) map from the set {1, 2, . . . , n} to itself. For example, for n � 5
a possible permutation is

(5, 3, 1, 2, 4),

and we think of this as a shorthand notation for the map σ given by σ(1) � 5,
σ(2) � 3, σ(3) � 1, σ(4) � 2 and σ(5) � 4. The permutation (1, 2, 3, . . . , n − 1, n)

then corresponds to the identity map of the set {1, 2, . . . , n}.
If σ is the identity permutation, then clearly σ(i) < σ( j) whenever i < j.

However, if σ is not the identity permutation, it cannot preserve the order in this
way. An inversion of σ is any pair of numbers i and j such that 1 ≤ i < j ≤ n and
σ(i) > σ( j). The length of σ, denoted by l(σ), is the number of inversions of σ. A
permutation is called even or odd according to whether its length is even, resp. odd.
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For instance, the permutation (5, 3, 1, 2, 4) has length 6 and so is even. The sign of
σ is

sign(σ) � (−1)l(σ)
�


1 if σ is even,
−1 if σ is odd.

Thus sign(5, 3, 1, 2, 4) � 1. The permutations of {1, 2} are (1, 2), which has sign 1,
and (2, 1), which has sign −1, while for n � 3 we have the table below.

σ l(σ) sign(σ)

(1, 2, 3) 0 1
(1, 3, 2) 1 −1
(2, 1, 3) 1 −1
(2, 3, 1) 2 1
(3, 1, 2) 2 1
(3, 2, 1) 3 −1

Thinking of permutations in Sn as bĳective maps from {1, 2, . . . , n} to itself,
we can form the composition σ ◦ τ of any two permutations σ and τ in Sn . For
permutations we usually write as στ instead of σ ◦ τ and call it the product of σ and
τ. This is the permutation produced by first performing τ and then σ! For instance,
if σ � (5, 3, 1, 2, 4) and τ � (5, 4, 3, 2, 1), then

τσ � (1, 3, 5, 4, 2), στ � (4, 2, 1, 3, 5).

A basic fact concerning signs, which we shall not prove here, is

sign(στ) � sign(σ) sign(τ). (3.1)

In particular, the product of two even permutations is even and the product of an
even and an odd permutation is odd.

The determinant formula in Theorem 3.5 contains n! terms, one for each per-
mutation σ. Each term is a product which contains exactly one entry from each
row and each column of A. For instance, for n � 5 the permutation (5, 3, 1, 2, 4)

contributes the term a1,5a2,3a3,1a4,2a5,4. For 2× 2- and 3× 3-determinants Theorem
3.5 gives the well-known formulæ

�����
a1,1 a1,2

a2,1 a2,2

�����
� a1,1a2,2 − a1,2a2,1 ,

�������

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

�������
� a1,1a2,2a3,3 − a1,1a2,3a3,2 − a1,2a2,1a3,3 + a1,2a2,3a3,1

+ a1,3a2,1a3,2 − a1,3a2,2a3,1 .

Proof of Theorem 3.5. We need to check that the right-hand side of the deter-
minant formula in Theorem 3.5 obeys Axioms (i)–(ii) of Definition 3.1. Let us for
the moment denote the right-hand side by f (A). Axiom (ii) is the easiest to verify:
if A � I, then

a1,σ(1) a2,σ(2) · · · an ,σ(n) �


1 if σ � identity,
0 otherwise,
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and therefore f (I) � 1. Next we consider how f (A) behaves when we interchange
two columns of A. We assert that each term in f (A) changes sign. To see this, let τ
be the permutation in Sn that interchanges the two numbers i and j and leaves all
others fixed. Then

f (a1 , . . . , a j , . . . , ai , . . . , an)

�

∑

σ∈Sn

sign(σ)a1,τσ(1) a2,τσ(2) · · · an ,τσ(n)

�

∑

ρ∈Sn

sign(τρ)a1,ρ(1) a2,ρ(2) · · · an ,ρ(n) substitute ρ � τσ

�

∑

ρ∈Sn

sign(τ) sign(ρ)a1,ρ(1) a2,ρ(2) · · · an ,ρ(n) by formula (3.1)

� −
∑

ρ∈Sn

sign(ρ)a1,ρ(1) a2,ρ(2) · · · an ,ρ(n) by Exercise 3.5

� − f (a1, . . . , ai , . . . , a j , . . . , an).

To see what happens when we multiply a column of A by c, observe that for every
permutation σ the product

a1,σ(1) a2,σ(2) · · · an ,σ(n)

contains exactly one entry from each row and each column in A. So if we multiply
the i-th column of A by c, each term in f (A) is multiplied by c. Therefore

f (a1 , a2, . . . , cai , . . . , an) � c f (a1 , a2, . . . , ai , . . . , an).

By a similar argument we have

f (a1 , a2, . . . , ai + a′i , . . . , an) � f (a1 , a2, . . . , ai , . . . , an) + f (a1, a2, . . . , a
′
i , . . . , an)

for any vector a′
i
. In particular we can take a′

i
� a j for some j , i, which gives

f (a1 , a2, . . . , ai + a j , . . . , a j , . . . , an) � f (a1 , a2, . . . , ai , . . . , a j , . . . , an)

+ f (a1 , a2, . . . , a j , . . . , a j , . . . , an)

� f (a1 , a2, . . . , ai , . . . , a j , . . . , an),

because f (a1 , a2, . . . , ai , . . . , a j , . . . , an) � 0. This shows that f satisfies the condi-
tions of Definition 3.1. QED

We can calculate the determinant of any matrix by column reducing it to the
identity matrix, but there are many different ways of performing this reduction.
Theorem 3.5 implies that different column reductions lead to the same answer for
the determinant.

The following corollary of Theorem 3.5 amounts to a reformulation of Defini-
tion 3.1. Recall that e1, e2, . . . , en denote the standard basis vectors of Rn , i.e. the
columns of the identity n × n-matrix.

3.6. Corollary. The determinant possesses the following properties. These properties
characterize the determinant uniquely.

(i) det is multilinear (i.e. linear in each column):

det(a1, a2, . . . , cai + c′a′i , . . . , an)

� c det(a1 , a2, . . . , ai , . . . , an) + c′ det(a1 , a2, . . . , a
′
i , . . . , an)
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for all scalars c, c′ and all vectors a1, a2, . . . , ai, a′
i
, . . . , an ;

(ii) det is alternating (or antisymmetric):

det(a1, . . . , ai , . . . , a j , . . . , an) � −det(a1 , . . . , a j , . . . , ai , . . . , an)

for all vectors a1, a2, . . . , an and for all pairs of distinct indices i , j;
(iii) normalization: det(e1, e2, . . . , en) � 1.

Proof. Property (i) was established in the proof of Theorem 3.5, while prop-
erties (ii)–(iii) are simply a restatement of part of Definition 3.1. Therefore the
determinant has properties (i)–(iii). Conversely, properties (i)–(iii) taken together
imply Axioms (i)–(ii) of Definition 3.1. Therefore, by Theorem 3.3, properties
(i)–(iii) characterize the determinant uniquely. QED

Here are some further rules obeyed by determinants. Each can be deduced
from Definition 3.1 or from Theorem 3.5. (Recall that the transpose of an n×n-matrix
A � (ai , j ) is the matrix AT whose i, j-th entry is a j,i .)

3.7. Theorem. Let A and B be n × n-matrices.

(i) det(A) � a1,1a2,2 · · · an ,n if A is upper triangular (i.e. ai , j � 0 for i > j).
(ii) det(AB) � det(A) det(B).

(iii) det(AT ) � det(A).
(iv) (Expansion on the j-th column) det(A) �

∑n
i�1(−1)i+ j ai , j det(Ai , j ) for all

j � 1, 2, . . . , n. Here Ai , j denotes the (n − 1) × (n − 1)-matrix obtained from
A by deleting the i-th row and the j-th column.

(v) Let σ ∈ Sn be a permutation. Then

det
(

aσ(1) , aσ(2) , . . . , aσ(n)

)

� sign(σ) det(a1, a2, . . . , an).

When calculating determinants in practice one combines column reductions
with these rules. For instance, rule (i) tells us we need not bother reducing A
all the way to the identity matrix, like we did in Example 3.2, but that an upper
triangular form suffices. Rule (iii) tells us we may use row operations as well as
column operations.

Volume change. We conclude this discussion with a slightly different geo-
metric view of determinants. A square matrix A can be regarded as a linear map
A : Rn → Rn . The unit cube in Rn ,

[0, 1]n
� { x ∈ Rn | 0 ≤ xi ≤ 1 for i � 1, 2, . . . , n },

has n-dimensional volume 1. (For n � 1 it is usually called the unit interval and for
n � 2 the unit square.) Its image A

(

[0, 1]n) under the map A is the parallelepiped
spanned by the vectors Ae1, Ae2, . . . , Aen, which are the columns of A. Hence
A

(

[0, 1]n) has n-dimensional volume

vol
(

A([0, 1]n)
)

� |det(A| � |det(A) | vol([0, 1]n).
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This rule generalizes as follows: if X is a measurable subset of Rn , then

vol(A(X)) � |det(A) | vol(X).

X

e1

e2
A A(X)

Ae1

Ae2

(A set is measurable if it has a well-defined, finite or infinite, n-dimensional volume.
Explaining exactly what this means is rather hard, but it suffices for our purposes
to know that all open and all closed subsets of Rn are measurable.) So |det(A) |
can be interpreted as a volume change factor. The sign of the determinant tells you
whether A preserves (+) or reverses (−) the orientation of Rn . (See Section 8.2 for
more on orientations.)

3.2. Pulling back forms

By substituting new variables into a differential form we obtain a new form of
the same degree but possibly in a different number of variables.

3.8. Example. In Example 2.10 we defined the angle form on R2 \ {0} to be

α0 �

−y dx + x dy

x2 + y2
.

By substituting x � cos t and y � sin t into the angle form we obtain the following
1-form on R:

− sin t d cos t + cos t d sin t

cos2 t + sin2 t
�

(

(− sin t)(− sin t) + cos2 t
)

dt � dt .

We can take any k-form and substitute any number of variables into it to obtain
a new k-form. This works as follows. Suppose α is a k-form defined on an open
subset V of Rm . Let us denote the coordinates on Rm by y1, y2 , . . . , ym and let us
write, as usual,

α �

∑

I

fI dyI ,

where the functions fI are defined on V. Suppose we want to substitute “new”
variables x1, x2 , . . . , xn and that the old variables are given in terms of the new by
functions

y1 � φ1(x1 , . . . , xn ),

y2 � φ2(x1 , . . . , xn ),

...

ym � φm (x1 , . . . , xn ).
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As usual we write y � φ(x), where

φ(x) �

*....
,

φ1(x)

φ2(x)
...

φm (x)

+////
-
.

We assume that the functions φi are smooth and defined on a common domain U ,
which is an open subset of Rn . We regard φ as a map from U to V. (In Example
3.8 we have U � R, V � R2 \ {0} and φ(t) � (cos t , sin t).) The pullback of α along φ
is then the k-form φ∗(α) on U obtained by substituting yi � φi (x1 , . . . , xn ) for all i
in the formula for α. That is to say, φ∗(α) is defined by

φ∗(α) �
∑

I

φ∗( fI )φ∗(dyI ).

Here φ∗( fI ) is defined by

φ∗( fI ) � fI ◦ φ,

the composition of φ and fI . This means φ∗( fI )(x) � fI (φ(x)); in other words,
φ∗( fI ) is the function resulting from fI by substituting y � φ(x). The pullback
φ∗(dyI ) is defined by replacing each yi with φi . That is to say, if I � (i1 , i2 , . . . , ik )

we put

φ∗(dyI ) � φ
∗(dyi1 dyi2 · · · dyik ) � dφi1 dφi2 · · · dφik .

The picture below is a schematic representation of the substitution process. The
form α �

∑

I fI dyI is a k-form in the variables y1, y2 , . . . , ym ; its pullback φ∗(α) �
∑

J g J dx J is a k-form in the variables x1, x2 , . . . , xn . In Theorem 3.13 below we will
give an explicit formula for the coefficients g J in terms of fI and φ.

U V

Rn Rm

φ
φ∗(α)

α

x y = φ(x)

3.9. Example. The formula

φ

(

x1

x2

)

�

(

x3
1
x2

ln(x1 + x2)

)
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defines a map φ : U → R2, where U � { x ∈ R2 | x1 + x2 > 0 }. The components of
φ are given by φ1(x1 , x2) � x3

1
x2 and φ2(x1 , x2) � ln(x1 + x2). Accordingly,

φ∗(dy1) � dφ1 � d(x3
1x2) � 3x2

1x2 dx1 + x3
1 dx2 ,

φ∗(dy2) � dφ2 � d ln(x1 + x2) � (x1 + x2)−1(dx1 + dx2),

φ∗(dy1 dy2) � dφ1 dφ2 � (3x2
1x2 dx1 + x3

1 dx2)(x1 + x2)−1(dx1 + dx2)

�

3x2
2
x2 − x3

1

x1 + x2
dx1 dx2.

Observe that the pullback operation turns k-forms on the target space V into
k-forms on the source space U . Thus, while φ : U → V is a map from U to V, φ∗ is
a map

φ∗ : Ωk (V) → Ωk (U),

the opposite way from what you might naively expect. (Recall that Ωk (U) stands
for the collection of all k-forms on U .) The property that φ∗ “turns the arrow
around” is called contravariance. Pulling back forms is nicely compatible with the
other operations that we learned about (except the Hodge star).

3.10. Proposition. Let φ : U → V be a smooth map, where U is open in Rn and V
is open in Rm . The pullback operation is

(i) linear: φ∗(aα + bβ) � aφ∗(α) + bφ∗(β) for all scalars a and b and all k-forms
α and β on V;

(ii) multiplicative: φ∗(αβ) � φ∗(α)φ∗ (β) for all k-forms α and l-forms β on V;
(iii) natural: φ∗(ψ∗(α)) � (ψ ◦φ)∗(α), where ψ : V →W is a second smooth map

with W open in Rl , and α is a k-form on W .

The term “natural” in property (iii) is a mathematical catchword meaning
that a certain operation (in this case the pullback) is well-behaved with respect to
composition of maps.

Proof. If α �

∑

I fI dyI and β �

∑

I gI dyI are two forms of the same degree,
then aα + bβ �

∑

I (a fI + bgI ) dyI , so

φ∗(aα + bβ) �
∑

I

φ∗(a fI + bgI )φ∗(dyI ).

Now

φ∗(a fI + bgI )(x) � (a fI + bgI )(φ(x)) � a fI (φ(x)) + bgI (φ(x))

� aφ∗( fI )(x) + bφ∗(gI )(x),

so φ∗(aα+ bβ) �

∑

I (aφ∗( fI ) + bφ∗(gI ))φ∗(dyI ) � aφ∗(α) + bφ∗ (β). This proves part
(i). For the proof of part (ii) consider two forms α �

∑

I fI dyI and β �

∑

J g J dy J

(not necessarily of the same degree). Then αβ �

∑

I ,J fI g J dyI dy J , so

φ∗(αβ) �

∑

I ,J

φ∗( fI g J )φ
∗(dyI dy J ).

Now

φ∗( fI g J )(x) � ( fI g J )(φ(x)) � fI (φ(x))g J (φ(x)) � (φ∗( fI )φ
∗(g J ))(x),
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so φ∗( fI g J ) � φ∗( fI )φ∗(g J ). Furthermore,

φ∗(dyI dy J ) � φ
∗(dyi1 dyi2 · · · dyik dy j1 dy j2 · · · dy jl )

� dφi1 dφi2 · · · dφik dφ j1 · · · dφ jl � φ
∗(dyI )φ

∗(dy J ),

so

φ∗(αβ) �
∑

I ,J

φ∗( fI )φ∗(g J )φ
∗(dyI )φ

∗(dy J )

�

(∑

I

φ∗( fI )φ∗(dyI )

) (∑

I

φ∗(g J )φ
∗(dy J )

)

� φ∗(α)φ∗ (β),

which establishes part (ii).
For the proof of property (iii) first consider a function f on W . Then

φ∗(ψ∗( f ))(x) � ψ∗( f )(φ(x)) � f (ψ(φ(x))) � ( f ◦ ψ ◦ φ)(x)

� ( f ◦ (ψ ◦ φ))(x) � (ψ ◦ φ)∗( f )(x),

so φ∗(ψ∗( f )) � (ψ◦φ)∗( f ). Next consider a 1-form α � dzi on W , where z1, z2 , . . . ,

zl are the variables on Rl. Then ψ∗(α) � dψi �
∑m

j�1
∂ψi

∂y j
dy j, so

φ∗(ψ∗(α)) �

m∑

j�1

φ∗
( ∂ψi

∂y j

)

φ∗(dy j) �

m∑

j�1

φ∗
( ∂ψi

∂y j

)

dφ j

�

m∑

j�1

φ∗
( ∂ψi

∂y j

) n∑

k�1

∂φ j

∂xk
dxk �

n∑

k�1

( m∑

j�1

φ∗
( ∂ψi

∂y j

) ∂φ j

∂xk

)

dxk .

By the chain rule, formula (B.6), the sum
∑m

j�1 φ
∗(∂ψi/∂y j)∂φ j/∂xk is equal to

∂φ∗(ψi )/∂xk. Therefore

φ∗(ψ∗(α)) �

n∑

k�1

∂φ∗(ψi )

∂xk
dxk � dφ∗(ψi )

� d((ψ ◦ φ)i ) � (ψ ◦ φ)∗(dzi ) � (ψ ◦ φ)∗(α).

Because every form on W is a sum of products of forms of type f and dzi , property
(iii) in general follows from the two special cases α � f and α � dzi , together with
properties (i) and (iii). QED

Another application of the chain rule yields the following important result.

3.11. Theorem. Let φ : U → V be a smooth map, where U is open in Rn and V is

open in Rm . Then φ∗(dα) � dφ∗(α) for α ∈ Ωk (V). In short,

φ∗d � dφ∗ .
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Proof. First let f be a function. Then

φ∗(d f ) � φ∗
( m∑

i�1

∂ f

∂yi
dyi

)

�

m∑

i�1

φ∗
( ∂ f

∂yi

)

dφi �

m∑

i�1

φ∗
( ∂ f

∂yi

) n∑

j�1

∂φi

∂x j
dx j

�

n∑

j�1

m∑

i�1

φ∗
( ∂ f

∂yi

) ∂φi

∂x j
dx j .

By the chain rule, formula (B.6), the quantity
∑m

i�1 φ
∗(∂ f /∂yi)∂φi/∂x j is equal to

∂φ∗( f )/∂x j . Hence

φ∗(d f ) �

n∑

j�1

∂φ∗( f )

∂x j
dx j � dφ∗( f ),

so the theorem is true for functions. Next let α �

∑

I fI dyI . Then dα �

∑

I d fI dyI ,
so

φ∗(dα) �
∑

I

φ∗(d fI dyI ) �
∑

I

φ∗(d fI )φ
∗(dyI )

�

∑

I

dφ∗( fI ) dφi1 dφi2 · · · dφik , (3.2)

because φ∗(d fI ) � dφ∗( fI ). On the other hand,

dφ∗(α) �
∑

I

d
(

φ∗( fI )φ
∗(dyI )

)

�

∑

I

d
(

φ∗( fI ) dφi1 dφi2 · · · dφik

)

�

∑

I

dφ∗( fI ) dφi1 dφi2 · · · dφik +
∑

I

φ∗( fI ) d(dφi1 dφi2 · · · dφik )

�

∑

I

dφ∗( fI ) dφi1 dφi2 · · · dφik . (3.3)

Here we have used the Leibniz rule for forms, Proposition 2.5(ii), plus the fact that
the form dφi1 dφi2 · · · dφik is always closed. (See Exercise 2.10.) Comparing (3.2)
with (3.3) we see that φ∗(dα) � dφ∗(α). QED

Here is an application of Theorem 3.11. An open subset U of Rn is called
connected if for every pair of points x and y in U there exists a path c : [a, b] → U
satisfying c(a) � x and c(b) � y.

3.12. Lemma. Let U be a connected open subset of Rn and let f : U → R be a smooth
function. Then d f � 0 if and only if f is constant.

Proof. If f is constant, all its partial derivatives vanish, so d f � 0. Conversely,
suppose d f � 0. To prove that f is constant it is enough to show that f (x) � f (y)

for any pair of points x, y in U . Choose a path c : [a, b] → U with the property
c(a) � x and c(b) � y. Let h : [a, b] → R be the smooth function h � c∗( f ). Then
h′(t) dt � dh � d(c∗( f )) � c∗(d f ) � 0 by Theorem 3.11, so h′(t) � 0 for a ≤ t ≤ b.
Therefore h is constant (by one-variable calculus), so f (x) � f (c(a)) � h(a) �

h(b) � f (c(b)) � f (y). QED
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We finish this section by giving an explicit formula for the pullback φ∗(α),
which establishes a connection between forms and determinants. Let us do this
first in degrees 1 and 2. The pullback of a 1-form α �

∑m
i�1 fi dyi is

φ∗(α) �

m∑

i�1

φ∗( fi )φ
∗(dyi ) �

m∑

i�1

φ∗( fi ) dφi .

Now dφi �
∑n

j�1
∂φi

∂x j
dx j and so

φ∗(α) �

m∑

i�1

(

φ∗( fi )

n∑

j�1

∂φi

∂x j
dx j

)

�

n∑

j�1

m∑

i�1

φ∗( fi )
∂φi

∂x j
dx j �

n∑

j�1

g j dx j ,

with g j �
∑m

i�1 φ
∗( fi )

∂φi

∂x j
.

For a 2-form α �

∑

1≤i< j≤m fi , j dyi dy j we get

φ∗(α) �
∑

1≤i< j≤m

φ∗( fi , j )φ
∗(dyi dy j ) �

∑

1≤i< j≤m

φ∗( fi , j ) dφi dφ j .

To express φ∗(α) in terms of the x-variables we use

dφi dφ j �

n∑

k ,l�1

∂φi

∂xk

∂φ j

∂xl
dxk dxl �

∑

1≤k<l≤n

( ∂φi

∂xk

∂φ j

∂xl
−
∂φi

∂xl

∂φ j

∂xk

)

dxk dxl ,

where

∂φi

∂xk

∂φ j

∂xl
−
∂φi

∂xl

∂φ j

∂xk
�

������

∂φi

∂xk

∂φi

∂xl
∂φ j

∂xk

∂φ j

∂xl

������
is the determinant of the 2 × 2-submatrix obtained from the Jacobi matrix Dφ by
extracting rows i and j and columns k and l. So we get

φ∗(α) �
∑

1≤i< j≤m

(

φ∗( fi , j )
∑

1≤k<l≤n

������

∂φi

∂xk

∂φi

∂xl
∂φ j

∂xk

∂φ j

∂xl

������
dxk dxl

)

�

∑

1≤k<l≤n

∑

1≤i< j≤m

φ∗( fi , j )

������

∂φi

∂xk

∂φi

∂xl
∂φ j

∂xk

∂φ j

∂xl

������
dxk dxl �

∑

1≤k<l≤n

gk ,l dxk dxl

with

gk ,l �

∑

1≤i< j≤m

φ∗( fi , j )

������

∂φi

∂xk

∂φi

∂xl
∂φ j

∂xk

∂φ j

∂xl

������
.

For an arbitrary k-form α �

∑

I fI dyI we obtain

φ∗(α) �
∑

I

φ∗( fI )φ
∗(dyi1 dyi2 · · · dyik ) �

∑

I

φ∗( fI ) dφi1 dφi2 · · · dφik .

To write the product dφi1 dφi2 · · · dφik in terms of the x-variables we use

dφil �

n∑

pl�1

∂φil

∂xpl

dxpl
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for l � 1, 2, . . . , k. This gives

dφi1 dφi2 · · · dφik �

n∑

p1 ,p2 ,...,pk�1

∂φi1

∂xp1

∂φi2

∂xp2

· · ·
∂φik

∂xpk

dxp1 dxp2 · · · dxpk

�

∑

P

∂φi1

∂xp1

∂φi2

∂xp2

· · ·
∂φik

∂xpk

dxP ,

in which the summation is over all nk multi-indices P � (p1 , p2 , . . . , pk ). If a multi-
index P has repeating entries, then dxP � 0. If the entries of P are all distinct, we can
rearrange them in increasing order by means of a permutation σ. In other words,
we have P � (p1 , p2 , . . . , pk ) � ( jσ(1) , jσ(2) , . . . , jσ(k)), where J � ( j1 , j2, . . . , jk ) is an
increasing multi-index and σ ∈ Sk is a permutation. Thus we can rewrite the sum
over all multi-indices P as a double sum over all increasing multi-indices J and all
permutations σ:

dφi1 dφi1 · · · dφik �

∑

J

∑

σ∈Sk

∂φi1

∂x jσ(1)

∂φi2

∂x jσ(2)

· · ·
∂φik

∂x jσ(k)

dx jσ(1)
dx jσ(2)

· · · dx jσ(k)

�

∑

J

∑

σ∈Sk

sign(σ)
∂φi1

∂x jσ(1)

∂φi2

∂x jσ(2)

· · ·
∂φik

∂x jσ(k)

dx J (3.4)

�

∑

J

det(DφI ,J ) dx J . (3.5)

In (3.4) we used the result of Exercise 3.8 and in (3.5) we applied Theorem 3.5.
The notation DφI ,J stands for the (I , J)-submatrix of Dφ, that is the k × k-matrix
obtained from the Jacobi matrix by extracting rows i1, i2 , . . . , ik and columns j1,
j2, . . . , jk . To sum up, we find

φ∗(α) �

∑

I

φ∗( fI )
∑

J

det(DφI ,J ) dx J �

∑

J

(
∑

I

φ∗( fI ) det(DφI ,J )

)

dx J .

This proves the following result.

3.13. Theorem. Let φ : U → V be a smooth map, where U is open in Rn and V is
open in Rm . Let α �

∑

I fI dyI be a k-form on V. Then φ∗(α) is the k-form on U given by
φ∗(α) �

∑

J g J dx J with

g J �

∑

I

φ∗( fI ) det(DφI ,J ).

This formula is seldom used to calculate pullbacks in practice and you don’t
need to memorize the details of the proof. It is almost always easier to apply
the definition of pullback directly. However, the formula has some important
theoretical uses, one of which we record here.

Assume that k � m � n, that is to say, the number of new variables is equal to
the number of old variables, and we are pulling back a form of top degree. Then

α � f dy1 dy2 · · · dyn , φ∗(α) � φ∗( f ) det(Dφ) dx1 dx2 · · · dxn .

If f � 1 (constant function) then φ∗( f ) � 1, so we see that det(Dφ(x)) can be
interpreted as the ratio between the oriented volumes of two infinitesimal paral-
lelepipeds positioned at x: one with edges dx1, dx2 , . . . , dxn and another with
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edges dφ1, dφ2 , . . . , dφn . Thus the Jacobi determinant is a measurement of how
much the map φ changes oriented volume from point to point.

3.14. Theorem. Let φ : U → V be a smooth map, where U and V are open in Rn .
Then the pullback of the volume form on V is equal to the Jacobi determinant times the
volume form on U ,

φ∗(dy1 dy2 · · · dyn) � det(Dφ) dx1 dx2 · · · dxn .

Exercises

3.1. Deduce Theorem 3.7(i) from Theorem 3.5.

3.2. Calculate the following determinants using column and/or row operations and
Theorem 3.7(i).

���������

1 3 1 1
2 1 5 2
1 −1 2 3
4 1 −3 7

���������
,

���������

1 1 −2 4
0 1 1 3
2 −1 1 0
3 1 2 5

���������
.

3.3. In this exercise we write Cn for the unit cube [0, 1]n .

(i) Draw a picture of (a two-dimensional projection of) Cn for n � 0, 1, 2, 3, 4, 5.

(ii) Let fk (n) be the number of k-dimensional faces of Cn. Show that fk (n) � 2n−k (n
k
)

.
(Let p(s) � 2 + s. Note that the coefficients of p are f0(1) and f1(1). Show that

fk (n) is the coefficient of sk in the polynomial p(s)k by noting that each face of
Cn is a Cartesian product of faces of the unit interval C1.)

3.4. List all permutations in S4 with their lengths and signs.

3.5. Determine the length and the sign of the following permutations.

(i) A permutation of the form (1, 2, . . . , i−1, j, . . . , j−1, i, . . . , n) where 1 ≤ i < j ≤ n.
(Such a permutation is called a transposition. It interchanges i and j and leaves
all other numbers fixed.)

(ii) (n, n − 1, n − 2, . . . , 3, 2, 1).

3.6. Find all permutations in Sn of length 1.

3.7. Calculate σ−1, τ−1, στ and τσ, where

(i) σ � (3, 6, 1, 2, 5, 4) and τ � (5, 2, 4, 6, 3, 1);
(ii) σ � (2, 1, 3, 4, 5, . . . , n − 1, n) and τ � (n, 2, 3, . . . , n − 2, n − 1, 1) (i.e. the transpo-

sitions interchanging 1 and 2, resp. 1 and n).

3.8. Show that

dxiσ(1)
dxiσ(2)

· · · dxiσ(k)
� sign(σ) dxi1 dxi2 · · · dxik

for any multi-index (i1 , i2 , . . . , ik ) and any permutation σ in Sk . (First show that the identity
is true if σ is a transposition. Then show it is true for an arbitrary permutation σ by writing
σ as a product σ1σ2 · · · σl of transpositions and using formula (3.1) and Exercise 3.5(i).)

3.9. Show that for n ≥ 2 the permutation group Sn has n!/2 even permutations and
n!/2 odd permutations.

3.10. (i) Show that every permutation has the same length and sign as its
inverse.

(ii) Deduce Theorem 3.7(iii) from Theorem 3.5.
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3.11. The i-th simple permutation is defined by σi � (1, 2, . . . , i − 1, i + 1, i, i + 2, . . . , n).
So σi interchanges i and i + 1 and leaves all other numbers fixed. Sn has n − 1 simple
permutations, namely σ1, σ2 , . . . , σn−1. Prove the Coxeter relations

(i) σ2
i
� 1 for 1 ≤ i < n,

(ii) (σiσi+1)3
� 1 for 1 ≤ i < n − 1,

(iii) (σiσ j )
2
� 1 for 1 ≤ i, j < n and i + 1 < j.

3.12. Let σ be a permutation of {1, 2, . . . , n}. The permutation matrix corresponding to
σ is the n × n-matrix Aσ whose i-th column is the vector eσ(i) . In other words, Aσei � eσ(i) .

(i) Write down the permutation matrices for all permutations in S3.
(ii) Show that Aστ � AσAτ .

(iii) Show that det(Aσ) � sign(σ).

3.13. (i) Suppose that A has the shape

A �

*.....
,

a1,1 a1,2 . . . a1,n
0 a2,2 . . . a2,n
...

...
...

0 an ,2 . . . an ,n

+/////
-
,

i.e. all entries below a11 are 0. Deduce from Theorem 3.5 that

det(A) � a1,1

��������

a2,2 . . . a2,n
...

...
an ,2 . . . an ,n

��������
.

(ii) Deduce from this the expansion rule, Theorem 3.7(iv).

3.14. Show that ��������������

1 1 . . . 1
x1 x2 . . . xn

x2
1

x2
2

. . . x2
n

...
...

...

xn−1
1

xn−1
2

. . . xn−1
n

��������������

�

∏

i< j

(x j − xi )

for any numbers x1, x2 , . . . , xn . (Starting at the bottom, from each row subtract x1 times the
row above it. This creates a new determinant whose first column is the standard basis vector
e1. Expand on the first column and note that each column of the remaining determinant
has a common factor.)

3.15. Let φ(x1 , x2 , x3) � (x1x2 , x1x3 , x2x3). Find

(i) φ∗(dy1), φ∗(dy2), φ∗(dy3);
(ii) φ∗(y1 y2 y3), φ∗(dy1 dy2);

(iii) φ∗(dy1 dy2 dy3).

3.16. Let φ(x1 , x2) � (x3
1
, x2

1
x2 , x1x2

2
, x3

2
). Find

(i) φ∗(y1 + 3y2 + 3y3 + y4);
(ii) φ∗(dy1), φ∗(dy2), φ∗(dy3), φ∗(dy4);

(iii) φ∗(dy2 dy3).

3.17. Compute ψ∗(x dy dz + y dz dx + z dx dy), where ψ is the map R2 → R3 defined
in Exercise B.8.

3.18. Let P3(r, θ, φ) � (r cos θ cosφ, r sinθ cosφ, r sinφ) be spherical coordinates in

R3. Calculate P∗
3
(α) for the following forms α:

dx, dy , dz, dx dy , dx dy dz.
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3.19 (spherical coordinates in n dimensions). In this problem let us write a point in
Rn as (r, θ1 , . . . , θn−1). Let P1 be the function P1(r) � r. For each n ≥ 1 define a map

Pn+1 : Rn+1 → Rn+1 by

Pn+1(r, θ1 , . . . , θn ) � (cos θn )Pn (r, θ1 , . . . , θn−1), r sinθn ).

(This is an example of a recursive definition. If you know P1, you can compute P2, and then
P3, etc.)

(i) Show that P2 and P3 are the usual polar, resp. spherical coordinates on R2, resp.

R3.
(ii) Give an explicit formula for Pn .

(iii) Let pn be the first column vector of the Jacobi matrix of Pn . Show that Pn � rpn .
(iv) Show that the Jacobi matrix of Pn+1 is a (n + 1) × (n + 1)-matrix of the form

DPn+1 �

(

A u
v w

)

,

where A is an n × n-matrix, u is a column vector, v is a row vector and w is a
function given respectively by

A � (cos θn ) DPn , u � −(sinθn )Pn ,

v � (sinθn 0 0 · · · 0), w � r cos θn .

(v) Show that det(DPn+1) � r cosn−1 θn det(DPn ) for n ≥ 1. (Expand det(DPn+1)

with respect to the last row, using the formula in part (iv), and apply the result
of part (iii).)

(vi) Using the formula in part (v) calculate det(DPn ) for n � 1, 2, 3, 4.
(vii) Find an explicit formula for det(DPn ) for general n.

(viii) Show that det(DPn ) , 0 if r , 0 and − 1
2π < θi <

1
2π for i � 2, 3, . . . , n − 1.

3.20. Let φ : Rn → Rn be an orthogonal linear map. Prove that φ∗(∗α) � ∗φ∗(α) for all
k-forms α on Rn .





CHAPTER 4

Integration of 1-forms

Like functions, forms can be integrated as well as differentiated. Differentiation
and integration are related via a multivariable version of the fundamental theorem
of calculus, known as Stokes’ theorem. In this chapter we investigate the case of
1-forms.

4.1. Definition and elementary properties of the integral

Let U be an open subset of Rn . A path or parametrized curve in U is a smooth
mapping c : I → U from an interval I into U . Our goal is to integrate forms over
paths, so to avoid problems with improper integrals we will assume the interval I
to be closed and bounded, I � [a, b]. Let α be a 1-form on U and let c : [a, b] → U
be a path in U . The pullback c∗(α) is a 1-form on [a, b], and can therefore be written
as c∗(α) � h dt, where t is the coordinate on R and h is a smooth function on [a, b].
The integral of α over c is now defined by∫

c

α �

∫
[a ,b]

c∗(α) �

∫ b

a

h(t) dt .

More explicitly, writing α in components, α �

∑n
i�1 fi dxi , we have

c∗(α) �

n∑

i�1

c∗( fi )dci �

n∑

i�1

c∗( fi )
dci

dt
dt , (4.1)

so ∫
c

α �

n∑

i�1

∫ b

a

fi (c(t))c′i (t) dt .

4.1. Example. Let U be the punctured plane R2 \ {0}. Let c : [0, 2π] → U be
the usual parametrization of the circle, c(t) � (cos t , sin t), and let α0 be the angle
form,

α0 �

−y dx + x dy

x2 + y2
.

Then c∗(α0) � dt (see Example 3.8), so
∫

c α0 �

∫ 2π
0 dt � 2π.

A path c : [a, b] → U can be reparametrized by substituting a new variable,
t � p(s), where s ranges over another interval [ā, b̄]. We shall assume p to be a
one-to-one mapping from [ā, b̄] onto [a, b] satisfying p′(s) , 0 for ā ≤ s ≤ b̄. Such
a p is called a reparametrization. The path

c ◦ p : [ā, b̄]→ U

has the same image as the original path c, but it is traversed at a different rate.
Since p′(s) , 0 for all s ∈ [ā , b̄] we have either p′(s) > 0 for all s (in which case p is

49
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increasing) or p′(s) < 0 for all s (in which case p is decreasing). If p is increasing,
we say that it preserves the orientation of the path (or that the paths c and c ◦ p have
the same orientation); if p is decreasing, we say that it reverses the orientation (or
that c and c ◦ p have opposite orientations). In the orientation-reversing case, c ◦ p
traverses the path in the opposite direction to c.

4.2. Example. The path c : [0, 2π] → R2 defined by c(t) � (cos t , sin t) repre-
sents the unit circle in the plane, traversed at a constant rate (angular velocity) of
1 radian per second. Let p(s) � 2s. Then p maps [0, π] to [0, 2π] and c ◦ p, re-
garded as a map [0, π]→ R2, represents the same circle, but traversed at 2 radians
per second. (It is important to restrict the domain of p to the interval [0, π]. If
we allowed s to range over [0, 2π], then (cos 2s, sin 2s) would traverse the circle
twice. This is not considered a reparametrization of the original path c.) Now
let p(s) � −s. Then c ◦ p : [0, 2π] → R2 traverses the unit circle in the clockwise
direction. This reparametrization reverses the orientation; the angular velocity is
now −1 radian per second. Finally let p(s) � 2πs2 . Then p maps [0, 1] to [0, 2π]

and c ◦ p : [0, 1]→ R2 runs once counterclockwise through the unit circle, but at a
variable angular velocity.

It turns out that the integral of a form along a path is almost completely
independent of the parametrization.

4.3. Theorem. Let α be a 1-form on U and c : [a, b]→ U a path in U . Let p : [ā, b̄]→
[a, b] be a reparametrization. Then

∫
c◦p
α �



∫
c α if p preserves the orientation,

−
∫

c α if p reverses the orientation.

Proof. It follows from the definition of the integral and from the naturality of
pullbacks (Proposition 3.10(iii)) that∫

c◦p
α �

∫
[ā ,b̄]

(c ◦ p)∗(α) �

∫
[ā ,b̄]

p∗(c∗(α)).

Now let us write c∗(α) � h dt and t � p(s). Then p∗(c∗(α)) � p∗(g dt) � (p∗(g)dp �

p∗(g)(dp/ds) ds, so

∫
c◦p
α �

∫
[ā ,b̄]

p∗(g)
dp

ds
ds �

∫ b̄

ā

g(p(s))p′ (s) ds.

On the other hand,
∫

c α �

∫ b

a g(t) dt, so by the substitution formula, Theorem B.9,
we have

∫
c◦p α � ±

∫
c α, where the + occurs if p′ > 0 and the − if p′ < 0. QED

Interpretation of the integral. Integrals of 1-forms play an important role in
physics and engineering. A path c : [a, b]→ U models a particle travelling through
the region U . Recall from Section 2.5 that to a 1-form α �

∑n
i�1 Fi dxi corresponds

a vector field F �

∑n
i�1 Fiei, which can be thought of as a force field acting on the

particle. Symbolically we write α � F · dx, where we think of dx as an infinitesimal
vector tangent to the path. Thus α represents the work done by the force field along
an infinitesimal vector dx. From (4.1) we see that c∗(α) � F(c(t)) · c′(t) dt. We
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define the work along the path c done by the force F to be the integral∫
c

α �

∫
c

F · dx �

∫ b

a

F(c(t)) · c′(t) dt .

In particular, the work done by the force is zero if the force is perpendicular to the
path, as in the picture on the left. The work done by the force in the picture on the
right is negative.

c

c

Theorem 4.3 can be translated into this language as follows: the work done by the
force does not depend on the rate at which the particle travels along its path, but
only on the path itself and on the direction of travel.

The field F is conservative if it can be written as the gradient of a function,
F � grad(g). The function −g is called a potential for the field and is interpreted as
the potential energy of the particle. In terms of forms this means that α � dg, i.e.
α is exact.

4.2. Integration of exact 1-forms

Integrating an exact 1-form α � dg is easy once the function g is known.

4.4. Theorem (fundamental theorem of calculus in Rn). Let α � dg be an exact
1-form on an open subset U of Rn . Let c : [a, b]→ U be a path. Then

∫
c

α � g(c(b)) − g(c(a)).

Proof. By Theorem 3.11 we have c∗(α) � c∗(dg) � dc∗(g). Writing h(t) �

c∗(g)(t) � g(c(t)) we have c∗(α) � dh, so∫
c

α �

∫
[a ,b]

c∗(α) �

∫ b

a

dh � h(b) − h(a),

where we used the (ordinary) fundamental theorem of calculus, formula (B.1).
Hence

∫
c α � g(c(b)) − g(c(a)). QED

The physical interpretation of this result is that when a particle moves in a
conservative force field, its potential energy decreases by the amount of work done



52 4. INTEGRATION OF 1-FORMS

by the field. This clarifies what it means for a field to be conservative: it means
that the work done is entirely converted into mechanical energy and that none is
dissipated by friction into heat, radiation, etc. Thus the fundamental theorem of
calculus “explains” the law of conservation of energy.

Theorem 4.4 also gives us a necessary criterion for a 1-form on U to be exact.
A path c : [a, b]→ U is called closed if c(a) � c(b).

4.5. Corollary. Let α be an exact 1-form defined on an open subset U of Rn . Then∫
c α � 0 for every closed path c in U .

Proof. Let c : [a, b]→ U be a closed path and let g be a smooth function on U
satisfying dg � α. Then

∫
c α � g(c(b)) − g(c(a)) � 0 by Theorem 4.4. QED

This corollary can be used to detect closed 1-forms that are not exact.

4.6. Example. The angle form α0 ∈ Ω1(R2 \ {0}) of Example 2.10 is closed, but
not exact. Indeed, its integral around the circle is 2π , 0, so by Corollary 4.5 α0

is not exact. Note the contrast with closed 1-forms on Rn , which are always exact!
(See Exercise 2.8.)

The main content of the next theorem is that the necessary criterion of Corollary
4.5 is in fact sufficient for a 1-form to be exact.

4.7. Theorem. Let α be a 1-form on a connected open subset U of Rn . Then the
following statements are equivalent.

(i) α is exact.
(ii)

∫
c α � 0 for all closed paths c.

(iii)
∫

c α depends only on the endpoints of c for every path c in U .

Proof. (i) �⇒ (ii): this is Corollary 4.5.
(ii) �⇒ (iii): assume

∫
c α � 0 for all closed paths c. Let

c1 : [a1 , b1]→ U and c2 : [a2 , b2]→ U

be two paths with the same endpoints, i.e. c1(a1) � c2(a2) and c1(b1) � c2(b2). We
need to show that

∫
c1
α �

∫
c2
α. After reparametrizing c1 and c2 we may assume

that a1 � a2 � 0 and b1 � b2 � 1. Define a new path c by

c(t) �


c1(t) for 0 ≤ t ≤ 1,

c2(2 − t) for 1 ≤ t ≤ 2.

(First traverse c1, then traverse c2 backwards.) Then c is closed, so
∫

c α � 0. But
Theorem 4.3 implies

∫
c α �

∫
c1
α −

∫
c2
α, so

∫
c1
α �

∫
c2
α.

(iii) �⇒ (i): assume that, for all c,
∫

c α depends only on the endpoints of c.
We must define a function g such that α � dg. Fix a point x0 in U . For each point
x in U choose a path cx : [0, 1]→ U which joins x0 to x. Define

g(x) �

∫
cx

α.

We assert that dg is well-defined and equal to α. Write α �

∑n
i�1 fi dxi . We must

show that ∂g/∂xi � fi . From the definition of partial differentiation,

∂g

∂xi
(x) � lim

h→0

g(x + hei) − g(x)

h
� lim

h→0

1

h

(∫
cx+hei

α −
∫

cx

α
)

.
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Now consider a path c̃ composed of two pieces: for −1 ≤ t ≤ 0 travel from x0 to x
along the path cx and then for 0 ≤ t ≤ 1 travel from x to x + hei along the straight
line given by l(t) � x + thei . Then c̃ has the same endpoints as cx+hei

. Therefore∫
cx+hei

α �

∫
c̃ α, and hence

∂g

∂xi
(x) � lim

h→0

1

h

(∫
c̃

α −
∫

cx

α
)

� lim
h→0

1

h

(∫
cx

α +

∫
l

α −
∫

cx

α
)

� lim
h→0

1

h

∫
l

α � lim
h→0

1

h

∫
[0,1]

l∗(α). (4.2)

Let δi , j be the Kronecker delta, which is defined by δi ,i � 1 and δi , j � 0 if i , j. Then
we can write l j (t) � x j + δi , j th, and hence l′

j
(t) � δi , j h. This shows that

l∗(α) �

n∑

j�1

f j (x + thei )dl j �

n∑

j�1

f j (x + thei )l′j (t) dt

�

n∑

j�1

f j (x + thei )δi , j h dt � h fi (x + thei ) dt . (4.3)

Taking equations (4.2) and (4.3) together we find

∂g

∂xi
(x) � lim

h→0

1

h

∫ 1

0

h fi (x + thei ) dt � lim
h→0

∫ 1

0

fi (x + thei ) dt

�

∫ 1

0

lim
h→0

fi (x + thei ) dt �

∫ 1

0

fi (x) dt � fi (x).

This formula shows that g is smooth and that dg � α. This proves that (iii) �⇒
(i), and at the same time it proves that the function g(x) �

∫
cx
α is an antiderivative

of α. QED

Notice that the proof of the theorem tells us how to find an antiderivative of
an exact 1-form α, namely by integrating α along an arbitrary path running from
a base point x0 to a variable point x. This useful fact deserves to be recorded
separately.

4.8. Theorem. Let α be an exact 1-form defined on a connected open subset U of Rn .
Choose a base point x0 in U and for each x in U choose a path cx joining x0 to x. Then the
function g(x) �

∫
cx
α is smooth and satisfies dg � α.

4.9. Example. Let α �

∑n
i�1 fi dxi be a closed 1-form defined on all of Rn . Then

we know that α is exact. One method for finding an antiderivative is explained
in Exercise 2.8. Theorem 4.8 suggests a quicker way: let us choose the origin 0
to be the base point of Rn and for each x let cx : [0, 1] → Rn be the straight path

cx(t) � tx. Then g(x) �
∫

cx
α �

∫ 1

0 c∗x(α) is an antiderivative of α. Since

c∗x(α) �

n∑

i�1

fi (tx) d(txi ) �

n∑

i�1

xi fi (tx) dt

we arrive at

g(x) �

n∑

i�1

xi

∫ 1

0

fi (tx) dt .
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(In Exercise 4.3 you will be asked to verify directly that dg � α.) For instance, let
α � y dx + (z cos yz + x) dy + y cos yz dz be the closed 1-form of Example 2.9. Then

g(x) � x

∫ 1

0

t y dt + y

∫ 1

0

(tz cos t2 yz + tx) dt + z

∫ 1

0

t y cos t2 yz dt

� 2x y

∫ 1

0

t dt + 2yz

∫ 1

0

t cos t2 yz dt

� x y + sin yz.

See Exercises 4.4–4.6 for further applications of this theorem.

4.3. Angle functions and the winding number

In this section we will have a closer look at the angle form and see that it carries
interesting information of a topological nature.

Let x � (x , y) be a nonzero vector in the plane and let θ(x) be the angle between
the positive x-axis and x. Elementary trigonometry tells us that

cos θ(x) �
x

√

x2 + y2
, sin θ(x) �

y
√

x2 + y2
. (4.4)

These equations determine θ(x) up to an integer multiple of 2π, and we will call
any particular solution a choice of angle for x.

Now let U be an open subset of the punctured plane R2 \ {0}. Is it possible to
make a choice of angle θ(x) for each x in U which varies smoothly with x? For
U � R2 \ {0} this would appear to be impossible: the usual choice of angle in the
punctured plane (0 ≤ θ(x) < 2π) has a discontinuity along the positive x-axis,
and there seems to be no way to get rid of this discontinuity by making a cleverer
choice of angle. But it may be possible if U is a smaller open subset, such as the
complement of the positive x-axis in R2 \ {0}. Let us define an angle function on U
to be a smooth function θ : U → R with the property that θ(x) has property (4.4)
for all x ∈ U . Our next result states that an angle function on U exists if and only
if α0 is exact on U , where α0 is the angle form

α0 �

−y dx + x dy

x2 + y2

introduced in Example 2.10.

4.10. Theorem. Let U be a connected open subset of R2 \ {0}.
(i) Let θ : U → R be an angle function. Then dθ � α0.

(ii) Assume that α0 is exact on U . Then there exists an angle function θ on U , which
can be found as follows: choose a base point x0 in U , choose an angle θ0 for x0,
and for each x ∈ U choose a path cx in U from x0 to x. Then θ(x) � θ0 +

∫
cx
α0.

Proof. (i) Define functions ξ and η on the punctured plane by

ξ(x , y) �
x

√

x2 + y2
, η(x , y) �

y
√

x2 + y2
. (4.5)

Observe that
(

ξ(x)

η(x)

)

�

x

‖x‖ , (4.6)
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the unit vector pointing in the direction of x � (x , y). In particular

ξ(x)2 + η(x)2
� 1. (4.7)

We will use the result

α0 � −η dξ + ξ dη (4.8)

of Exercise 2.4. If θ is an angle function on U , then ξ(x) � cos θ(x) and η(x) �

sin θ(x) for all x in U . Substituting this into (4.8) gives

α0 � − sin θ d cos θ + cos θ d sin θ � sin2 θ dθ + cos2 θ dθ � dθ.

(ii) Now assume that α0 is exact on U . It follows from Theorem 4.8 that the
function defined by θ(x) � θ0 +

∫
cx
α0 is smooth and satisfies

dθ � α0 . (4.9)

To prove that θ is an angle function on U it is enough to show that the difference
vector

(

cos θ(x)

sin θ(x)

)

−
(

ξ(x)

η(x)

)

has length 0 for all x. The length squared of the difference vector is equal to

(cos θ − ξ)2 + (sin θ − η)2
� cos2 θ + sin2 θ − 2(ξ cos θ + η sin θ) + ξ2 + η2

� 2 − 2(ξ cos θ + η sin θ),

where we used (4.7). Hence we need to show that the function

u(x) � ξ(x) cos θ(x) + η(x) sin θ(x)

is a constant equal to 1. For x � x0 we have

u(x0) � ξ(x0) cos θ0 + η(x0) sin θ0 � cos2 θ0 + sin2 θ0 � 1,

because by assumption θ0 is a choice of angle for x0. Furthermore, the exterior
derivative of u is

du � cos θ dξ − ξ sin θ dθ + sin θ dη + η cos θ dθ

� cos θ dξ + sin θ dη + (−ξ sin θ + η cos θ)α0 by (4.9)

� cos θ dξ + sin θ dη + (−ξ sin θ + η cos θ)(−η dξ + ξ dη) by (4.8)

�

(

(1 − η2) cos θ + ξη sin θ
)

dξ +
(

ξη cos θ + (1 − ξ2) sin θ
)

dη)

� (ξ cos θ + η sin θ)ξ dξ + (ξ cos θ + η sin θ))η dη by (4.7)

�

1

2
(ξ cos θ + η sin θ) d(ξ2 + η2)

� 0 by (4.7).

Hence, by Lemma 3.12, u is a constant function, so u(x) � 1 for all x in U . QED

4.11. Example. There exists no angle function on the punctured plane, because
α0 is not exact on R2 \ {0} (as was shown in Example 4.6).
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Angle functions along a path. Now let us modify the angle problem by con-
sidering a path c : [a, b]→ R2 \ {0} in the punctured plane and wondering whether
we can make a choice of angle for c(t) which depends smoothly on t ∈ [a, b]. We
define an angle function along c to be a smooth function ϑ : [a, b] → R with the
property that

cos ϑ(t) � ξ(c(t)), sin ϑ(t) � η(c(t))

for all t ∈ [a, b]. The following example shows the difference between this notion
and that of an angle function on an open subset.

4.12. Example. Define c : [a, b]→ R2 \ {0} by c(t) � (cos t , sin t). This is a path
travelling along the unit circle at constant angular velocity 1 from time a to time b.
The function ϑ(t) � t is an angle function along c. The differenceϑ(b)−ϑ(a) � b−a
is the total angle swept out by the path.

In fact an angle function exists along every path in the punctured plane.

4.13. Theorem. Let c : [a, b]→ R2 \ {0} be a path. Choose an angle ϑa for c(a) and
for a ≤ t ≤ b define

ϑ(t) � ϑa +

∫ t

a

c∗(α0).

The ϑ is an angle function along c.

Proof. This proof is nearly the same as that of Theorem 4.10, so we will skip
some details. We will show that the difference vector

(

cos ϑ(t)

sin ϑ(t)

)

−
(

ξ(c(t))

η(c(t))

)

has length 0 for all t ∈ [a, b]. The square of the length is equal to

(cos ϑ − f )2 + (sin ϑ − g)2
� cos2 ϑ + sin2 ϑ − 2( f cos ϑ + g sin ϑ) + f 2 + g2

� 2 − 2u,

where we introduced the abbreviations

f (t) � ξ(c(t)), g(t) � η(c(t)), u(t) � f (t) cos ϑ(t) + g(t) sin ϑ(t),

and where we used that

f 2 + g2
� 1. (4.10)

Therefore it is enough to show that the function u is a constant equal to 1. Now
ϑ(a) � ϑa , so f (a) � cos ϑ(a) and g(a) � sin ϑ(a) (because ϑa is a choice of angle
for c(a)), and hence u(a) � cos2 ϑa + sin2 ϑa � 1. So we can finish the proof by
showing that u′(t) � 0 for all t. Using (4.8) we find

c∗(α0) � c∗(−η dξ + ξ dη) � −c∗(η) dc∗(ξ) + c∗(ξ) dc∗(η)

� −g d f + f dg � (−g f ′ + f g′) dt ,

and therefore, by the fundamental theorem of calculus,

ϑ′ � −g f ′ + f g′. (4.11)



4.3. ANGLE FUNCTIONS AND THE WINDING NUMBER 57

This yields

u′ � f ′ cos ϑ + g′ sin ϑ + (− f sin ϑ + g cos ϑ)ϑ′

� f ′ cos ϑ + g′ sin ϑ + (− f sin ϑ + g cos ϑ)(−g f ′ + f g′) by (4.11)

�

(

(1 − g2) cos ϑ + f g sin ϑ
)

f ′ +
(

f g cos ϑ + (1 − f 2) sin ϑ
)

g′

� ( f cos ϑ + g sin ϑ) f f ′ + ( f cos ϑ + g sin ϑ))g g′ by (4.10)

�

1

2
( f cos ϑ + g sin ϑ)( f 2 + g2)′

� 0 by (4.10).

QED

It is helpful to think of the vector (ξ(c(t)), η(c(t))) � c(t)/‖c(t)‖ as a compass
held by a traveller wandering through a magnetized punctured plane. The punc-
ture represents the magnetic north pole, so the needle indicates the direction of
the traveller’s position vector c(t).

0 0

As t increases from a to b, the needle starts at the angle ϑ(a) � ϑa , it moves around
the compass, and ends up at the final angle ϑ(b). The difference ϑ(b) − ϑ(a)

measures the net angle swept out by the needle, where a counterclockwise motion
counts as positive and a clockwise motion counts as negative. The formula for
ϑ given by Theorem 4.13 shows that this difference can also be expressed as an
integral,

ϑ(b) − ϑ(a) �

∫ b

a

c∗(α0) �

∫
c

α0 . (4.12)

4.14. Corollary. If c : [a, b] → U is a closed path, then
∫

c α0 � 2πk, where k is an
integer.

Proof. Because of (4.12) it suffices to show that ϑ(b)−ϑ(a) � 2πk. By Theorem
4.13, ϑ is an angle function along c, so the assumption that c is closed (c(a) � c(b))
implies

(

cos ϑ(a)

sin ϑ(a)

)

�

(

ξ(c(a))

η(c(a))

)

�

(

ξ(c(b))

η(c(b)

)

�

(

cos ϑ(b)

sin ϑ(b)

)

.

In other words cos ϑ(a) � cos ϑ(b) and sin ϑ(a) � sin ϑ(b), so ϑ(a) and ϑ(b) differ
by an integer multiple of 2π. QED
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The integer k � (2π)−1
∫

c α0 measures how many times the path loops around
the origin. It is called the winding number of the closed path c about the origin, and
we will denote it by w(c, 0).

w(c, 0) � winding number of c about origin �

1

2π

∫
c

α0 . (4.13)

4.15. Example. It follows from the calculation in Example 4.1 that the winding
number of the circle c(t) � (cos t , sin t) (0 ≤ t ≤ 2π) is equal to 1.

Exercises

4.1. Consider the path c : [0, 1
2π]→ R2 defined by c(t) � (a cos t , b sin t), where a and

b are positive constants. Let α � xy dx + x2 y dy.

(i) Sketch the path c for a � 2 and b � 1.
(ii) Find

∫
c α (for arbitrary a and b).

4.2. Restate Theorem 4.7 in terms of force fields, potentials and energy. Explain why
the result is plausible on physical grounds.

4.3. Let α �

∑n
i�1

fi dxi be a closed 1-form defined on all of Rn .

(i) Verify that the function g(x) �
∑n

i�1
xi

∫ 1
0 fi (tx) dt given in Example 4.9 satisfies

dg � α.
(ii) In Exercise 2.8 a different formula for the antiderivative g of α was given. Show

that that formula can be interpreted as an integral g(x) �

∫
cx
α of α along a

suitable path cx from the origin to x.

4.4. Consider the 1-form α � ‖x‖a ∑n
i�1

xi dxi on Rn \ {0}, where a is a real constant.
For every x , 0 let cx be the line segment starting at the origin and ending at x.

(i) Show that α is closed for any value of a.
(ii) Determine for which values of a the function g(x) �

∫
cx
α is well-defined and

compute it.
(iii) For the values of a you found in part (ii) check that dg � α.

4.5. Let α ∈ Ω1(Rn \ {0}) be the 1-form of Exercise 4.4. Now let cx be the half-line
pointing from x radially outward to infinity. Parametrize cx by travelling from infinity
inward to x. (You can do this by using an infinite time interval (−∞, 0] in such a way that
cx(0) � x.)

(i) Determine for which values of a the function g(x) �

∫
cx
α is well-defined and

compute it.
(ii) For the values of a you found in part (i) check that dg � α.

(iii) Show how to recover from this computation the potential energy for Newton’s
gravitational force. (See Exercise B.5.)

4.6. Let α ∈ Ω1(Rn \ {0}) be as in Exercise 4.4. There is one value of a which is not
covered by Exercises 4.4 and 4.5. For this value of a find a smooth function g on Rn − {0}
such that dg � α.

4.7. Calculate directly from the definition the winding number about the origin of the

path c : [0, 2π]→ R2 given by c(t) � (cos kt , sin kt).

4.8. Let x0 be a point in R2 and c a closed path which does not pass through x0. How
would you define the winding number w(c, x0) of c around x0? Try to formulate two
different definitions: a “geometric” definition and a formula in terms of an integral over c
of a certain 1-form analogous to formula (4.13).
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4.9. Let c : [0, 1] → R2 \ {0} be a closed path with winding number k. Determine the

winding numbers of the following paths c̃ : [0, 1]→ R2 \ {0} by using the formula, and then
explain the answer by appealing to geometric intuition.

(i) c̃(t) � c(1 − t);
(ii) c̃(t) � ρ(t)c(t), where ρ : [0, 1]→ (0,∞) is a function satisfying ρ(0) � ρ(1);

(iii) c̃(t) � ‖c(t)‖−1c(t);
(iv) c̃(t) � φ(c(t)), where φ(x, y) � (y , x);

(v) c̃(t) � φ(c(t)), where φ(x, y) �
1

x2 + y2
(x, −y).

4.10. For each of the following closed paths c : [0, 2π] → R2 \ {0} set up the integral
defining the winding number about the origin. Evaluate the integral if you can (but don’t
give up too soon). If not, sketch the path (the use of software is allowed) and obtain the
answer geometrically.

(i) c(t) � (a cos t , b sin t), where a > 0 and b > 0;
(ii) c(t) � (cos t − 2, sin t);

(iii) c(t) � (cos3 t , sin3 t);
(iv) c(t) �

(

(a cos t + b) cos t + (b − a)/2, (a cos t + b) sin t
)

, where 0 < b < a.

4.11. Let b > 0 and a , 0 be constants with |a | , b. Define a path c : [0, 2π]→ R2 \ {0}
by

c(t) �

(

(a + b) cos t + a cos
a + b

a
t , (a + b) sin t + a sin

a + b

a
t
)

.

(i) Sketch the path c for a � ±b/3.
(ii) For what values of a and b is the path closed?

(iii) Assume c is closed. Set up the integral defining the winding number of c around
the origin and evaluate it. If you get stuck, find the answer geometrically.

4.12. Let U be an open subset of R2 and let F � F1e1 +F2e2 : U → R2 be a smooth vector
field. The differential form

β �

F1dF2 − F2dF1

F2
1

+ F2
2

is well-defined at all points x of U where F(x) , 0. Let c be a parametrized circle contained
in U, traversed once in the counterclockwise direction. Assume that F(x) , 0 for all x ∈ c.
The index of F relative to c is

index(F, c) �
1

2π

∫
c
β.

Prove the following assertions.

(i) β � F∗(α0), where α0 is the angle form (−y dx + x dy)
/ (

x2 + y2) ;
(ii) β is closed;

(iii) index(F, c) � w(F ◦ c, 0), the winding number of the path F ◦ c about the origin;
(iv) index(F, c) is an integer.
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4.13. (i) Find the indices of the following vector fields around the indicated
circles.

(ii) Draw diagrams of three vector fields in the plane with respective indices 0, 2 and
4 around suitable circles.

4.14. Let c : [a, b]→ R2 be a path. For each t ∈ [a, b] the velocity vector c′(t) is tangent

to c at the point c(t). The map c′ : [a, b] → R2 is called the derived path of c. Let us assume
that both c and c′ are closed, i.e. c(a) � c(b) and c′(a) � c′(b). Let us also assume that the
path c is regular in the sense that c′(t) , 0 for all t. The quantity

τ(c) �
1

2π

∫
c′
α0

is then well-defined and is called the turning number of c. Here α0 denotes the angle form

on R2 \ {0}.
(i) Show that the turning number is an integer. Discuss its geometric meaning and

how it differs from the winding number.
(ii) Show that the turning number changes sign under reversal of orientation in the

sense that τ(c̃) � −τ(c), where c̃(t) � c(a + b − t) for a ≤ t ≤ b.
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(iii) For each of the following four paths c find the turning number τ(c), as well as
the winding number w(c, •) about the black point •.





CHAPTER 5

Integration and Stokes’ theorem

5.1. Integration of forms over chains

In this chapter we generalize the theory of Chapter 4 to higher dimensions. In
the same way that 1-forms are integrated over parametrized curves, k-forms can be
integrated over k-dimensional parametrized regions. Let U be an open subset of
Rn and let α be a k-form on U . The simplest k-dimensional analogue of an interval
is a rectangular block in Rk whose edges are parallel to the coordinate axes. This is
a set of the form

R � [a1 , b1] × [a2 , b2] × · · · × [ak , bk ] � { t ∈ Rk | ai ≤ ti ≤ bi for 1 ≤ i ≤ k },

where ai < bi . The k-dimensional analogue of a parametrized path is a smooth
map c : R → U . Although the image c(R) may look very different from the block
R, we think of the map c as a parametrization of the subset c(R) of U : each choice
of a point t in R gives rise to a point c(t) in c(R). The pullback c∗(α) is a k-form
on R and therefore looks like h(t) dt1 dt2 · · · dtk for some function h : R → R. The
integral of α over c is defined by

∫
c

α �

∫
R

c∗(α) �

∫ bk

ak

· · ·
∫ b2

a2

∫ b1

a1

h(t) dt1 dt2 · · · dtk .

(The definition of the integral makes sense if we replace the rectangular block R

by more general shapes in Rk , such as skew blocks, k-dimensional balls, cylinders,
etc. In fact any compact subset of Rk will do.)

For k � 1 this reproduces the definition given in Chapter 4.
The case k � 0 is also worth examining. A zero-dimensional “block” R in

R0
� {0} is just the point 0. We can therefore think of a map c : R → U as a

collection {x} consisting of a single point x � c(0) in U . The integral of a 0-form
(function) f over c is by definition the value of f at x,∫

c

f � f (x).

As in the one-dimensional case, integrals of k-forms are almost completely
unaffected by a change of variables. Let

R̄ � [ā1 , b̄1] × [ā2 , b̄2] × · · · × [āk , b̄k ]

be a second rectangular block. A reparametrization is a map p : R̄→ R satisfying the
following conditions: p is bĳective (i.e. one-to-one and onto) and the k × k-matrix
Dp(s) is invertible for all s ∈ R̄. Then det(Dp(s)) , 0 for all s ∈ R̄, so either
det(Dp(s)) > 0 for all s or det(Dp(s)) < 0 for all s. In these cases we say that the
reparametrizion preserves, respectively reverses the orientation of c.

63
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5.1. Theorem. Let α be a k-form on U and c : R → U a smooth map. Let p : R̄ → R
be a reparametrization. Then

∫
c◦p
α �



∫
c α if p preserves the orientation,

−
∫

c α if p reverses the orientation.

Proof. Almost verbatim the same proof as for k � 1 (Theorem 4.3). It follows
from the definition of the integral and from the naturality of pullbacks, Proposition
3.10(iii), that ∫

c◦p
α �

∫
R̄

(c ◦ p)∗(α) �

∫
R̄

p∗(c∗(α)).

Now let us write c∗(α) � h dt1 dt2 · · · dtk and t � p(s). Then

p∗(c∗(α)) � p∗(h dt1 dt2 · · · dtk ) � p∗(h) det(Dp) ds1 ds2 · · · dsk

by Theorem 3.14, so∫
c◦p
α �

∫
R̄

h(p(s)) det(Dp(s)) ds1 ds2 · · · dsk .

On the other hand,
∫

c α �

∫
R h(t) dt1 dt2 · · · dtk, so by the substitution formula,

Theorem B.9, we have
∫

c◦p α � ±
∫

c α, where the + occurs if det(Dp) > 0 and the −
if det(Dp) < 0. QED

5.2. Example. The unit interval is the interval [0, 1] in the real line. Any path
c : [a, b] → U can be reparametrized to a path c ◦ p : [0, 1] → U by means of the
reparametrization p(s) � (b−a)s+a. Similarly, the unit cube in Rk is the rectangular
block

[0, 1]k
� { t ∈ Rk | ti ∈ [0, 1] for 1 ≤ i ≤ k }.

Let R be any other block, given by ai ≤ ti ≤ bi . Define p : [0, 1]k → R by p(s) �

As + a, where

A �

*....
,

b1 − a1 0 . . . 0
0 b2 − a2 . . . 0
...

...
. . .

...
0 0 . . . bk − ak

+////
-

and a �

*....
,

a1

a2

...
ak

+////
-
.

(“Squeeze the unit cube until it has the same edgelengths as R and then translate
it to the same position as R.”) Then p is one-to-one and onto and Dp(s) � A,
so det(Dp(s)) � det(A) � vol(R) > 0 for all s, so p is an orientation-preserving
reparametrization. Hence

∫
c◦p α �

∫
c α for any k-form α on U .

5.3. Remark. A useful fact you learned in calculus is that one may interchange
the order of integration in a multiple integral, as in the formula

∫ b2

a2

∫ b1

a1

f (t1 , t2) dt1 dt2 �

∫ b1

a1

∫ b2

a2

f (t1 , t2) dt2 dt1. (5.1)

(This follows for instance from the substitution formula, Theorem B.9.) On the other
hand, we have also learned that f (t1 , t2) dt2 dt1 � − f (t1, t2) dt1 dt2. How can this be
squared with formula (5.1)? The explanation is as follows. Let α � f (t1 , t2) dt1 dt2.
Then the left-hand side of formula (5.1) is the integral of α over c : [a1 , b1]×[a2, b2]→
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R2, the parametrization of the rectangle given by c(t1 , t2) � (t1 , t2). The right-hand
side is the integral of −α not over c, but over c ◦ p, where

p : [a2 , b2] × [a1, b1]→ [a1 , b1] × [a2 , b2]

is the reparametrization p(s1 , s2) � (s2 , s1). Since p reverses the orientation, Theo-
rem 5.1 says that

∫
c◦p α � −

∫
c α; in other words

∫
c α �

∫
c◦p (−α), which is exactly

formula (5.1). Analogously we have

∫
[0,1]k

f (t1 , t2, . . . , tk) dt1 dt2 · · · dtk �

∫
[0,1]k

f (t1 , t2, . . . , tk ) dti dt1 dt2 · · · d̂t i · · · dtk

for any i.

We see from Example 5.2 that an integral over any rectangular block can be
written as an integral over the unit cube. For this reason, from now on we shall
usually take R to be the unit cube. A smooth map c : [0, 1]k → U is called a k-cube
in U (or sometimes a singular k-cube, the word singular meaning that the map c is
not assumed to be one-to-one, so that the image can have self-intersections.)

It is often necessary to integrate over regions that are made up of several pieces.
A k-chain in U is a formal linear combination of k-cubes,

c � a1c1 + a2c2 + · · · + ap cp ,

where a1, a2 , . . . , ap are real coefficients and c1, c2 , . . . , cp are k-cubes. For any
k-form α we then define

∫
c

α �

p
∑

q�1

aq

∫
cq

α.

(In the language of linear algebra, the k-chains form a vector space with a basis
consisting of the k-cubes. Integration, which is a priori only defined on cubes, is
extended to chains in such a way as to be linear.)

Recall that a 0-cube is nothing but a singleton {x} consisting of a single point
x in U . Thus a 0-chain is a formal linear combination of points, c �

∑p

q�1
aq {xq }.

A good way to think of a 0-chain c is as a collection of p point charges, with an
electric charge aq placed at the point xq . (You must carefully distinguish between
the formal linear combination

∑p

q�1
aq {xq}, which represents a distribution of point

charges, and the linear combination of vectors
∑p

q�1
aqxq, which represents a vector

in Rn .) The integral of a function f over the 0-chain is by definition

∫
c

f �

p
∑

q�1

aq

∫
{xq }

f �

p
∑

q�1

aq f (xq ).

Likewise, a k-chain
∑p

q�1
aqcq can be pictured as a charge distribution, with an

electric charge aq spread along the k-dimensional “patch” cq .
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5.2. The boundary of a chain

Consider a path (“1-cube”) c : [0, 1] → U . Its boundary is by definition the
0-chain ∂c defined by ∂c � {c(1)} − {c(0)}.

−{c(0)}

+{c(1)}

c

We will define the boundary ∂c of a k-cube c : [0, 1]k → U for k ≥ 1 similarly,
namely as an alternating sum over the k − 1-dimensional faces of c. There are 2k
such faces, which can be conveniently labelled as follows. For t � (t1 , t2, . . . , tk−1)

in [0, 1]k−1 and for i � 1, 2, . . . , k put

ci ,0(t) � c(t1 , t2, . . . , ti−1, 0, ti , . . . , tk−1),

ci ,1(t) � c(t1 , t2, . . . , ti−1, 1, ti , . . . , tk−1).

(“Insert 0, resp. 1 in the i-th slot”.)
For instance, a 2-cube c : [0, 1]2 → U has four edges, namely the “left” edge

c1,0, the “right” edge c1,1, the “bottom” edge c2,0, and the “top” edge c2,1.

c

c2,0

c1,1

c2,1

c1,0

The picture suggests that we should define ∂c � c2,0 + c1,1 − c2,1 − c1,0, because
the orientation of the 2-cube goes “with” the edges c2,0 and c1,1 and “against” the
edges c2,1 and c1,0. (Alternatively we could reverse the orientations of the top and
left edges by defining c̄2,1(t) � c(1 − t , 1) and c̄1,0(t) � c(0, 1 − t), and then put
∂c � c2,0 + c1,1 + c̄2,1 + c̄1,0. This corresponds to the following picture:

c

c2,0

c1,1

c̄2,1

c̄1,0

This would work equally well, but is technically less convenient.)
For any k ≥ 1 we now define the boundary of a k-cube c : [0, 1]k → U by

∂c �

k∑

i�1

(−1)i (ci ,0 − ci ,1) �

k∑

i�1

∑

ρ�0,1

(−1)i+ρci ,ρ .

This definition is consistent with the one- and two-dimensional cases considered
above. The boundary of a 0-cube is by convention equal to 0. For an arbitrary
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k-chain c we define the boundary ∂c by writing c as a formal linear combination
c �

∑

q aq cq of k-cubes cq with real coefficients aq , and by putting ∂c �

∑

q aq∂cq .
This definition makes ∂ a linear map from k-chains to k − 1-chains.

There are a number of curious similarities between the boundary operator ∂
and the exterior derivative d, the most important of which is the following. (There
are also many differences, such as the fact that d raises the degree of a form by 1,
whereas ∂ lowers the dimension of a chain by 1.)

5.4. Proposition. ∂(∂c) � 0 for every k-chain c in U . In short,

∂2
� 0.

Proof. By linearity of ∂ we may assume without loss of generality that c is a
single k-cube c : [0, 1]k → U . Then the k − 2-chain ∂(∂c) is given by

∂(∂c) � ∂
k∑

i�1

∑

ρ�0,1

(−1)i+ρci ,ρ �

k∑

i�1

∑

ρ�0,1

(−1)i+ρ∂ci ,ρ

�

k∑

i�1

k−1∑

j�1

∑

ρ,σ�0,1

(−1)i+ j+ρ+σ(ci ,ρ) j,σ .

The double sum over i and j can be rearranged as a sum over i ≤ j and a sum over
i > j to give

∂(∂c) �
∑

1≤i≤ j≤k−1

∑

ρ,σ�0,1

(−1)i+ j+ρ+σ(ci ,ρ ) j,σ

+
∑

1≤ j<i≤k

∑

ρ,σ�0,1

(−1)i+ j+ρ+σ(ci ,ρ) j,σ . (5.2)

Let t � (t1, t2, . . . , tk−2) ∈ [0, 1]k−2 and let ρ and σ be 0 or 1. Then for 1 ≤ i ≤ j ≤ k−1
we have

(ci ,ρ) j,σ(t1 , t2, . . . , tk−2) � ci ,ρ (t1, t2, . . . , t j−1, σ, t j , . . . , tk−2)

� c(t1 , t2, . . . , ti−1, ρ, ti , . . . , t j−1, σ, t j , . . . , tk−2).

On the other hand,

(c j+1,σ )i ,ρ(t1, t2, . . . , tk−2) � c j+1,σ (t1 , t2, . . . , ti−1, ρ, ti , . . . , tk−2)

� c(t1 , t2, . . . , ti−1, ρ, ti , . . . , t j−1, σ, t j , . . . , tk−2),

because in the vector (t1, t2, . . . , ti−1, ρ, ti , . . . , tk−2) the entry t j occupies the j +1-st
slot! We conclude that (ci ,ρ) j,σ � (c j+1,σ)i ,ρ for 1 ≤ i ≤ j ≤ k − 1. It follows that

∑

1≤i≤ j≤k−1

∑

ρ,σ�0,1

(−1)i+ j+ρ+σ(ci ,ρ ) j,σ �

∑

1≤i≤ j≤k−1

∑

ρ,σ�0,1

(−1)i+ j+ρ+σ(c j+1,σ )i ,ρ

�

∑

1≤s<r≤k

∑

µ,ν�0,1

(−1)s+r−1+ν+µ(cr,µ)s ,ν

� −
∑

1≤s<r≤k

∑

µ,ν�0,1

(−1)s+r+µ+ν(cr,µ)s ,ν ,
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where in the first line we substituted (ci ,ρ) j,σ � (c j+1,σ )i ,ρ and in the second line we
substituted r � j + 1, s � i, µ � σ, and ν � ρ. Thus the two terms on the right-hand
side of (5.2) cancel out. QED

5.3. Cycles and boundaries

Let k ≥ 1. A k-cube c is degenerate if c(t1 , . . . , tk ) is independent of ti for some
i. A k-chain c is degenerate if it is a linear combination of degenerate cubes. In
particular, a degenerate 1-cube is a constant path. The work done by a force field
on a motionless particle is 0. More generally we have the following.

5.5. Lemma. Let α be a k-form and c a degenerate k-chain. Then
∫

c α � 0.

Proof. By linearity we may assume that c is a degenerate cube. Suppose c is
constant as a function of ti. Then

c(t1 , . . . , ti , . . . , tk) � c(t1 , . . . , 0, . . . , tk ) � g
(

f (t1 , . . . , ti , . . . , tk )
)

,

where f : [0, 1]k → [0, 1]k−1 and g : [0, 1]k−1→ U are given respectively by

f (t1 , . . . , ti , . . . , tk) � (t1 , . . . , t̂i , . . . , tk ),

g(s1 , . . . , sk−1) � c(s1 , . . . , si−1, 0, si+1, . . . , sk−1).

Now g∗(α) is a k-form on [0, 1]k−1 and hence equal to 0, and so

c∗(α) � f ∗(g∗(α)) � 0.

We conclude that
∫

c α �

∫
[0,1]k c∗(α) � 0. QED

So degenerate chains are irrelevant in so far as integration is concerned. This
motivates the following definition. A k-chain c is closed, or a cycle, if ∂c is a
degenerate k − 1-chain. A k-chain c is a boundary if c � ∂b + a for some k + 1-chain
b and some degenerate k-chain a.

5.6. Example. If c1 and c2 are paths arranged head to tail as in the picture below,
then ∂(c1 + c2) � 0, so c1 + c2 is a 1-cycle. The closed path c satisfies ∂c � 0, so it is
a 1-cycle as well.

c1

c2

c

5.7. Example. The 2-cube c : [0, 1]2 → R3 defined by

c(t1 , t2) � (cos 2πt1 sinπt2 , cos 2πt1 sin πt2 , cosπt2).

parametrizes the unit sphere. The left and right edges of the unit square are
mapped onto a single meridian of the sphere, the bottom edge is mapped to the
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north pole, and the top edge to the south pole.

c

The sphere has no boundary, so one might expect that c is a cycle. Indeed, we have

c1,0(t) � c1,1(t) � (sin πt , sin πt , cos πt), c2,0(t) � (0, 0, 1), c2,1(t) � (0, 0,−1),

and therefore

∂c � −c1,0 + c1,1 + c2,0 − c2,1 � c2,0 − c2,1

is a degenerate 1-chain and c is a cycle.

5.8. Example. Let c : [0, 1] → R2 be the path c(t) � (cos 2πt , sin 2πt). This is
a closed 1-cube, which parametrizes the unit circle. The circle is the boundary of
the disc of radius 1 and therefore it is reasonable to expect that the 1-cube c is a
boundary. To show that this is the case we will display a 2-cube b and a constant
1-chain a satisfying c � ∂b + a. The 2-cube b is defined by “shrinking c to a point”,
b(t1 , t2) � (1 − t2)c(t1) for (t1, t2) in the unit square. Then

b(t1 , 0) � c(t1), b(0, t2) � b(1, t2) � (1 − t2 , 0), b(t1 , 1) � (0, 0),

so that ∂b � c − a, where a is the constant path located at the origin. Therefore
c � ∂b + a, which proves that c is a boundary. You may wonder whether we really
need the degenerate path a. Isn’t it possible to find a 2-chain b with the property
that c � ∂b? Exercise 5.2 shows that this is not the case.

5.9. Lemma. The boundary of a degenerate k-chain is a degenerate k − 1-chain.

Proof. By linearity it suffices to consider the case of a degenerate k-cube c.
Suppose c is constant as a function of ti. Then ci ,0 � ci ,1, so

∂c �

∑

j,i

(−1) j (c j,0 − c j,1).

Let t � (t1 , t2, . . . , tk−1). For j > i the cubes c j,0(t) and c j,1(t) are independent of
ti and for j < i they are independent of ti−1. So ∂c is a combination of degenerate
k − 1-cubes and hence is degenerate. QED

5.10. Corollary. Every boundary is a cycle.

Proof. Suppose c � ∂b + a with a degenerate. Then by Lemma 5.5 ∂c �

∂(∂b) + ∂a � ∂a, where we used Proposition 5.4. Lemma 5.9 says that ∂a is
degenerate, and therefore so is ∂c. QED

In the same way that a closed form is not necessarily exact, it may happen that
a 1-cycle is not a boundary. See Example 5.13.
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5.4. Stokes’ theorem

In the language of chains and boundaries we can rewrite the fundamental
theorem of calculus, Theorem 4.4, as follows:∫

c

dg � g(c(1)) − g(c(0)) �

∫
{c(1)}

g −
∫
{c(0)}

g �

∫
{c(1)}−{c(0)}

g �

∫
∂c

g ,

i.e.
∫

c dg �

∫
∂c g. This is the form in which the fundamental theorem of calculus

generalizes to higher dimensions. This generalization is perhaps the neatest rela-
tionship between the exterior derivative and the boundary operator. It contains
as special cases the classical integration formulas of vector calculus (Green, Gauss
and Stokes) and for that reason has Stokes’ name attached to it, although it would
perhaps be better to call it the “fundamental theorem of multivariable calculus”.

5.11. Theorem (Stokes’ theorem). Let α be a k − 1-form on an open subset U of Rn

and let c be a k-chain in U . Then
∫

c

dα �

∫
∂c

α.

Proof. Let us assume, as we may, that c : [0, 1]k → U is a single k-cube. By the
definition of the integral and by Theorem 3.11 we have∫

c

dα �

∫
[0,1]k

c∗(dα) �

∫
[0,1]k

dc∗(α).

Since c∗(α) is a k − 1-form on [0, 1]k, it can be written as

c∗(α) �

k∑

i�1

gi dt1 dt2 · · · d̂t i · · · dtk

for certain functions g1, g2 , . . . , gk defined on [0, 1]k. Therefore

∫
c

dα �

k∑

i�1

∫
[0,1]k

d
(

gi dt1 dt2 · · · d̂t i · · · dtk
)

�

k∑

i�1

(−1)i+1

∫
[0,1]k

∂gi

∂ti
dt1 dt2 · · · dtk .

Changing the order of integration (see Remark 5.3) and subsequently applying the
fundamental theorem of calculus in one variable, formula (B.1), gives

∫
[0,1]k

∂gi

∂ti
dt1 dt2 · · · dtk �

∫
[0,1]k

∂gi

∂ti
dti dt1 dt2 · · · d̂t i · · · dtk

�

∫
[0,1]k−1

(

gi (t1, . . . , ti−1, 1, ti+1, . . . , tk)

− gi (t1 , . . . , ti−1, 0, ti+1, . . . , tk )
)

dt1 dt2 · · · d̂t i · · · dtk .

The forms

gi (t1 , . . . , ti−1, 1, ti+1, . . . , tk ) dt1 dt2 · · · d̂t i · · · dtk and

gi (t1 , . . . , ti−1, 0, ti+1, . . . , tk ) dt1 dt2 · · · d̂t i · · · dtk
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are nothing but c∗
i ,1

(α), resp. c∗
i ,0

(α). Accordingly,

∫
c

dα �

k∑

i�1

(−1)i+1

∫
[0,1]k

∂gi

∂ti
dti dt1 dt2 · · · d̂t i · · · dtk

�

k∑

i�1

(−1)i+1

∫
[0,1]k−1

(

c∗i ,1(α) − c∗i ,0(α)
)

�

k∑

i�1

∑

ρ�0,1

(−1)i+ρ

∫
[0,1]k−1

c∗i ,ρ(α)

�

k∑

i�1

∑

ρ�0,1

(−1)i+ρ

∫
ci,ρ

α �

∫
∂c

α,

which proves the result. QED

5.12. Corollary. Let U be an open subset of Rn , let c be a k-chain in U , and let α be
a k-form on U . Then

∫
c α � 0 if either of the following two conditions holds:

(i) c is a cycle and α is exact; or
(ii) c is a boundary and α is closed.

Proof. (i) If c is a cycle, then ∂c is a degenerate k − 1-chain. If α is exact, then
α � dβ for some k − 1-form β. Therefore

∫
c α �

∫
c dβ �

∫
∂c β � 0 by Stokes’ theorem

and by Lemma 5.5.
(ii) If c is a boundary, then c � ∂b+a for some k+1-chain b and some degenerate

k-chain a. If α is closed, then dα � 0. Therefore
∫

c α �

∫
∂b+a α �

∫
b dα +

∫
a α � 0 by

Stokes’ theorem and by Lemma 5.5. QED

5.13. Example. The unit circle c(t) � (cos 2πt , sin 2πt) (0 ≤ t ≤ 1) is a 1-cycle
in the punctured plane U � R2 \ {0}. Considered as a chain in R2 it is also a
boundary, as we saw in Example 5.8. However, we claim that it is not a boundary
in U : it is impossible to find a 2-chain b and a degenerate 1-chain a both contained
in U such that c � ∂b + a. Indeed, suppose this was possible. Then

∫
c α0 � 0 by

Corollary 5.12, where α0 is the angle form, because α0 is closed. On the other hand,
by Example 4.1 we have

∫
c α0 � 2π. This is a contradiction, so we conclude that

c is not a boundary in U . The presence of the puncture in U is responsible both
for the existence of the non-exact closed 1-form α0 (see Example 4.6) and for the
non-bounding closed 1-chain c.

Exercises

5.1. Let U be an open subset of Rn , V an open subset of Rm and φ : U → V a smooth
map. Let c be a k-cube in U and α a k-form on V . Prove that

∫
c φ
∗(α) �

∫
φ◦c α.

5.2. Let U be an open subset of Rn .

(i) Let b be a k + 1-chain in U. In Section 5.2 we defined the boundary of b as a
certain linear combination of k-cubes, ∂b �

∑

i ai ci . Prove that
∑

i ai � 0.
(ii) Let c be a k-cube in U. Prove that there exists no k + 1-chain b in U satisfying

∂b � c.

5.3. Define a 2-cube c : [0, 1]2 → R3 by c(t1 , t2) �

(

t2
1
, t1t2 , t

2
2

)

, and let α � x1 dx2 +

x1 dx3 + x2 dx3.
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(i) Sketch the image of c.
(ii) Calculate both

∫
c dα and

∫
∂c α and check that they are equal.

5.4. Define a 3-cube c : [0, 1]3 → R3 by c(t1 , t2 , t3) � (t2t3 , t1t3 , t1t2), and let α �

x1 dx2 dx3 . Calculate both
∫

c dα and
∫
∂c α and check that they are equal.

5.5. Using polar coordinates in n dimensions (see Exercise 3.19) write the n − 1-dimen-

sional unit sphere Sn−1 in Rn as the image of an n − 1-cube c. (The domain of c will not be

the unit cube in Rn−1, but a rectangular block R. Choose R in such a way as to cover the
sphere as economically as possible.) For n � 2, 3, 4, calculate the boundary ∂c and show
that c is a cycle. (See also Example 5.7.)

5.6. Deduce the following classical integration formulas from the generalized version
of Stokes’ theorem. All functions, vector fields, chains etc. are smooth and are defined in an
open subset U of Rn . (Some formulas hold only for special values of n, as indicated.)

(i)

∫
c

grad(g) · dx � g(c(1)) − g(c(0)) for any function g and any path c.

(ii) Green’s formula:

∫
c

( ∂g

∂x
−
∂ f

∂y

)

dx dy �

∫
∂c

( f dx + g dy) for any functions f , g

and any 2-chain c. (Here n � 2.)

(iii) Gauss’ formula:

∫
c

div(F) dx1 dx2 · · · dxn �

∫
∂c

F · ∗dx for any vector field F and

any n-chain c.

(iv) Stokes’ formula:

∫
c

curl(F) · ∗dx �

∫
∂c

F · dx for any vector field F and any 2-chain

c. (Here n � 3.)

In parts (iii) and (iv) we use the notations dx and ∗dx explained in Section 2.5. We shall give
a geometric interpretation of the entity ∗dx in terms of volume forms later on. (See Corollary
8.17.)

5.7. An Rr-valued k-form on an open subset U of Rn is a vector

α �

*.....
,

α1
α2
...
αr

+/////
-
,

whose entries α1, α2 , . . . , αr are ordinary k-forms defined on U. The number r can be any
nonnegative integer and does not have to be related to n or k. Sometimes we leave the
value of r unspecified and speak of α as a vector-valued k-form. Examples of vector-valued
differential forms are the Rn-valued 1-form dx and the Rn-valued n − 1-form ∗dx on Rn

introduced in Section 2.5. The integral of an Rr-valued k-form α over a k-chain c in U is
defined by

∫
c
α �

*.....
,

∫
c α1∫
c α2
...∫

c αr

+/////
-
.

This integral is a vector in Rr . Prove the following extensions of Gauss’ divergence formula
to vector-valued forms.

(i) The gradient version:

∫
c

grad( f ) dx1 dx2 · · · dxn �

∫
∂c

f ∗dx for any function f

and any n-chain c. (Here r � n.)
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(ii) The curl version:

∫
c

curl(F) dx1 dx2 dx3 � −
∫
∂c

F × dx for any vector field F and

any 3-chain c. (Here r � n � 3.)

Both formulas can be deduced from Exercise 5.6(iii) by considering each component of the
vector-valued integrals separately. Gauss’ formulas look more suggestive if we employ the
nabla notation of vector calculus. Writing ∇ f � grad( f ), ∇ · F � div(F) and ∇ × F � curl(F)

we get: ∫
c
∇ · F dx1 dx2 · · · dxn �

∫
∂c

F · ∗dx

∫
c
∇ f dx1 dx2 · · · dxn �

∫
∂c

f ∗dx

∫
c
∇ × F dx1 dx2 dx3 � −

∫
∂c

F × ∗dx.

5.8. Prove the following extensions of Stokes’ formula to R3-valued forms on R3. (See
Exercise 5.7 for an explanation of vector-valued forms.)

(i) The gradient version:

∫
c

grad( f ) × ∗dx � −
∫
∂c

f dx for any function f and any

2-chain c.

(ii) The divergence version:

∫
c

(

div(F) − DFT ) ∗dx �

∫
∂c

F × dx for any vector field F

and any 2-chain c. Here DFT denotes the transpose of the Jacobi matrix of F.

The expression
(

div(F) − DFT ) ∗dx is shorthand for div(F) ∗dx − DFT ∗dx. The

first term div(F) ∗dx is the product of the function div(F) and the R3-valued form

∗dx and the second term DFT∗dx is the product of the 3 × 3-matrix DFT and the

R3-valued 2-form ∗dx.

In nabla notation Stokes’ formulas look as follows:∫
c
(∇ × F) · ∗dx �

∫
∂c

F · dx

∫
c
∇ f × ∗dx � −

∫
∂c

f dx

∫
c

(∇ · F −DFT ) ∗dx �

∫
∂c

F × dx.





CHAPTER 6

Manifolds

6.1. The definition

Intuitively, an n-dimensional manifold in the Euclidean space RN is a subset
that in the neighbourhood of every point “looks like” Rn up to “smooth distor-
tions”. The formal definition is given below and is a bit long. It will help to consider
first the basic example of the surface of the earth, which is a two-dimensional sphere
placed in three-dimensional space. Geographers describe the earth by means of
a world atlas, which is a collection of maps. Each map depicts a portion of the
world, such as a country or an ocean. The correspondence between points on a
map and points on the earth’s surface is not entirely faithful, because charting a
curved surface on a flat piece of paper inevitably distorts the distances between
points. But the distortions are continuous, indeed differentiable (in most tradi-
tional cartographic projections). Maps of neighbouring areas overlap near their
edges and the totality of all maps in a world atlas covers the whole world.

An arbitrary manifold is defined similarly, as an n-dimensional “world” rep-
resented by an “atlas” consisting of “maps”. These maps are a special kind of
parametrizations known as embeddings.

6.1. Definition. Let U be an open subset of Rn . An embedding of U into RN is
a C∞ map ψ : U → RN satisfying the following conditions:

(i) ψ is one-to-one (i.e. if ψ(t1) � ψ(t2), then t1 � t2);
(ii) Dψ(t) is one-to-one for all t ∈ U ;

(iii) the inverse of ψ, which is a map ψ−1 : ψ(U) → U , is continuous.

The image of the embedding is the set ψ(U) � { ψ(t) | t ∈ U } consisting of all
points of the form ψ(t) with t ∈ U . You should think of ψ(U) as an n-dimensional
“patch” in RN parametrized by the map ψ. The inverse map ψ−1 is called a chart
or coordinate map. It maps each point in the patch ψ(U) to an n-tuple of numbers,
which we think of as the “coordinates” of the point. Condition (i) means that to
distinct values of the parameter t must correspond distinct points ψ(t) in the patch
ψ(U). Thus the patch ψ(U) has no self-intersections. Condition (ii) means that for
each t in U all n columns of the Jacobi matrix Dψ(t) must be independent. This
condition is imposed to prevent the occurrence of cusps and other singularities in
the image ψ(U). Since Dψ(t) has N rows, condition (ii) also implies that N ≥ n:
the target space RN must have dimension greater than or equal to that of the
source space U , or else ψ cannot be an embedding. Condition (iii) can be restated
as follows: if ti is any sequence of points in U such that limi→∞ ψ(ti ) exists and is
equal to ψ(t) for some t ∈ U , then limi→∞ ti � t. This is intended to avoid situations
where the image ψ(U) doubles back on itself “at infinity”. (See Exercise 6.4 for an

75



76 6. MANIFOLDS

example.)

6.2. Example. Let U be an open subset of Rn and let f : U → Rm be a smooth
map. The graph of f is the collection

graph( f ) �

{(

t
f (t)

) ���� t ∈ U
}

.

Since t is an n-vector and f (t) an m-vector, the graph is a subset of RN with
N � n + m. We claim that the graph is the image of an embedding ψ : U → RN .
Define

ψ(t) �

(

t
f (t)

)

.

Then by definition graph( f ) � ψ(U). Furthermore ψ is an embedding. Indeed,
ψ(t1) � ψ(t2) implies t1 � t2, so ψ is one-to-one. Also,

Dψ(t) �

(

In

D f (t)

)

,

so Dψ(t) has n independent columns. Finally the inverse of ψ is given by

ψ−1

(

t
f (t)

)

� t,

which is continuous. Hence ψ is an embedding.

A manifold is an object patched together out of the images of several embed-
dings. More precisely,

6.3. Definition. An n-dimensional manifold1 (or n-manifold for short) in RN is a
subset M of RN with the property that for each x ∈ M there exist

• an open subset V of RN containing x,
• an open subset U of Rn ,
• and an embedding ψ : U → RN satisfying ψ(U) � M ∩ V.

Such an embedding ψ is called a local parametrization of M at x. Its inverse
ψ−1 : ψ(U) → U is a chart of M at x. An atlas of M is a collection of local parametriza-
tions ψi : Ui → RN of M with the property that M is the union of all the sets ψi (Ui).
The tangent space to M at a point x ∈ M is the column space of Dψ(t),

TxM � Dψ(t)(Rn ),

where ψ : U → RN is a local parametrization of M at x and t is the unique vector
in U satisfying ψ(t) � x. The elements of TxM are tangent vectors to M at x. The
codimension of M in RN is the number N − n.

1In the literature this is usually called a submanifold of Euclidean space. It is possible to define
manifolds more abstractly, without reference to a surrounding vector space. However, it turns out
that practically all abstract manifolds can be embedded into a vector space of sufficiently high dimen-
sion. Hence the abstract notion of a manifold is not substantially more general than the notion of a

submanifold of a vector space.
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Note that the tangent space TxM at each point x of an n-manifold M is an n-
dimensional linear subspace of RN . The reason is that for every local parametriza-
tion ψ of M the Jacobi matrix Dψ(t) has n independent columns.

One-dimensional manifolds are called smooth curves, two-dimensional mani-
folds smooth surfaces, and n-manifolds in Rn+1 smooth hypersurfaces. In these cases
the tangent spaces are usually called tangent lines, tangent planes, and tangent hyper-
planes, respectively.

The following picture illustrates the definition. Here M is a curve in the plane,
so we have N � 2 and n � 1. The open set U is an interval in R and V is an open
disc in R2. The map ψ sends t to x and parametrizes the portion of the curve inside
V. Since n � 1, the Jacobi matrix Dψ(t) consists of a single column vector, which
is tangent to the curve at x � ψ(t). The tangent line TxM is the line spanned by
this vector.

t

U

V

M

x

TxM

ψ

6.4. Example. An open subset U of Rn can be regarded as a manifold of dimen-
sion n (hence of codimension 0). Indeed, U is the image of the map ψ : U → Rn

given by ψ(x) � x, the identity map. The tangent space to U at any point is Rn

itself.

6.5. Example. Let N ≥ n and define ψ : Rn → RN by ψ(x1 , x2 , . . . , xn ) �

(x1 , x2 , . . . , xn , 0, 0, . . . , 0). It is easy to check that ψ is an embedding. Hence the
image ψ(Rn) is an n-manifold in RN . (Note that ψ(Rn ) is just a linear subspace
isomorphic to Rn ; e.g. if N � 3 and n � 2 it is just the (x , y)-plane.) Combining
this example with the previous one, we see that if U is any open subset of Rn , then
ψ(U) is a manifold in RN of codimension N − n. Its tangent space at any point is
the linear subspace ψ(Rn ) of RN .

6.6. Example. Let M � graph( f ), where f : U → Rm is a smooth map. As
shown in Example 6.2, M is the image of a single embedding ψ : U → Rn+m, so
M is an n-dimensional manifold in Rn+m , covered by a single chart. At a point
(x, f (x)) in the graph the tangent space is spanned by the columns of Dψ(x). For
instance, if n � m � 1, M is one-dimensional and the tangent line to M at (x , f (x))

is spanned by the vector (1, f ′(x)). This is equivalent to the familiar fact that the
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slope of the tangent line to the graph at x is f ′(x).

x

f (x)

(

1
f ′(x)

)

graph( f )

For n � 2 and m � 1, M is a surface in R3. The tangent plane to M at a point
(x , y , f (x , y)) is spanned by the columns of Dψ(x , y), namely

*.
,

1
0

∂ f

∂x (x , y)

+/
-

and
*..
,

0
1

∂ f

∂y
(x , y)

+//
-
.

The figure below shows the graph of the cubic function f (x , y) � 1
2 (x3 + y3 − 3x y)

from two different angles, together with a few points and tangent vectors.

e1

e2

e3 e1 e2

e3

6.7. Example. Consider the path ψ : R→ R2 given by ψ(t) � eat (cos bt , sin bt),
where a and b are nonzero constants. Let us check thatψ is an embedding. Observe
first that ‖ψ(t)‖ � eat . Therefore ψ(t1) � ψ(t2) implies eat1

� eat2 . The exponential
function is one-to-one, so t1 � t2 (since a , 0). This shows that ψ is one-to-one.
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The velocity vector is

ψ′(t) � eat

(

a cos bt − b sin bt
a sin bt + b cos bt

)

� eat

(

cos bt − sin bt
sin bt cos bt

) (

a
b

)

.

The 2×2-matrix in this formula is a rotation matrix and hence invertible. The vector
(a

b

)

is nonzero, and therefore ψ′(t) , 0 for all t. Moreover we have t � a−1 ln eat
�

a−1 ln‖ψ(t)‖. Hence the inverse of ψ is given by ψ−1(x) � a−1 ln‖x‖ for x ∈ ψ(R)

and so is continuous. Therefore ψ is an embedding and ψ(R) is a 1-manifold. The
image ψ(R) is a spiral, which winds infinitely many times around the origin and
which for t → −∞ converges to the origin.

x

y

Even though ψ(R) is a manifold, the set ψ(R) ∪ {0} is not: it has a very nasty
singularity at the origin!

The manifolds of Examples 6.4–6.7 each have an atlas consisting of one single
chart. Here are two examples where one needs more than one chart to cover a
manifold.

6.8. Example. The picture below shows the map

ψ(t1, t2) �
(

(R + r cos t2) cos t1, (R + r cos t2) sin t1, r sin t2
)

.

The domain U is an open rectangle in the plane and the image is a portion of a torus
in three-space. One can check that ψ is an embedding, but we will not provide the
details here. (If we chose U too big, the image would self-intersect and the map
would not be an embedding.) For one particular value of t the column vectors of
the Jacobi matrix are also shown. As you can see, they span the tangent plane at
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the image point.

x = ψ(t)

Dψ(t)e1

Dψ(t)e2

ψ(U)t

U

e1

e2

e1

e2

e3

ψ

In this way we can cover the entire torus with images of rectangles, thus showing
that the torus is a 2-dimensional manifold.

6.9. Example. Let M be the unit sphere Sn−1 in Rn . Let U � Rn−1 and let
ψ : U → Rn be the map

ψ(t) �
1

‖t‖2 + 1

(

2t + (‖t‖2 − 1)en
)

given in Exercise B.8. As we saw in that exercise, the image of ψ is the punctured
sphere M \ {en }, so if we let V be the open set Rn \ {en }, then ψ(U) � M ∩V. Also
we saw that ψ has an inverse φ : ψ(U) → U , the stereographic projection from
the north pole. Therefore ψ is one-to-one and its inverse is continuous (indeed,
differentiable). Moreover, φ ◦ ψ(t) � t implies Dφ(ψ(t))Dψ(t)v � v for all v in
Rn−1 by the chain rule. Therefore, if v is in the nullspace of Dψ(t),

v � Dφ(ψ(t))Dψ(t)v � Dφ(ψ(t))0 � 0.

Thus we see that ψ is an embedding. To cover all of M we need a second map,
for example the inverse of the stereographic projection from the south pole. This
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is also an embedding and its image is M \ {−en} � M ∩ V, where V � Rn \ {−en }.
This finishes the proof that M is an n − 1-manifold in Rn .

As these examples show, the definition of a manifold can be a little awkward to
work with in practice, even for a simple manifold. In practice it can be rather hard
to decide whether a given subset is a manifold using the definition alone. In the
next section we will give a more manageable criterion for a set to be a manifold.

We conclude this section by taking a second look at tangent vectors. There
are many different ways to parametrize a manifold M in the neighbourhood of a
point x. (For instance, for a sphere we have a choice among a large number of
different cartographic projections.) Let ψ1 : U1 → RN and ψ2 : U2 → RN be two
local parametrizations of M at x. Then we have x � ψ1(t1) � ψ2(t2) for some
t1 ∈ U1 and t2 ∈ U2. Do Dψ1(t1) and Dψ2(t2) have the same column spaces? In
other words, is the tangent space TxM well-defined? We will answer this question
in the affirmative by characterizing tangent vectors to M in language that does not
refer to local parametrizations. Namely, we will prove that all tangent vectors to
M are velocity vectors of paths in M. By a path in a manifold M in RN we simply
mean a path in RN which happens to be contained in M, i.e. a smooth map c from
an open interval I to RN with the property that c(t) is in M for all t ∈ I.

6.10. Theorem. Let M be an n-manifold in RN . Let x0 ∈ M and let v ∈ RN . Then v
is tangent to M at x0 if and only if there exists a path c : (−ε, ε) → M with the properties
c(0) � x0 and c′(0) � v.

Proof. Letψ : U → RN be a local parametrization of M at x0, i.e. an embedding
with the property that ψ(U) � M ∩ V for some open subset V of RN containing
x0. Let t0 be the unique point in U satisfying ψ(t0) � x0. Suppose v is tangent to
M at x0, i.e. v ∈ Tx0 M. Then by definition v � Dψ(t0)(u) for some u ∈ Rn . Define
c(h) � ψ(t0 + hu). Then c is a path in M passing through c(0) � ψ(t0) � x0. By the
chain rule (see Example B.4) we have c′(0) � Dψ(t0)u � v. Thus v is the velocity
vector at x0 of some path c in M passing through x0.

Conversely, assume that v � c′(0) for some path c : (−ε, ε) → M satisfying
c(0) � x0. Can we find a vector u ∈ Rn such that Dψ(t0)u � v? By Lemma 6.11
below, after replacing U and V with smaller open sets if necessary, the map ψ has
a smooth left inverse, i.e. a smooth map φ : V → U satisfying φ ◦ ψ(t) � t for all
t ∈ U . If x ∈ M ∩ V, then x � ψ(t) for some t ∈ U , so

x � ψ(t) � ψ(φ(ψ(t))) � ψ(φ(x)).

If h is sufficiently small, then c(h) is contained in M ∩ V, and hence c(h) �

ψ(φ(c(h))). Differentiating this identity with respect to h at h � 0 gives

c′(0) � Dψ(φ(c(0)))D(φ ◦ c)(0) � Dψ(φ(x0))u � Dψ(t0)u.

Here we have written u � D(φ ◦ c)(0) and we have used that φ(x0) � t0 because
ψ(t0) � x0 and φ is a left inverse of ψ. This shows that c′(0) is in Dψ(t0)(Rn ) �

Tx0 M. QED

The following technical result, which is a consequence of the implicit function
theorem, says that embeddings have smooth left inverses, at least if one suitably
restricts the domain and the range.

6.11. Lemma. Let U be an open subset of Rn , let V be an open subset of RN , and let
ψ : U → V be an embedding. Let t0 ∈ U and x0 � ψ(t0). Then there exist an open subset
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Ũ of U containing t0, an open subset Ṽ of V containing x0, and a smooth map φ : Ṽ → Ũ

with the property that φ(ψ(t)) � t for all t ∈ Ũ .

Proof. Let a1, a2, . . . , an be the columns of Dψ(t0). As ψ is an embedding,
these columns are independent, so we can complete them to a basis a1, a2, . . . , an ,
b1, b2, . . . , bk of RN , where k � N − n. For t ∈ U and s ∈ Rk define ψ̃(t, s) �

ψ(t) +
∑k

j�1 s jb j . Then ψ̃ is a map from U ×Rk to RN and its Jacobi matrix at (t0 , 0)

is
Dψ̃(t0 , 0) �

(

a1 a2 · · · an b1 b2 · · · bk

)

.

The columns of this matrix form a basis of RN , and therefore it is invertible.
By the inverse function theorem, Theorem B.7, there exist an open subset Ũ of U

containing t0 and an open subset W of Rk containing 0 such that Ṽ � ψ̃(Ũ×W) is an
open subset of V and the map ψ̃ : Ũ×W → Ṽ has a smooth inverse φ̃ : Ṽ → Ũ×W .
Let π : Ũ ×W → Ṽ be the map defined by π(t, s) � t, and let φ � π ◦ φ̃. Then for
all t ∈ Ũ we have

φ(ψ(t)) � π ◦ φ̃ ◦ ψ̃(t, 0) � π(t, 0) � t,

so φ : Ṽ → Ũ is a left inverse of ψ : Ũ → Ṽ . QED

6.2. The regular value theorem

Our definition of the notion of a manifold, Definition 6.3, is based on embed-
dings, which are an “explicit” way of describing manifolds. However, embeddings
can be hard to find in practice. Instead, manifolds are often given “implicitly”, by
a system of m equations in N unknowns,

φ1(x1 , . . . , xN ) � c1 ,

φ2(x1 , . . . , xN ) � c2 ,

...

φm (x1 , . . . , xN ) � cm .

Here the φi ’s are smooth functions presumed to be defined on some common open
subset U of RN . Writing in the usual way

x �

*....
,

x1

x2

...
xN

+////
-
, φ(x) �

*....
,

φ1(x)

φ2(x)
...

φm (x)

+////
-
, c �

*....
,

c1

c2

...
cm

+////
-
,

we can abbreviate this system to a single equation

φ(x) � c.

For a fixed vector c ∈ Rm we denote the solution set by

φ−1(c) � { x ∈ U | φ(x) � c }
and call it the level set or the fibre of φ at c, or the preimage of c under φ. If φ is a
linear map, the system of equations is inhomogeneous linear and we know from
linear algebra that the solution set is an affine subspace of RN . The dimension of
this affine subspace is N − m, provided that φ has rank m (i.e. has m independent
columns). We can generalize this idea to nonlinear equations as follows. We say
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that c ∈ Rm is a regular value of φ if the Jacobi matrix Dφ(x) : RN → Rm has rank m

for all x ∈ φ−1(c). A vector that is not a regular value is called a singular value. (As
an extreme special case, if φ−1(c) is empty, then c is automatically a regular value.)

The following result is the most useful criterion for a set to be a manifold.
(However, it does not apply to every manifold. In other words, it is a sufficient but
not a necessary criterion.) The proof rests on the following important fact from
linear algebra,

nullity(A) + rank(A) � l,

valid for any k × l-matrix A. Here the rank is the number of independent columns
of A (in other words the dimension of the column space A(Rl )) and the nullity
is the number of independent solutions of the homogeneous equation Ax � 0 (in
other words the dimension of the nullspace ker(A)).

6.12. Theorem (regular value theorem). Let U be open in RN and let φ : U → Rm

be a smooth map. Suppose that c is a regular value of φ and that M � φ−1(c) is nonempty.
Then M is a manifold in RN of codimension m. Its tangent space at x is the nullspace of
Dφ(x),

TxM � ker(Dφ(x)).

Proof. Let x ∈ M. Then Dφ(x) has rank m and so has m independent columns.
After relabelling the coordinates on RN we may assume the last m columns are
independent and therefore constitute an invertible m × m-submatrix A of Dφ(x).
Let us put n � N − m. Identify RN with Rn × Rm and correspondingly write
an N-vector as a pair (u, v) with u a n-vector and v an m-vector. Also write
x � (u0, v0). Now refer to Appendix B.4 and observe that the submatrix A is
nothing but the “partial” Jacobian Dvφ(u0 , v0). This matrix being invertible, by
the implicit function theorem, Theorem B.6, there exist open neighbourhoods U
of u0 in Rn and V of v0 in Rm such that for each u ∈ U there exists a unique
v � f (u) ∈ V satisfying φ(u, f (u)) � c. The map f : U → V is C∞. In other
words M ∩ (U × V) � graph( f ) is the graph of a smooth map. We conclude from
Example 6.6 that M∩ (U×V) is an n-manifold, namely the image of the embedding
ψ : U → RN given by ψ(u) � (u, f (u)). Since U × V is open in RN and the above
argument is valid for every x ∈ M, we see that M is an n-manifold. To compute
TxM note that φ(ψ(u)) � c, a constant, for all u ∈ U . Hence Dφ(ψ(u))Dψ(u) � 0
by the chain rule. Plugging in u � u0 gives

Dφ(x)Dψ(u0) � 0.

The tangent space TxM is by definition the column space of Dψ(u0), so every
tangent vector v to M at x is of the form v � Dψ(u0)a for some a ∈ Rn . Therefore
Dφ(x)v � Dφ(x)Dψ(u0)a � 0, i.e. TxM ⊆ ker(Dφ(x)). The tangent space TxM
is n-dimensional (because the n columns of Dψ(u0) are independent) and so is
the nullspace of Dφ(x) (because nullity(Dφ(x)) � N − m � n). Hence TxM �

ker(Dφ(x)). QED

The case of one single equation (m � 1) is especially important. Then Dφ is
a single row vector and its transpose is the gradient of φ: DφT

� grad(φ). It has
rank 1 at x if and only if it is nonzero, i.e. at least one of the partials of φ does
not vanish at x. The solution set of a scalar equation φ(x) � c is known as a level
hypersurface. Level hypersurfaces, especially level curves, occur frequently in all
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kinds of applications. For example, isotherms in weathercharts and contour lines
in topographical maps are types of level curves.

6.13. Corollary (level hypersurfaces). Let U be open in RN and let φ : U → R

be a smooth function. Suppose that M � φ−1(c) is nonempty and that grad(φ)(x) , 0

for all x in M. Then M is a manifold in RN of codimension 1. Its tangent space at x is the
orthogonal complement of grad(φ)(x),

TxM � grad(φ)(x)⊥ .

6.14. Example. Let U � R2 and φ(x , y) � x y. The level curves of φ are
hyperbolas in the plane and the gradient is grad(φ)(x) � (y , x). The diagram
below shows a few level curves as well as the gradient vector field, which as you
can see is perpendicular to the level curves.

x

y

The gradient vanishes only at the origin, so φ(0) � 0 is the only singular value of φ.
By Corollary 6.13 this means that φ−1(c) is a 1-manifold for c , 0. The fibre φ−1(0)

is the union of the two coordinate axes, which has a self-intersection and so is not a
manifold. However, the set φ−1(0)\{0} is a 1-manifold since the gradient is nonzero
outside the origin. Think of this diagram as a topographical map representing the
surface z � φ(x , y) shown below. The level curves of φ are the contour lines of
the surface, obtained by intersecting the surface with horizontal planes at different
heights. As explained in Appendix B.2, the gradient points in the direction of
steepest ascent. Where the contour lines self-intersect the surface has a “mountain
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pass” or saddle point.

e1

e2

e3

6.15. Example. A more interesting example of an equation in two variables is
φ(x , y) � x3 + y3 − 3x y � c. Here grad(φ)(x) � 3(x2 − y , y2 − x), so grad(φ)

vanishes at the origin and at (1, 1). The corresponding values of φ are 0, resp. −1,
which are the singular values of φ.

x

y

The level “curve”φ−1(−1) is not a curve at all, but consists of the single point (1, 1).
Here φ has a minimum and the surface z � φ(x , y) has a “valley”. The level curve
φ−1(0) has a self-intersection at the origin, which corresponds to a saddle point
on the surface. These features are also clearly visible in the surface itself, which is
shown in Example 6.6.

6.16. Example. Let U � RN and φ(x) � ‖x‖2. Then grad(φ)(x) � 2x, so as in
Example 6.14 grad(φ) vanishes only at the origin 0, which is contained in φ−1(0).
So again any c , 0 is a regular value of φ. Clearly, φ−1(c) is empty for c < 0. For
c > 0, φ−1(c) is an N − 1-manifold, the sphere of radius

√
c in RN . The tangent
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space to the sphere at x is the set of all vectors perpendicular to grad(φ)(x) � 2x.
In other words,

TxM � x⊥ � { y ∈ RN | y · x � 0 }.
Finally, 0 is a singular value (the absolute minimum) of φ and φ−1(0) � {0} is not
an N − 1-manifold. (It happens to be a 0-manifold, though, just like the singular
fibre φ−1(−1) in Example 6.15. So if c is a singular value, you cannot be certain
that φ−1(c) is not a manifold. However, even if a singular fibre happens to be a
manifold, it is often of the “wrong” dimension.)

Here is an example of a manifold given by two equations (m � 2).

6.17. Example. Define φ : R4 → R2 by

φ(x) �

(

x2
1

+ x2
2

x1x3 + x2x4

)

.

Then

Dφ(x) �

(

2x1 2x2 0 0
x3 x4 x1 x2

)

.

If x1 , 0 the first and third columns of Dφ(x) are independent, and if x2 , 0 the
second and fourth columns are independent. On the other hand, if x1 � x2 � 0,
Dφ(x) has rank 1 and φ(x) � 0. This shows that the origin 0 in R2 is the only
singular value of φ. Therefore, by the regular value theorem, for every nonzero
vector c the set φ−1(c) is a two-manifold in R4. For instance, M � φ−1 (1

0

)

is a
two-manifold. Note that M contains the point x � (1, 0, 0, 0). Let us find a basis of
the tangent space TxM. Again by the regular value theorem, this tangent space is
equal to the nullspace of

Dφ(x) �

(

2 0 0 0
0 0 1 0

)

,

which is equal the set of all vectors y satisfying y1 � y3 � 0. A basis of TxM is
therefore given by the standard basis vectors e2 and e4.

The orthogonal group. We now come to a more sophisticated example of a
manifold determined by a large system of equations. Recall that an n × n-matrix
A is orthogonal if ATA � I. This means that the columns (and also the rows) of A
are perpendicular to one another and have length 1. (So they form an orthonormal
basis of Rn—note the regrettable inconsistency in the terminology.) The orthogonal
matrices form a group under matrix multiplication: every orthogonal matrix A is
invertible with inverse A−1

� AT , the identity matrix I is orthogonal, and the
product of orthogonal matrices is orthogonal. This group is called the orthogonal
group and denoted by O(n).

6.18. Theorem. The orthogonal group O(n) is a manifold of dimension 1
2 n(n−1). The

tangent space to O(n) at the identity matrix is the space of antisymmetric n × n-matrices.

Proof. This is an application of the regular value theorem. We start by noting
that O(n) � φ−1(I), where φ is defined by

φ(A) � ATA.



6.2. THE REGULAR VALUE THEOREM 87

The domain of the map φ is V � Rn×n , the vector space of all n × n-matrices. We
can regard φ as a map from V to itself, but then the identity matrix I is not a regular
value! To ensure that I is a regular value we must restrict the range of φ. This is
done by observing that (ATA)T

� ATA, so ATA is a symmetric matrix. In other
words, if we let W � { C ∈ V | C � CT } be the linear subspace of V consisting of
all symmetric matrices, then we can regard φ as a map

φ : V −→ W.

We will show that I is a regular value of this map. To do this we need to compute
the total derivative of φ. For every matrix A ∈ V the total derivative at A is a linear
map Dφ(A) : V → W , which can be computed by using Lemma B.1. This lemma
says that for every B ∈ V the result of applying the linear map Dφ(A) to B is the
directional derivative of φ at A along B:

Dφ(A)B � lim
t→0

1

t
(φ(A + tB) − φ(A))

� lim
t→0

1

t
(ATA + tAT B + tBTA + t2BT B − ATA)

� ATB + BTA.

We need to show that for all A ∈ O(n) the linear map Dφ(A) : V →W is surjective.
This amounts to showing that, given any orthogonal A and any symmetric C, the
equation

ATB + BTA � C (6.1)
is solvable for B. Here is a trick for guessing a solution: observe that C �

1
2 (C + CT )

and first try to solve AT B �
1
2 C. Left multiplying both sides by A and using AAT

� I

gives B �
1
2 AC. We claim that B �

1
2 AC is a solution of equation (6.1). Indeed,

AT B + BTA � AT 1

2
AC +

1

2
CTATA �

1

2
(C + CT ) � C.

By the regular value theorem this proves that O(n) is a manifold. You will be
asked to prove the remaining assertions in Exercise 6.12. QED

If A is an orthogonal matrix, then det(ATA) � det(I) � 1, so (det(A))2
� 1, i.e.

det(A) � ±1. The special orthogonal group or rotation group is

SO(n) � {A ∈ O(n) | det(A) � 1 }.
If A and B are elements of O(n) that are not in SO(n), then AB ∈ O(n) and
det(AB) � det(A) det(B) � 1, so AB ∈ SO(n). An example of an orthogonal
matrix which is not a rotation is a reflection matrix, such as

A0 �

*....
,

−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

+////
-
.

Every orthogonal matrix A which is not in SO(n) can be written as A � A0C for
a unique C ∈ SO(n), namely C � A0A. Thus we see that O(n) is a union of two
disjoint pieces,

O(n) � SO(n) ∪ {A0C | C ∈ SO(n) },
each of which is a manifold of dimension 1

2 n(n − 1).
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In two dimenson the rotation group is the group SO(2) of all matrices of the
form (

cos θ − sin θ
sin θ cos θ

)

.

As a manifold SO(2) is a copy of the unit circle S1. The rotation group in three
dimensions SO(3) is a three-dimensional manifold, which is a little harder to
vizualize. Every rotation can be parametrized by a vector x ∈ R3, namely as the
rotation about the axis spanned by x through an angle of ‖x‖ radians. But SO(3)

is not the same as R3, because many different vectors represent the same rotation.
Every rotation can be represented by a vector of length ≤ π, so let us restrict x
to the (solid) ball B of radius π about the origin. This gets rid of most of the
ambiguity, except for the fact that two antipodal points on the boundary sphere
represent the same rotation (because rotation through π about a given axis is the
same as rotation through −π). We conclude that SO(3) is the manifold obtained
by identifying opposite points on the boundary of B. This is the three-dimensional
projective space.

Exercises

6.1. This is a continuation of Exercise 1.1. Define ψ : R → R2 by ψ(t) � (t − sin t , 1 −
cos t). Show that ψ is one-to-one. Determine all t for which ψ′(t) � 0. Prove that ψ(R) is
not a manifold at these points.

6.2. Let a ∈ (0, 1) be a constant. Prove that the map ψ : R → R2 given by ψ(t) �

(t − a sin t , 1− a cos t) is an embedding. (This becomes easier if you first show that t − a sin t
is an increasing function of t.) Graph the curve defined by ψ.

6.3. Prove that the mapψ : R→ R2 given byψ(t) � 1
2 (e t +e−t , e t−e−t ) is an embedding.

Conclude that M � ψ(R) is a 1-manifold. Graph the curve M. Compute the tangent line to
M at (1, 0) and try to find an equation for M.

6.4. Let I be the open interval (−1,∞) and let ψ : I → R2 be the map ψ(t) � (3at/(1 +

t3 , 3at2/(1+t3)), where a is a nonzero constant. Show that ψ is one-to-one and that ψ′(t) , 0
for all t ∈ I. Is ψ an embedding and is ψ(I) a manifold? (Observe that ψ(I) is a portion of
the curve studied in Exercise 1.2.)

6.5. Define ψ : R→ R2 by

ψ(t) �


(− f (t), f (t)
)

if t ≤ 0,
(

f (t), f (t)
)

if t ≥ 0,

where f is the function given in Exercise B.3. Show that ψ is smooth, one-to-one and that

its inverse ψ−1 : ψ(R) → R is continuous. Sketch the image of ψ. Is ψ(R) a manifold?

6.6. Define a map ψ : R2 → R4 by ψ(t1 , t2) �
(

t3
1
, t2

1
t2 , t1t2

2
, t3

2

)

.

(i) Show that ψ is one-to-one.
(ii) Show that Dψ(t) is one-to-one for all t , 0.

(iii) Let U be the punctured plane R2 \ {0}. Show that ψ : U → R4 is an embedding.

Conclude that ψ(U) is a two-manifold in R4.
(iv) Find a basis of the tangent plane to ψ(U) at the point ψ(1, 1).

6.7. (i) Let U be an open subset of Rn and let ψ : U → RN be a smooth map.

The tangent map of ψ is the map Tψ : U × Rn → R2N defined by Tψ(t, u) �
(

ψ(t),Dψ(t)u
)

for t ∈ U and u ∈ Rn . Prove that the tangent map of an embed-
ding is an embedding.
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(ii) Let M be an n-manifold in RN . The tangent bundle of M is the subset TM of R2N

defined by

TM � { (x, v) ∈ R2N | v ∈ TxM }.
Prove that the tangent bundle of M is a 2n-manifold.

6.8. Let M be the set of points in R2 given by the equation (x2 + y2)2 + y2 − x2
� 0.

(i) Show that M \ {(0, 0)} is a 1-manifold.
(ii) Determine the points where M has horizontal or vertical tangent lines.

(iii) Sketch M. (Start by finding the intersection points of M with an arbitrary line
through the origin, y � ax.)

(iv) Is M a manifold at (0, 0)? Explain.

6.9. Let φ : Rn \ {0} → R be a homogeneous function of degree p as defined in Exercise
B.6. Assume that φ is smooth and that p , 0. Show that 0 is the only possible singular value

of φ. (Use the result of Exercise B.6.) Conclude that, if nonempty, φ−1(c) is an n−1-manifold
for c , 0.

6.10. Let φ(x) � a1x2
1

+a2x2
2

+ · · ·+an x2
n , where the ai are nonzero constants. Determine

the regular and singular values of φ. For n � 3 sketch the level surface φ−1(c) for a regular
value c. (You have to distinguish between a few different cases.)

6.11. Show that the trajectories of the Lotka-Volterra system of Exercise 1.11 are one-
dimensional manifolds.

6.12. Let V be the vector space of n × n-matrices and let W be its linear subspace
consisting of all symmetric matrices.

(i) Prove that dim(V ) � n2 and dim(W ) �
1
2 n(n + 1). (Exhibit explicit bases of V

and W , and count the number of elements in each basis.)
(ii) Compute the dimension of the orthogonal group O(n) and show that its tangent

space at the identity matrix I is the set of all antisymmetric n × n-matrices. (Use
the regular value theorem, which says that the dimension of O(n) is dim(V ) −
dim(W ) and that the tangent space at the identity matrix is the kernel of Dφ(I),

where φ : V →W is defined by φ(A) � AT A. See the proof of Theorem 6.18.)

6.13. Let V be the vector space of n × n-matrices.

(i) The general linear group is the subset of V defined by

GL(n) � {A ∈ V | det(A) , 0 }.
Show that GL(n) is a manifold. What is its dimension?

(ii) Define φ : V → R by φ(A) � det(A). Show that

Dφ(A)B �

n∑

i�1

det(a1 , a2 , . . . , ai−1 , bi , ai+1 , . . . , an ),

where a1, a2 , . . . , an and b1, b2 , . . . , bn denote the column vectors of A, resp. B.
(Apply Lemma B.1 for the derivative and use the multilinearity of the determi-
nant.)

(iii) The special linear group is the subset of V defined by

SL(n) � {A ∈ V | det(A) � 1 }.
Show that SL(n) is a manifold. What is its dimension?

(iv) Show that for A � I, the identity matrix, we have Dφ(A)B �

∑n
i�1

bi ,i � tr(B),
the trace of B. Conclude that the tangent space to SL(n) at I is the set of traceless
matrices, i.e. matrices B satisfying tr(B) � 0.
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6.14. (i) Let W be punctured 4-space R4 \ {0} and define φ : W → R by

φ(x) � x1x4 − x2x3 .

Show that 0 is a regular value of φ.
(ii) Let A be a real 2× 2-matrix. Show that rank(A) � 1 if and only if det(A) � 0 and

A , 0.
(iii) Let M be the set of 2 × 2-matrices of rank 1. Show that M is a three-dimensional

manifold.
(iv) Compute TAM, where A �

(1 1
0 0

)

.

6.15. Define φ : R4 → R2 by φ(x) � (x1 + x2 + x3x4 , x1x2x3 + x4).

(i) Show that Dφ(x) has rank 2 unless x is of the form (t−2 , t−2 , t , t−3) for some
t , 0. (Row reduce the matrix Dφ(x) to compute its rank.)

(ii) Show that M � φ−1(0) is a 2-manifold (where 0 is the origin in R2).
(iii) Find a basis of the tangent space TxM for all x ∈ M with x3 � 0. (The answer

depends on x.)

6.16. Let U be an open subset of Rn and let φ : U → Rm be a smooth map. Let M be

the manifold φ−1(c), where c is a regular value of φ. Let f : U → R be a smooth function. A
point x ∈ M is called a critical point for the restricted function f |M if D f (x)v � 0 for all tangent
vectors v ∈ TxM. Prove that x ∈ M is critical for f |M if and only if there exist numbers λ1,
λ2 , . . . , λm such that

grad( f )(x) � λ1 grad(φ1)(x) + λ2 grad(φ2)(x) + · · · + λm grad(φm )(x).

(Use the characterization of TxM given by the regular value theorem.)

6.17. Find the critical points of the function f (x, y , z) � −x + 2y + 3z over the circle C
given by

x2 + y2 + z2
� 1,

x + z � 0.

Where are the maxima and minima of f |C?

6.18 (eigenvectors via calculus). Let A � AT be a symmetric n × n-matrix and define
f : Rn → R by f (x) � x · Ax. Let M be the unit sphere { x ∈ Rn | ‖x‖ � 1 }.

(i) Calculate grad( f )(x).
(ii) Show that x ∈ M is a critical point of f |M if and only if x is an eigenvector for A

of length 1.
(iii) Given an eigenvector x of length 1, show that f (x) is the corresponding eigenvalue

of x.



CHAPTER 7

Differential forms on manifolds

7.1. First definition

There are several different ways to define differential forms on manifolds.
In this section we present a practical, workaday definition. A more theoretical
approach is taken in Section 7.2.

Let M be an n-manifold in RN and let us first consider what we might mean by
a 0-form or smooth function on M. A function f : M → R is simply an assignment
of a unique number f (x) to each point x in M. For instance, M could be the
surface of the earth and f could represent temperature at a given time, or height
above sea level. But how would we define such a function to be differentiable?
The difficulty here is that if x is in M and e j is one of the standard basis vectors,
the straight line x + te j may not be contained in M, so we cannot form the limit
∂ f /∂x j � limt→0( f (x + te j) − f (x))/t.

Here is one way out of this difficulty. Because M is a manifold there exist open
sets Ui in Rn and embeddings ψi : Ui → RN such that the images ψi (Ui ) cover M:
M �

⋃

i ψi (Ui ). (Here i ranges over some unspecified, possibly infinite, index set.)
For each i we define a function fi : Ui → R by fi (t) � f (ψi (t)), i.e. fi � ψ∗i ( f ). We
call fi the local representative of f relative to the embedding ψi . (For instance, if M
is the earth’s surface, f is temperature, and ψi is a map of New York State, then fi

represents a temperature chart of NY.) Since fi is defined on the open subset Ui of
Rn , it makes sense to ask whether its partial derivatives exist. We say that f is Ck if
each of the local representatives fi is Ck . Now suppose that x is in the overlap of two
charts. Then we have two indices i and j and vectors t ∈ Ui and u ∈ U j such that
x � ψi (t) � ψ j (u). Then we must have f (x) � f (ψi (t)) � f (ψ j (u)), so fi (t) � f j (u).
Also ψi (t) � ψ j (u) implies t � ψ−1

i
◦ ψ j (u) and therefore f j (u) � fi

(

ψ−1
i
◦ ψ j (u)

)

.
This identity must hold for all u ∈ U j such that ψ j (u) ∈ ψi (Ui), i.e. for all u in
ψ−1

j
(ψi (Ui)). We can abbreviate this by saying that

f j � (ψ−1
i ◦ ψ j )

∗( fi )

on ψ−1
j

(ψi (Ui )). This is a consistency condition on the functions fi imposed by
the fact that they are pullbacks of a single function f defined everywhere on
M. The map ψ−1

i
◦ ψ j is often called a change of coordinates or transition map,

and the consistency condition is also known as the transformation law for the local
representatives fi . (Pursuing the weather chart analogy, it expresses nothing but
the obvious fact that where the maps of New York and Pennsylvania overlap,
the corresponding two temperature charts must show the same temperatures.)
Conversely, the collection of all local representatives fi determines f , because we

91
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have f (x) � fi (ψ−1
i

(x)) if x ∈ ψi (Ui). (That is to say, if we have a complete set of
weather charts for the whole world, we know the temperature everywhere.)

Following this cue we formulate the following definition.

7.1. Definition. A differential form of degree k, or simply a k-form, α on M is a
collection of k-forms αi on Ui satisfying the transformation law

α j � (ψ−1
i ◦ ψ j )

∗(αi ) (7.1)

on ψ−1
j

(ψi (Ui )). We call αi the local representative of α relative to the embedding
ψi and denote it by αi � ψ∗i (α). The collection of all k-forms on M is denoted by
Ωk (M).

This definition is rather indirect, but it works really well if a specific atlas for
the manifold M is known. Definition 7.1 is particularly tractible if M is the image
of a single embedding ψ : U → RN . In that case the compatibility relation (7.1) is
vacuous and a k-form α on M is determined by one single representative, a k-form
ψ∗(α) on U .

Sometimes it is useful to write the transformation law (7.1) in components. Ap-
pealing to Theorem 3.13 we see that (7.1) is equivalent to the following requirement:
if

αi �

∑

I

fI dtI and α j �

∑

J

g J dt J

are two local representatives for α, then

g J �

∑

I

(ψ−1
i ◦ ψ j )

∗ ( fI det(D(ψ−1
i ◦ ψ j )I ,J )

)

.

on ψ−1
j

(ψi (Ui )).
Just like forms on Rn , forms on a manifold can be added, multiplied, differ-

entiated and integrated. For example, suppose α is a k-form and β an l-form on
M. Suppose αi , resp. βi , is the local representative of α, resp. β, relative to an
embedding ψi : Ui → M. Then we define the product γ � αβ by setting γi � αiβi .
To see that this definition makes sense, we check that the forms γi satisfy the
transformation law (7.1):

γj � α jβ j � (ψ−1
i ◦ ψ j )

∗(αi )(ψ−1
i ◦ ψ j )

∗(βi ) � (ψ−1
i ◦ ψ j )

∗(αiβi ) � (ψ−1
i ◦ ψ j )

∗(γi ).

Here we have used the multiplicative property of pullbacks, Proposition 3.10(ii).
Similarly, the exterior derivative of α is defined by setting (dα)i � dαi . As before,
let us check that the forms (dα)i satisfy the transformation law (7.1):

(dα) j � dα j � d(ψ−1
i ◦ ψ j )

∗(αi ) � (ψ−1
i ◦ ψ j )

∗(dαi ) � (ψ−1
i ◦ ψ j )

∗((dα)i ),

where we used Theorem 3.11.

7.2. Second definition

This section presents some of the algebraic underpinnings of the theory of
differential forms. This branch of algebra, now called exterior or alternating algebra
was invented by Grassmann in the mid-nineteenth century and is a prerequisite
for much of the more advanced literature on the subject.
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Covectors. A covector is a little dinosaur that eats vectors and spits out num-
bers, in a linear way.

The formal definition goes as follows. Let V be a vector space over the real
numbers, for example Rn or a linear subspace of Rn . A covector, or dual vector, or
linear functional, is a linear map from V to R.

7.2. Example. Let V � C0([a, b],R), the collection of all continuous real-valued
functions on a closed and bounded interval [a, b]. A linear combination of con-
tinuous functions is continuous, so V is a vector space. Define µ( f ) �

∫ b

a f (x) dx.
Then µ(c1 f1 + c2 f2) � c1µ( f1) + c2µ( f2) for all functions f1, f2 ∈ V and all scalars
c1, c2, so µ is a linear functional on V.

The collection of all covectors on V is denoted by V∗ and called the dual of V.
The dual is a vector space in its own right: if µ1 and µ2 are in V∗ we define µ1 + µ2

and cµ1 by setting (µ1 +µ2)(v) � µ1(v) +µ2(v) and (cµ1)(v) � cµ1(v) for all v ∈ V.
For the next example, recall that if A is an m × n-matrix and x an n-vector, then

Ax is an m-vector, and the map which sends x to Ax is linear. Moreover, every
linear map from Rn to Rm is of this form for a unique matrix A.

7.3. Example. A covector on Rn is a linear map from Rn to R � R1 and is
therefore given by a 1 × n-matrix, which is nothing but a row vector. Thus (Rn)∗

is the space of row n-vectors. A row vector y “eating” a column vector x means
multiplying the two, which results in a number:

yx �

(

y1 y2 · · · yn

)
*....
,

x1

x2

...
xn

+////
-
�

n∑

i�1

yixi .

Now suppose that V is a vector space of finite dimension n and choose a basis
b1, b2 , . . . , bn of V. Then every vector b ∈ V can be written in a unique way as
a linear combination

∑

j c jb j . Define a covector βi ∈ V∗ by βi (b) � ci . In other
words, βi is determined by the rule βi (b j ) � δi , j , where

δi , j �


1 if i � j ,

0 if i , j

is the Kronecker delta. We call βi the i-th coordinate function.

7.4. Lemma. The coordinate functions β1, β2 , . . . , βn form a basis of V∗. It follows
that dim(V∗) � n � dim(V).

Proof. Let β ∈ V∗. We need to prove that β can be written as a linear combina-
tion β �

∑n
i�1 ciβi with unique coefficients ci . First we prove uniqueness. Assuming
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that β can be expressed as β �

∑n
i�1 ciβi , we can apply both sides to the vector b j to

obtain

β(b j ) �

n∑

i�1

ciβi (b j ) �

n∑

i�1

ciδi , j � c j . (7.2)

So c j � β(b j ) is the only possible choice for the coefficient c j . This argument
establishes the uniqueness of the coefficients. Moreover, it tells us what the co-
efficients should be, which helps us prove that they exist. Namely, let us define
β′ �

∑n
i�1 β(bi )βi . Then by equation (7.2), β′(b j ) � β(b j ) for all j, so β′ � β, and

therefore β �

∑n
i�1 β(bi )βi . This proves that β1, β2 , . . . , βn constitute a basis of V∗.

The cardinality of the basis is n, so dim(V∗) � n. QED

The basis {β1, β2 , . . . , βn } of V∗ is said to be dual to the basis {b1, b2, . . . , bn } of
V.

7.5. Example. Let {b1, b2, . . . , bn } be a basis of Rn . What is the dual basis
{β1, β2 , . . . , βn } of (Rn)∗? The βi ’s are row vectors determined by the equations
βib j � δi , j . These equations can be written as a single matrix equation: let B be
the n × n-matrix with columns b1, b2, . . . , bn and let A be the n × n-matrix with
rows β1, β2 , . . . , βn ; then AB � I. Therefore A is the inverse of B. In other words,
βi is the i-th row of B−1. As a special case consider the standard basis {e1, . . . , en }.
Then B � I, so A � I, and the dual basis of (Rn )∗ is {eT

1
, eT

2
, . . . , eT

n }.

Dual bases come in handy when writing the matrix of a linear map. Let
L : V → W be a linear map between vector spaces V and W . To write the matrix
of L we need to start by picking a basis b1, b2, . . . , bn of V and a basis c1, c2, . . . ,
cm of W . Then for each j � 1, 2, . . . , n the vector Lb j can be expanded uniquely in
terms of the c’s: Lb j �

∑m
i�1 li , jci . The m × n numbers li , j make up the matrix of L

relative to the two bases of V and W .

7.6. Lemma. Let γ1, γ2 , . . . , γm ∈ W∗ the dual basis of c1, c2, . . . , cm . Then the
(i, j)-th matrix element of a linear map L : V →W is equal to li , j � γi (Lb j ).

Proof. We have Lb j �
∑m

k�1 lk , jck , so

γi (Lb j ) �

m∑

k�1

lk , jγi (ck ) �

m∑

k�1

lk , jδi ,k � li , j ,

that is to say li , j � γi (Lb j ). QED

1-Forms on Rn re-examined. Let U be an open subset of Rn . Recall that a
vector field on U is a smooth map F : U → Rn . A 1-form is a type of object “dual”
to a vector field. Formally, a 1-form or covector field on U is defined as a smooth map
α : U → (Rn)∗. This means that α is a row vector

α � ( f1 f2 · · · fn )

whose entries are smooth functions on U . The form is called constant if the entries
f1 , . . . , fn are constant. By definition dxi is the constant 1-form

dxi � eT
i � (0 · · · 0 1 0 · · · 0), (7.3)
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the transpose of ei, the i-th standard basis vector of Rn . Every 1-form can thus be
written as

α � ( f1 f2 · · · fn ) �

n∑

i�1

fi dxi .

Using this formalism we can write for any smooth function g on U

dg �

n∑

i�1

∂g

∂xi
dxi �

( ∂g

∂x1

∂g

∂x2
· · ·

∂g

∂xn

)

,

which is simply the Jacobi matrix D g of g! (This is the reason that many authors
use the notation dg for the Jacobi matrix.)

In what sense does the row vector dxi represent an “infinitesimal increment”
along the xi-axis? Let v ∈ Rn be the velocity vector of a path c(t) at time t.

0

c(t)

v

In an infinitesimal time interval ∆t the position changes to c(t + ∆t) ≈ c(t) + ∆t v,
so the infinitesimal displacement is ∆t v. The xi-coordinate changes by an amount
∆t vi � ∆t dxi (v). We conclude that the number dxi (v) represents the rate of
change of the i-th coordinate along the path per unit time.

Multilinear algebra. Multilinear algebra is needed to make sense of differen-
tial forms of higher degree.

Let V be a vector space and let Vk denote the Cartesian product V × · · · × V

(k times). Thus an element of Vk is a k-tuple (v1 , v2 , . . . , vk ) of vectors in V. A
k-multilinear function on V is a function µ : Vk → R which is linear in each vector,
i.e.

µ(v1 , v2, . . . , cvi + c′v′i , . . . , vk ) � cµ(v1 , v2, . . . , vk ) + c′µ(v1 , v2, . . . , v
′
i , . . . , vk )

for all scalars c, c′ and all vectors v1, v2 , . . . , vi , v′
i
, . . . , vk .

7.7. Example. Let V � Rn and let µ(x, y) � x · y, the inner product of x and y.
Then µ is bilinear (i.e. 2-multilinear).

7.8. Example. Let V � R4, k � 2. The function µ(v,w) � v1w2 − v2w1 + v3w4 −
v4w3 is bilinear on R4.

7.9. Example. Let V � Rn , k � n. It follows from Corollary 3.6 that the
determinant det(v1 , v2, . . . , vn) is an n-multilinear function on Rn .

A k-multilinear function is alternating or antisymmetric if it has the alternating
property,

µ(v1 , . . . , v j , . . . , vi , . . . , vk ) � −µ(v1 , . . . , vi , . . . , v j , . . . , vk )

for all v1, v2 , . . . , vk in V. More generally, if µ is alternating, then for any permu-
tation σ ∈ Sk we have

µ(vσ(1) , . . . , vσ(k)) � sign(σ)µ(v1 , . . . , vk ).
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7.10. Example. The inner product of Example 7.7 is bilinear, but it is not alter-
nating. Indeed it is symmetric: y · x � x · y. The bilinear function of Example 7.8 is
alternating, and so is the determinant function of Example 7.9.

Here is a useful trick for producing alternating k-multilinear functions starting
from k covectors µ1, µ2, . . . , µk ∈ V∗. The (wedge) product is the function

µ1µ2 · · · µk : Vk → R

defined by

µ1µ2 · · · µk (v1 , v2 , . . . , vk ) � det
(

µi (v j )
)

1≤i , j≤k .

(The determinant on the right is a k × k-determinant.) It follows from the mul-
tilinearity and the alternating property of the determinant that µ1µ2 · · · µk is an
alternating k-multilinear function. Some authors denote the wedge product by
µ1 ∧ µ2 ∧ · · · ∧ µk to distinguish it from other products, such as the tensor product
defined in Exercise 7.6.

The collection of all alternating k-multilinear functions is denoted by Ak (V).
For any k, k-multilinear functions can be added and scalar-multiplied just like
ordinary linear functions, so the set Ak (V) forms a vector space.

For k � 1 the alternating property is vacuous, so an alternating 1-multilinear
function is nothing but a linear function. Thus A1(V) � V∗.

A 0-multilinear function is by convention just a number. Thus A0(V) � R.
There is a nice way to construct a basis of the vector space Ak (V) starting from

a basis {b1, . . . , bn } of V. The idea is to take wedge products of dual basis vectors.
Let {β1 , . . . , βn } be the corresponding dual basis of V∗. Let I � (i1 , i2 , . . . , ik ) be an
increasing multi-index, i.e. 1 ≤ i1 < i2 < · · · < ik ≤ n. Write

βI � βi1βi2 · · · βik ∈ Ak (V),

bI � (bi1 , bi2 , . . . , bik ) ∈ Vk .

7.11. Example. Let V � R3 with standard basis {e1, e2, e3}. The dual basis of
(R3)∗ is {dx1 , dx2, dx3}. Let k � 2 and I � (1, 2), J � (2, 3). Then

dxI (eI ) �
�����
dx1(e1) dx1(e2)

dx2(e1) dx2(e2)

����� �
�����
1 0
0 1

����� � 1,

dxI (eJ ) �
�����
dx1(e2) dx1(e3)

dx2(e2) dx2(e3)

����� �
�����
0 0
1 0

����� � 0,

dx J (eI ) �
�����
dx2(e1) dx2(e2)

dx3(e1) dx3(e2)

�����
�

�����
0 1
0 0

�����
� 0,

dx J (eJ ) �
�����
dx2(e2) dx2(e3)

dx3(e2) dx3(e3)

�����
�

�����
1 0
0 1

�����
� 1.

This example generalizes as follows. For multi-indices I and J let us define a
generalized Kronecker delta δI ,J by

δI ,J �


1 if I � J ,

0 if I , J .

7.12. Lemma. Let I and J be increasing multi-indices of degree k. Then βI (bJ ) � δI ,J .
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Proof. Let I � (i1 , . . . , ik ) and J � ( j1 , . . . , jk ). Then

βI (bJ ) � det
(

βir (b js )
)

1≤r,s≤k �

��������������

δi1 , j1 . . . δi1 , jk
...

...
δil , j1 . . . δil , jk
...

...
δik , j1 . . . δik , jk

��������������

.

If I � J , then this matrix is the identity k×k-matrix, so βI (bJ ) � 1. If I , J , then there
is some i ∈ I which is not in J , say i � il , which causes all entries in the l-th row of
the matrix to vanish. Hence its determinant is 0, and therefore βI (bJ ) � 0. QED

We need one further technical result before showing that the functions βI are
a basis of Ak (V).

7.13. Lemma. Let β ∈ Ak (V). Suppose β(bI ) � 0 for all increasing multi-indices I
of degree k. Then β � 0.

Proof. The assumption implies

β(bi1 , . . . , bik ) � 0 (7.4)

for all multi-indices (i1 , . . . , ik ), because of the alternating property. We need to
show that β(v1 , v2 , . . . , vk ) � 0 for arbitrary vectors v1, v2, . . . , vk . We can expand
the vi using the basis:

v1 � a1,1b1 + a1,2b2 + · · · + a1,nbn ,

v2 � a2,1b1 + a2,2b2 + · · · + a2,nbn ,

...

vk � ak ,1b1 + ak ,2b2 + · · · + ak ,nbn .

Therefore by multilinearity

β(v1 , v2 , . . . , vk ) �

n∑

i1�1

· · ·
n∑

ik�1

a1,i1 a2,i2 · · · ak ,ik
β(bi1 , bi2 , . . . , bik ).

Each term in the right-hand side is 0 by equation (7.4). QED

7.14. Theorem. Let V be an n-dimensional vector space with basis {b1, b2, . . . , bn }.
Let {β1 , β2 , . . . , βn } be the corresponding dual basis of V∗. Then the alternating k-
multilinear functions βI � βi1βi2 · · · βik , where I ranges over the set of all increasing

multi-indices of degree k, form a basis of Ak (V). Hence dim(Ak (V)) �
(n

k

)

.

Proof. The proof is closely analogous to that of Lemma 7.4. Let β ∈ Ak (V).
We need to write β as a linear combination β �

∑

I cIβI . Assuming for the moment
that this is possible, we apply both sides to the k-tuple of vectors bJ . Using Lemma
7.12 we obtain

β(bJ ) �
∑

I

cIβI (bJ ) �
∑

I

cIδI ,J � c J .

So c J � β(bJ ) is the only possible choice for the coefficient c J . To show that this
choice of coefficients works, let us define β′ �

∑

I β(bI )βI . Then for all increasing
multi-indices I we have β(bI ) − β′(bI ) � β(bI ) − β(bI ) � 0. Applying Lemma 7.13
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to β − β′ we find β − β′ � 0. In other words, β �

∑

I β(bI )βI . We have proved that
the βI form a basis. The dimension of Ak (V) is equal to the cardinality of the basis,
which is

(n
k

)

. QED

7.15. Example. Let V � Rn with standard basis {e1, . . . , en }. The dual basis of
(Rn )∗ is {dx1, . . . , dxn }. (See (7.3) and Example 7.5.) Therefore Ak (V) has a basis
consisting of all k-multilinear functions of the form

dxI � dxi1 dxi2 · · · dxik ,

with 1 ≤ i1 < · · · < ik ≤ n. Hence a general alternating k-multilinear function µ
on Rn looks like

µ �

∑

I

aI dxI ,

with aI constant. By Lemma 7.12, µ(eJ ) �

∑

I aI dxI (eJ ) �

∑

I aIδI ,J � a J , so the
coefficient aI is equal to µ(eI ).

k-Forms on Rn re-examined. Let U be an open subset of Rn . We define a
k-form α on U to be a smooth map α : U → Ak (Rn). This means that α can be
written as

α �

∑

I

fI dxI ,

where the coefficients fI are smooth functions on U . The value of α at x ∈ U
is denoted by αx, so that we have αx �

∑

I fI (x) dxI for all x ∈ U . For each
x the object αx is an element of Ak (Rn ), that is to say a k-multilinear function
on Rn . So for any k-tuple vI � (v1 , v2 , . . . , vk ) of vectors in Rn the expression
αx(vI ) � αx(v1 , v2 , . . . , vk ) is a number. Example 7.15 gives us a useful formula for
the coefficients fI , namely fI � α(eI ) (which is to be interpreted as fI (x) � αx(eI )

for all x).

Pullbacks re-examined. In the light of this new definition we can give a fresh
interpretation of a pullback. This will be useful in our study of forms on manifolds.
Let U and V be open subsets of Rn , resp. Rm , and φ : U → V a smooth map. For a
k-form α ∈ Ωk (V) define the pullback φ∗(α) ∈ Ωk (U) by

φ∗(α)x(v1 , v2, . . . , vk ) � αφ(x) (Dφ(x)v1 ,Dφ(x)v2, . . . ,Dφ(x)vk ).

Let us check that this formula agrees with the old definition. We write α �

∑

I fI dyI ,
where the fI are smooth functions on V, and φ∗(α) �

∑

J g J dx J , where the g J are
smooth functions on U . What is the relationship between g J and fI? We use the
formula g J � φ∗(α)(eJ ), our new definition of pullback and the definition of the
wedge product to obtain

g J (x) � φ∗(α)x(eJ ) � αφ(x) (Dφ(x)e j1 ,Dφ(x)e j2 , . . . ,Dφ(x)e jk )

�

∑

I

fI (φ(x)) dyI (Dφ(x)e j1 ,Dφ(x)e j2 , . . . ,Dφ(x)e jk )

�

∑

I

φ∗( fI )(x) det
(

dyir (Dφ(x)e js )
)

1≤r,s≤k.

By Lemma 7.6 the number dyir (Dφ(x)e js ) is the ir js-matrix entry of the Jacobi ma-
trix Dφ(x) (with respect to the standard basis e1, e2, . . . , en of Rn and the standard
basis e1, e2, . . . , em of Rm). In other words, g J (x) �

∑

I φ
∗( fI )(x) det(DφI ,J (x)). This
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formula is identical to the one in Theorem 3.13 and therefore our new definition
agrees with the old!

Forms on manifolds. Let M be an n-dimensional manifold in RN . For each
point x in M the tangent space TxM is an n-dimensional linear subspace of RN .
The book [BT82] describes a k-form on M as an animal that inhabits the world
M, eats k-tuples of tangent vectors, and spits out numbers. Formally, a differential
form of degree k or a k-form α on M is a choice of an alternating k-multilinear map
αx on the vector space TxM, one for each x ∈ M. This alternating map αx is
required to depend smoothly on x in the following sense. Let ψ : U → RN be a
local parametrization of M at x. The tangent space at x is then TxM � Dψ(t)(Rn),
where t ∈ U is chosen such that ψ(t) � x. The pullback of α under the local
parametrization ψ is defined by

ψ∗(α)t (v1 , v2, . . . , vk ) � αψ(t) (Dψ(t)v1,Dψ(t)v2, . . . ,Dψ(t)vk ).

Then ψ∗(α) is a k-form on U , an open subset of Rn , so ψ∗(α) �
∑

I fI dtI for certain
functions fI defined on U . We will require the functions fI to be smooth. (The
form ψ∗(α) �

∑

I fI dtI is the local representative of α relative to the embedding ψ
introduced in Section 7.1.) To recapitulate:

7.16. Definition. A k-form α on M is a choice, for each x ∈ M, of an alternating
k-multilinear map αx on TxM, which depends smoothly on x.

We can calculate the local representative ψ∗(α) of a k-form α for any lo-
cal parametrization ψ : U → RN of M. Suppose we had two different local
parametrizations ψi : Ui → RN and ψ j : U j → RN of M at x. Then the local
expressions αi � ψ∗i (α) and α j � ψ∗j (α) for α are related by the formula

α j � (ψ−1
i ◦ ψ j )

∗(αi ).

This is identical to the transformation law (7.1), which shows that Definitions 7.1
and 7.16 of differential forms on a manifold are equivalent.

7.17. Example. Let M be a one-dimensional manifold in RN . Let us choose an
orientation (“direction”) on M. A tangent vector to M is positive if it points in the
same direction as the orientation and negative if it points in the opposite direction.
Define a 1-form α on M as follows. For x ∈ M and a tangent vector v ∈ TxM put

αx(v) �

‖v‖ if v is positive,
−‖v‖ if v is negative.

The form α is the element of arc length of M. We shall see in Chapter 8 how to
generalize it to higher-dimensional manifolds and in Chapter 9 how to use it to
calculate arc lengths and volumes.

Exercises

7.1. The vectors e1 + e2 and e1 − e2 form a basis of R2. What is the dual basis of (R2)∗?

7.2. Let {b1 ,b2 , . . . , bn } be a basis of Rn . Show that {bT
1
, bT

2
, . . . , bT

n } is the correspond-

ing dual basis of (Rn )∗ if and only if the basis is orthonormal.

7.3. Let µ be a k-multilinear function on a vector space V . Suppose that µ satisfies
µ(v1 , v2 , . . . , vk ) � 0 whenever two of the vectors v1, v2 , . . . , vk are equal, i.e. vi � v j for

some pair of distinct indices i , j. Prove that µ is alternating.
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7.4. Show that the bilinear function µ of Example 7.8 is equal to dx1 dx2 + dx3 dx4.

7.5. The wedge product is a generalization of the cross product to arbitrary dimensions
in the sense that

x × y �

(∗(xT ∧ yT )
)T

for all x, y ∈ R3. Prove this formula. (Interpretation: x and y are column vectors, xT and yT

are row vectors, xT ∧ yT is a 2-form on R3, ∗(xT ∧ yT ) is a 1-form, i.e. a row vector. So both
sides of the formula represent column vectors.)

7.6. Let V be a vector space and let µ1, µ2 , . . . , µk ∈ V∗ be covectors. Their tensor
product is the function

µ1 ⊗ µ2 ⊗ · · · ⊗ µk : Vk → R

defined by
µ1 ⊗ µ2 ⊗ · · · ⊗ µk (v1 , v2 , . . . , vk ) � µ1(v1)µ2(v2) · · · µk (vk ).

Show that µ1 ⊗ µ2 ⊗ · · · ⊗ µk is a k-multilinear function.

7.7. Let µ : Vk → R be a k-multilinear function. Define a new function Alt(µ) : Vk → R
by

Alt(µ)(v1 , v2 , . . . , vk ) �
1

k!

∑

σ∈Sk

sign(σ)µ(vσ(1) , vσ(2) , . . . , vσ(k)).

Prove the following.

(i) Alt(µ) is an alternating k-multilinear function.
(ii) Alt(µ) � µ if µ is alternating.

(iii) Alt(Alt(µ)) � Alt(µ) for all k-multilinear µ.
(iv) Let µ1, µ2 , . . . , µk ∈ V∗. Then

µ1µ2 · · · µk � k! Alt(µ1 ⊗ µ2 ⊗ · · · ⊗ µk ).

7.8. Show that det(v1 , v2 , . . . , vn ) � dx1 dx2 · · · dxn (v1, v2 , . . . , vn ) for all vectors v1,
v2 , . . . , vn ∈ Rn . In short,

det � dx1 dx2 · · · dxn .

7.9. Let V and W be vector spaces and L : V → W a linear map. Show that L∗(λµ) �

L∗(λ)L∗(µ) for all covectors λ, µ ∈ W∗.
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Volume forms

8.1. n-Dimensional volume in RN

The parallelepiped spanned by n vectors a1, a2, . . . , an in RN is the set of all
linear combinations

∑n
i�1 ciai, where the coefficients ci range over the unit interval

[0, 1]. This is the same as the definition given in Section 3.1, except that here
we allow the number of vectors n to be different from the dimension N . (Think
of a parallelogram in three-space.) We will need a formula for the volume of a
parallelepiped. If n < N there is no coherent way of defining an orientation on
all n-parallelepipeds in RN , so this volume will be not an oriented but an absolute
volume. (The reason is that for n < N an n-dimensional parallelepiped in RN can
be rotated onto its mirror image through the extra dimensions. This is impossible
for n � N .) It turns out that n-dimensional volume in RN , like the determinant,
can be characterized by a few reasonable axioms.

8.1. Definition. An (absolute) n-dimensional Euclidean volume function on RN is
a function

voln : RN × RN × · · · × RN
︸                    ︷︷                    ︸

n times

→ R

with the following properties:

(i) homogeneity:

voln (a1, a2, . . . , cai , . . . , an) � |c | voln (a1, a2, . . . , an)

for all scalars c and all vectors a1, a2, . . . , an ;
(ii) invariance under shear transformations:

voln (a1, . . . , ai + ca j , . . . , a j , . . . , an) � voln (a1, . . . , ai , . . . , a j , . . . , an)

for all scalars c and all pairs of indices i , j;
(iii) invariance under Euclidean motions:

voln (Qa1,Qa2, . . . ,Qan) � voln (a1 , a2, . . . , an)

for all orthogonal matrices Q;
(iv) normalization: voln (e1, e2, . . . , en) � 1.

We shall shortly see that these axioms uniquely determine the n-dimensional
volume function.

8.2. Lemma. Let a1, a2, . . . , an be vectors in RN .

(i) voln (a1, a2, . . . , an) � 0 if the vectors a1, a2, . . . , an are linearly dependent.
(ii) voln (a1, a2, . . . , an) � ‖a1‖ ‖a2‖ · · · ‖an‖ if a1, a2, . . . , an are orthogonal

vectors.

101
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Proof. (i) Assume a1, a2, . . . , an are linearly dependent. For simplicity suppose
a1 is a linear combination of the other vectors, a1 �

∑n
i�2 ciai . By repeatedly

applying Axiom (ii) we get

voln (a1 , a2, . . . , an) � voln

( n∑

i�2

ciai , a2, . . . , an

)

� voln

( n∑

i�3

ciai , a2, . . . , an

)

� · · · � voln (0, a2, . . . , an).

Now by Axiom (i),

voln (0, a2, . . . , an) � voln (0 0, a2, . . . , an) � 0 voln (0, a2, . . . , an) � 0,

which proves property (i).
(ii) Suppose a1, a2, . . . , an are orthogonal. First assume they are nonzero. Then

we can define qi � ‖ai‖−1ai . The vectors q1, q2, . . . , qn are orthonormal. Complete
them to an orthonormal basis q1, q2, . . . , qn , qn+1, . . . , qN of RN . Let Q be the
matrix whose i-th column is qi . Then Q is orthogonal and Qei � qi . Therefore

voln (a1, a2, . . . , an) � ‖a1‖ ‖a2‖ · · · ‖an‖ voln (q1 , q2, . . . , qn) by Axiom (i)

� ‖a1‖ ‖a2‖ · · · ‖an‖ voln (Qe1,Qe2, . . . ,Qen)

� ‖a1‖ ‖a2‖ · · · ‖an‖ voln (e1 , e2, . . . , en) by Axiom (iii)

� ‖a1‖ ‖a2‖ · · · ‖an‖ by Axiom (iv),

which proves part (ii) if all ai are nonzero. If one of the ai is 0, the vectors a1, a2, . . . ,
an are dependent, so then the statement follows from part (i). QED

A special case of Lemma 8.2(i) is the following obervation: if n > N then every
set a1, a2, . . . , an of n vectors in RN is dependent, so voln (a1, a2, . . . , an) � 0. This
makes sense: a degenerate parallelepiped spanned by three vectors in the plane
has three-dimensional volume equal to 0.

This brings us to the volume formula. We can form an N × n-matrix A out of
the column vectors a1, a2, . . . , an . It does not make sense to take det(A) because A
is not square, unless n � N . However, the Gram matrix ATA of A is square and we
can take its determinant.

8.3. Lemma. We have det(ATA) ≥ 0 for all N × n-matrices A, and det(ATA) � 0 if
and only if the columns of A are dependent.

Proof. The inner product of two vectors u and v can be written as u · v � uTv.
In particular,

(ATAv) · v � (ATAv)Tv � vTATAv � (Av) · (Av) ≥ 0 (8.1)

for all vectors v ∈ Rn . The Gram matrix is symmetric and therefore, by the spectral
theorem, has an eigenbasis consisting of real eigenvectors. If v is an eigenvector
of ATA with eigenvalue λ, then λv · v � (ATAv) · v, which is nonnegative by
(8.1). Hence λ ≥ 0: all eigenvalues of the Gram matrix are nonnegative, and
therefore its determinant is non-negative. If the columns of A are dependent, then
A has a nontrivial nullspace, so Av � 0 for some nonzero v. Hence ATAv � 0,
so the columns of ATA are dependent as well, so det(ATA) � 0. Conversely, if
det(ATA) � 0 then ATA has a nontrivial nullspace, so ATAw � 0 for some nonzero
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w. Therefore (Aw) · (Aw) � 0 by (8.1), i.e. Aw � 0, so the columns of A are
dependent. QED

It follows from the lemma that the formula in the next theorem makes sense.

8.4. Theorem. There exists a unique n-dimensional volume function on RN . It is
given by the following formula:

voln (a1, a2, . . . , an) �
√

det(ATA)

for all vectors a1, a2, . . . , an in RN , where A is the N × n-matrix whose i-th column is ai .

Proof. The existence is proved by checking that the function
√

det(ATA) sat-
isfies the axioms of Definition 8.1. You will be asked to do this in Exercise 8.2. The
uniqueness is proved by verifying that the formula holds, which we proceed to do
now.

First assume that a1, a2, . . . , an are dependent. Then voln (a1 , a2, . . . , an) � 0 by
Lemma 8.2(i) and det(ATA) � 0 by Lemma 8.3, so the formula holds in this case.

Next consider a sequence of independent vectors a1, a2, . . . , an . Recall that
such a sequence can be transformed into an orthogonal sequence a⊥

1
, a⊥

2
, . . . , a⊥n by

the Gram-Schmidt process. This works as follows: let b1 � 0 and for i > 1 let bi be
the orthogonal projection of ai onto the span of a1, a2, . . . , ai−1; then a⊥

i
� ai − bi .

(See illustration below.) Each bi is a linear combination of a1, a2, . . . , ai−1, so by
repeated applications of Axiom (ii) we get

voln (a1 , a2, . . . , an) � voln (a⊥1 + b1 , a
⊥
2 + b2, . . . , a

⊥
n + bn)

� voln (a⊥1 , a
⊥
2 + b2, . . . , a

⊥
n + bn )

� voln (a⊥1 , a
⊥
2 , . . . , a

⊥
n + bn)

...

� voln (a⊥1 , a
⊥
2 , . . . , a

⊥
n )

� ‖a⊥1 ‖‖a
⊥
2 ‖ · · · ‖a

⊥
n ‖, (8.2)

where the last equality follows from Lemma 8.2(ii). The Gram-Schmidt process can
be expressed in matrix form by letting qi be the normalized vector qi � a⊥

i
/‖a⊥

i
‖

and Q the N × n-matrix with columns q1, q2, . . . , qn . Then we have the QR-
decomposition A � QR, where R is an n × n-matrix of the form

R �

*.......
,

‖a⊥
1
‖ ∗ ∗ · · · ∗

0 ‖a⊥
2
‖ ∗ · · · ∗

0 0 ‖a⊥
3
‖ · · · ∗

...
...

. . . ∗
0 0 · · · 0 ‖a⊥n ‖

+///////
-

.

Since Q is orthogonal, ATA � RT QTQR � RT R, and therefore

det(ATA) � det(RT R) � ‖a⊥1 ‖
2‖a⊥2 ‖

2 · · · ‖a⊥n ‖2.
Comparing this with (8.2) gives the desired conclusion. QED

The Gram-Schmidt process transforms a sequence of n independent vectors
a1, a2, . . . , an into an orthogonal sequence a⊥

1
, a⊥

2
, . . . , a⊥n . (The horizontal “floor”
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represents the plane spanned by a1 and a2.) The parallelepiped spanned by the a’s
has the same volume as the rectangular block spanned by the a⊥’s.

a1

a2

a3

a1 = a⊥1

a2

a3

b2

b3

a⊥2

a⊥3

a1

a2

a3

a⊥1

a⊥2

a⊥3

8.5. Corollary. voln (a1, a2, . . . , an) ≥ 0 for all vectors a1, a2, . . . , an in RN .

For n � N Theorem 8.4 gives the following result.

8.6. Corollary. Let a1, a2, . . . , an be vectors in Rn and let A be the n × n-matrix
whose i-th column is ai. Then voln (a1 , a2, . . . , an) � |det(A|.

Proof. Since A is square, we have det(ATA) � det(AT ) det(A) � (det(A))2

by Theorem 3.7(iii) and therefore voln (a1, a2, . . . , an) �

√

(det(A))2
� |det(A) | by

Theorem 8.4. QED

8.2. Orientations

Oriented vector spaces. You are probably familiar with orientations of vector
spaces of dimension ≤ 3. An orientation of a point is a sign, positive or negative.

+ −

An orientation of a line is a direction, an arrow pointing either way.

An orientation of a plane is a direction of rotation, clockwise versus counterclock-
wise.
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An orientation of a three-dimensional space is a “handedness” convention, left
hand versus right hand.

These notions can be generalized as follows. Let V be an n-dimensional vector space
over the real numbers. A frame or ordered basis of V is an n-tuple (b1, b2, . . . , bn)

consisting of vectors b1, b2, . . . , bn which form a basis of V. In other words, a frame
is a basis together with a specified ordering among the basis vectors. An oriented
frame of V is an ordered n + 1-tuple B � (b1, b2, . . . , bn ; ε) consisting of a frame
(b1, b2, . . . , bn) together with a sign ε � ±1. Suppose that B � (b1 , b2, . . . , bn ; ε)

and B′ � (b′
1
, b′

2
, . . . , b′n ; ε′) are two oriented frames of V. Then we can write

b′
j
�

∑n
i�1 ai , jbi and b j �

∑n
i�1 a′

i , j
b′

i
with unique coefficients ai , j and a′

i , j
. The

n × n-matrices A � (ai , j ) and A′ � (a′
i , j

) satisfy AA′ � A′A � I and are therefore
invertible. In particular, the determinant of A is nonzero. If ε′ � sign(det(A))ε
we say that the oriented frames B and B′ define the same orientation of V. If
ε′ � − sign(det(A))ε we say that the oriented frames B and B

′ define opposite
orientations.

For instance, if (b′
1
, b′

2
, . . . , b′n) � (b2 , b1, . . . , bn ), then

A �

*.......
,

0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

+///////
-

,

so det(A) � −1. Hence the oriented frames

(b2 , b1, . . . , bn ; 1) and (b1 , b2, . . . , bn ; 1)

define opposite orientations, while (b2, b1, . . . , bn ; 1) and (b1, b2, . . . , bn ;−1) de-
fine the same orientation.

We know now what it means for two bases to have “the same orientation”, but
what about the concept of an orientation itself? We define the orientation of V
determined by the oriented frame B to be the collection of all oriented frames that
have the same orientation as B. (This is analogous to the definition of the number
29 as being the collection of all sets that contain twenty-nine elements.) The orien-
tation determined by B � (b1 , b2, . . . , bn ; ε) is denoted by [B] or [b1, b2, . . . , bn ; ε].
So if B and B′ define the same orientation then [B] � [B′]. If they define opposite
orientations we write [B] � −[B′]. There are two possible orientations of V. An
oriented vector space is a vector space together with a specified orientation. This
preferred orientation is then called positive.

8.7. Example. The standard orientation on Rn is the orientation [e1, . . . , en ; 1],
where (e1, . . . , en) is the standard ordered basis. We shall always use this orienta-
tion on Rn .
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Maps and orientations. Let V and W be oriented vector spaces of the same
dimension and let L : V → W be an invertible linear map. Choose a posi-
tively oriented frame (b1 , b2, . . . , bn ; ε) of V. Because L is invertible, the n + 1-
tuple (Lb1 , Lb2, . . . , Lbn ; ε) is an oriented frame of W . If this frame is positively,
resp. negatively, oriented we say that L is orientation-preserving, resp. orientation-
reversing. This definition does not depend on the choice of the basis, for if
(b′

1
, b′

2
, . . . , b′n ; ε′) is another positively oriented frame of V, then b′

i
�

∑

j ai , jb j

with ε′ � sign(det(ai , j ))ε. Therefore Lb′
i
� L

(∑

j ai , jb j
)

�

∑

j ai , j Lb j , and hence
the two oriented frames (Lb1 , Lb2, . . . , Lbn ; ε) and (Lb′

1
, Lb′

2
, . . . , Lb′n ; ε′) of W

determine the same orientation of W .

Oriented manifolds. Now let M be a manifold in RN . We define an orientation
of M to be a choice of an orientation for each tangent space TxM which varies
continuously over M. “Continuous” means that for every x ∈ M there exists a local
parametrizationψ : U → RN of M at x with the property that Dψ(t) : Rn → Tψ(t)M
preserves the orientation for all t ∈ U . (Here Rn is equipped with its standard
orientation.) A manifold is orientable if it possesses an orientation; it is oriented if a
specific orientation has been chosen.

Hypersurfaces. The case of a smooth hypersurface, a manifold of codimension
1, is particularly instructive. A unit normal vector field on a manifold M in RN is a
smooth function n : M → RN such that n(x) ⊥ TxM and ‖n(x)‖ � 1 for all x ∈ M.

8.8. Proposition. A smooth hypersurface in RN is orientable if and only if it possesses
a unit normal vector field.

Proof. Let M be a smooth hypersurface in RN and put n � dim(M) � N − 1.
Suppose M possesses a unit normal vector field. Let b1, b2, . . . , bn be a basis of
TxM for some x ∈ M. Then n(x), b1, b2, . . . , bn is a basis of RN , because n(x) ⊥ bi

for all i. Choose ε � ±1 such that (n(x), b1, b2, . . . , bn ; ε) is a positively oriented
frame of RN . Then we call (b1, b2, . . . , bn ; ε) a positively oriented frame of TxM.
This defines an orientation on M, called the orientation induced by the normal
vector field n.

Conversely, let us suppose that M is an oriented smooth hypersurface in RN .
For each x ∈ M the tangent space TxM is n-dimensional, so its orthogonal comple-
ment (TxM)⊥ is a line. There are therefore precisely two vectors of length 1 which
are perpendicular to TxM. We can pick a preferred unit normal vector as follows.
Let (b1, b2, . . . , bn ; ε) be a positively oriented frame of TxM. The positive unit
normal vector is that unit normal vector n(x) that makes (n(x), b1 , b2, . . . , bn ; ε)

a positively oriented frame of Rn . In Exercise 8.7 you will be asked to check that
n(x) depends smoothly on x. In this way we have produced a unit normal vector
field on M. QED

8.9. Example. Let us regard RN−1 as the linear subspace of RN spanned by the
first N − 1 standard basis vectors e1, e2, . . . , eN−1. The standard orientations on RN

and on RN−1 are [e1, e2, . . . , eN ; 1], resp. [e1, e2, . . . , eN−1; 1]. What is the positive
unit normal n to RN−1? According to the proof of Proposition 8.8 we must choose
n in such a way that

[n, e1, e2, . . . , eN−1; 1) � [e1, e2, . . . , eN ; 1].
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The only two possibilities are n � ρeN with ρ � ±1. By parts (i) and (iv) of Exercise
8.5 we have

[n, e1, e2, . . . , eN−1; 1] � (−1)N+1[e1, e2, . . . , eN−1, n; 1]

� (−1)N+1[e1, e2, . . . , eN−1, ρeN ; 1] � (−1)N+1ρ[e1, e2, . . . , eN−1, eN ; 1],

so we want (−1)N+1ρ � 1. We conclude that the positive unit normal to RN−1 in
RN is (−1)N+1eN .

The positive unit normal on an oriented smooth hypersurface M in RN can be
regarded as a map n from M into the unit sphere SN−1, which is often called the
Gauss map of M. The unit normal enables one to distinguish between two sides of
M: the direction of n is “out” or “up”; the opposite direction is “in” or “down”.
For this reason orientable hypersurfaces are often called two-sided, whereas the
nonorientable ones are called one-sided. Let us show that a hypersurface given by
a single equation is always orientable.

8.10. Proposition. Let U be open in RN and let φ : U → R be a smooth function.
Let c be a regular value of φ. Then the smooth hypersurface φ−1(c) has a unit normal
vector field given by n(x) � grad(φ)(x)/‖grad(φ)(x)‖ and is therefore orientable.

Proof. The regular value theorem tells us that M � φ−1(c) is a smooth hyper-
surface in RN (if nonempty), and also that TxM � ker(Dφ(x)) � grad(φ)(x)⊥. The
function n(x) � grad(φ)(x)/‖grad(φ)(x)‖ therefore defines a unit normal vector
field on M. Appealing to Proposition 8.8 we conclude that M is orientable. QED

8.11. Example. Taking φ(x) � ‖x‖2 and c � r2 we obtain that the sphere of
radius r about the origin is orientable. The unit normal is

n(x) � grad(φ)(x)/‖grad(φ)(x)‖ � x/‖x‖.

8.3. Volume forms

Now let M be an oriented n-manifold in RN . Choose an atlas of M consisting of
local parametrizations ψi : Ui → RN with the property that Dψi (t) : Rn → TxM is
orientation-preserving for all t ∈ Ui. The volume form µM , also denoted by µ, is the
n-form on M whose local representative relative to the embedding ψi is defined
by

µi � ψ
∗
i (µ) �

√

det(Dψi (t)T Dψi (t)) dt1 dt2 · · · dtn .

Theorem 8.4 tells us that the square-root factor measures the volume of the n-
dimensional parallelepiped in the tangent space TxM spanned by the columns of
Dψi (t), the Jacobi matrix of ψi at t. Hence you should think of µ as measuring the
volume of infinitesimal parallelepipeds inside M.

8.12. Theorem. For any oriented n-manifold M in RN the volume form µM is a
well-defined n-form.

Proof. To show that µ is well-defined we need to check that its local represen-
tatives satisfy the transformation law (7.1). So let us put φ � ψ−1

i
◦ψ j and substitute

t � φ(u) into µi . Since each of the embeddings ψi is orientation-preserving, we
have det(Dφ) > 0. Hence by Theorem 3.14 we have

φ∗(dt1 dt2 · · · dtn) � det(Dφ(u) du1 du2 · · · dun � |det(Dφ(u)) | du1 du2 · · · dun .
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Therefore

φ∗(µi ) �

√

det
(

Dψi (φ(u))T Dψi (φ(u))
) |det(Dφ(u)) | du1 du2 · · · dun

�

√

det(Dφ(u))T det
(

Dψi (φ(u))T Dψi (φ(u))
)

det(Dφ(u)) du1 du2 · · · dun

�

√

det
(

(Dψi (φ(u))Dφ(u))T Dψi (φ(u))Dφ(u)
)

du1 du2 · · · dun

�

√

det((Dψ j (u))T Dψ j (u)) du1 du2 · · · dun � µ j ,

where in the second to last identity we applied the chain rule. QED

For n � 1 the volume form is usually called the element of arc length, for n � 2,
the element of surface area, and for n � 3, the volume element. Traditionally these are
denoted by ds, dA, and dV, respectively. Don’t be misled by these old-fashioned
notations: volume forms are seldom exact! Another thing to remember is that the
volume form µM depends on the embedding of M into RN . It changes if we dilate
or shrink or otherwise deform M.

8.13. Example. Let U be an open subset of Rn . Recall from Example 6.4 that U
is a manifold covered by a single embedding, namely the identity map ψ : U → U ,
ψ(x) � x. Then det(DψT Dψ) � 1, so the volume form on U is simply dt1 dt2 · · · dtn ,
the ordinary volume form on Rn .

8.14. Example. Let I be an interval in the real line and f : I → R a smooth
function. Let M ⊆ R2 be the graph of f . By Example 6.6 M is a 1-manifold in R2.
Indeed, M is the image of the embedding ψ : I → R2 given by ψ(t) � (t , f (t)). Let
us give M the orientation induced by the embedding ψ, i.e. “from left to right”.
What is the element of arc length of M? Let us compute the pullback ψ∗(µ), a
1-form on I. We have

Dψ(t) �

(

1
f ′(t)

)

, Dψ(t)T Dψ(t) �
(

1 f ′(t)
)
(

1
f ′(t)

)

� 1 + f ′(t)2 ,

so ψ∗(µ) �
√

det(Dψ(t)T Dψ(t)) dt �
√

1 + f ′(t)2 dt.

The next result can be regarded as an alternative definition of µM . It is perhaps
more intuitive, but it requires familiarity with Section 7.2.

8.15. Proposition. Let M be an oriented n-manifold in RN . Let x ∈ M and v1,
v2, . . . , vn ∈ TxM. Then the volume form of M is given by

µM,x(v1 , v2, . . . , vn )

�



voln (v1 , v2 , . . . , vn ) if (v1 , v2 , . . . , vn ; 1) is a positively oriented frame,

− voln (v1 , v2 , . . . , vn ) if (v1 , v2 , . . . , vn ; 1) is a negatively oriented frame,

0 if v1, v2 , . . . , vn are linearly dependent,

i.e. µM,x(v1 , v2, . . . , vn ) is the oriented volume of the n-dimensional parallelepiped in TxM
spanned by v1, v2 , . . . , vn .

Proof. For each x in M and n-tuple of tangent vectors v1, v2, . . . , vn at x let
ωx(v1 , v2, . . . , vn ) be the oriented volume of the block spanned by these n vectors.
This defines an n-form ω on M and we must show that ω � µM . Let U be an open
subset of Rn and ψ : U → RN an orientation-preserving local parametrization of
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M. Choose t ∈ U satisfying ψ(t) � x. Let us calculate the n-form ψ∗(ω) on U . We
have ψ∗(ω) � g dt1 dt2 · · · dtn for some function g. By Lemma 7.12 this function is
given by

g(t) � ψ∗(ωx)(e1, e2, . . . , en) � ωx(Dψ(t)e1,Dψ(t)e2, . . . ,Dψ(t)en),

where in the second equality we used the definition of pullback. Then the
tuple (Dψ(t)e1,Dψ(t)e2, . . . ,Dψ(t)en ; 1) is a positively oriented frame of TxM
and, moreover, are the columns of the matrix Dψ(t), so by Theorem 8.4 they
span a positive volume of magnitude

√

det(Dψ(t)T Dψ(t)). This shows that
g �

√

det(DψT Dψ) and therefore

ψ∗(ω) �

√

det(DψT Dψ) dt1 dt2 · · · dtn .

Thusψ∗(ω) is equal to the local representative of µM with respect to the embedding
ψ. Since this holds for all embeddings ψ, we have ω � µM . QED

Volume form of a hypersurface. Recall the vector-valued forms

dx �

*..
,

dx1

...
dxN

+//
-

and ∗dx �

*..
,

∗dx1

...
∗dxN

+//
-

on RN , which were introduced in Section 2.5. We will use these forms to give a
convenient expression for the volume form on a hypersurface. Let M be an oriented
hypersurface in RN . Let n be the positive unit normal vector field on M and let F

be any vector field on M, i.e. a smooth map F : M → RN . Then the inner product
F · n is a function defined on M. It measures the component of F orthogonal to M.
The product (F · n)µM is an n-form on M, where n � dim(M) � N − 1. On the
other hand we have the n-form ∗(F · dx) � F · ∗dx.

8.16. Theorem. On the hypersurface M we have

F · ∗dx � (F · n)µM .

First proof. This proof is short but requires familiarity with the material in
Section 7.2. Let x ∈ M. Let us make an orthogonal change of coordinates in RN

in such a way that (e1, e2 . . . , eN−1; 1) is a positively oriented frame of TxM. Then,
according to Example 8.9, the positive unit normal at x is given by n(x) � (−1)N+1eN

and the volume form satisfies µM,x(e1 , . . . , eN−1) � 1. Writing F �

∑N
i�1 Fiei, we

have F(x) · n(x) � (−1)N+1FN (x). On the other hand

F · ∗dx �

∑

i

(−1)i+1Fi dx1 · · · d̂x i · · · dxN ,

and therefore (F · ∗dx)(e1, . . . , eN−1) � (−1)N+1FN . This proves that

(F · ∗dx)x(e1 , . . . , eN−1) � (F(x) · n(x))µM (e1, . . . , eN−1),

which implies (F ·∗dx)x � (F(x) ·n(x))µM. Since this equality holds for every x ∈ M,
we find F · ∗dx � (F · n)µM . QED

Second proof. Choose a local parametrizationψ : U → RN of M at x. Let t ∈ U
be the point satisfying ψ(t) � x. As a preliminary step in the proof we are going
to replace the embedding ψ with a new one enjoying a particularly nice property.
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Let us change the coordinates on RN in such a way that (e1, e2 . . . , eN−1; 1) is a
positively oriented frame of TxM. Then at x the positive unit normal is given by
n(x) � (−1)N+1eN . Since the columns of the Jacobi matrix Dψ(t) are independent,
there exist unique vectors a1, a2, . . . , aN−1 in RN−1 such that Dψ(t)ai � ei for i � 1,
2, . . . , N − 1. These vectors ai are independent, because the ei are independent.
Therefore the (N − 1) × (N − 1)-matrix A with i-th column vector equal to ai is
invertible. Put Ũ � A−1(U), t̃ � A−1t and ψ̃ � ψ ◦ A. Then Ũ is open in RN−1,
ψ̃(t̃) � x, ψ̃ : Ũ → RN is an embedding with ψ̃(Ũ) � ψ(U), and

Dψ̃(t̃) � Dψ(t) ◦ DA(t̃) � Dψ(t) ◦ A

by the chain rule. Therefore the i-th column vector of Dψ̃(t̃) is

Dψ̃(t̃)ei � Dψ(t)Aei � Dψ(t)ai � ei (8.3)

for i � 1, 2, . . . , N −1. (On the left ei denotes the i-th standard basis vector in RN−1,
on the right it denotes the i-th standard basis vector in RN .) In other words, the
Jacobi matrix of ψ̃ at t̃ is the (N − 1) × N-matrix

Dψ̃(t̃) �

(

IN−1

0

)

,

where IN−1 is the (N − 1) × (N − 1) identity matrix and 0 denotes a row consisting
of N − 1 zeros.

Let us now calculate ψ̃∗
(

(F · n)µM
)

and ψ̃∗(F · ∗dx) at the point t̃. Writing
F · n �

∑N
i�1 Fini and using the definition of µM we get

ψ̃∗
(

(F · n)µM
)

�

( N∑

i�1

ψ̃∗(Fi ni )

)√

det(Dψ̃T Dψ̃) dt̃1 dt̃2 · · · dt̃N−1.

From formula (8.3) we have det(Dψ̃(t̃)T Dψ̃(t̃)) � 1. So evaluating this expression
at the point t̃ and using n(x) � (−1)N+1eN we get

(

ψ̃∗(F · n)µM
)

t̃ � (−1)N+1FN (x) dt̃1 dt̃2 · · · dt̃N−1.

From F · ∗dx �

∑N
i�1(−1)i+1Fi dx1 dx2 · · · d̂x i · · · dxN we get

ψ̃∗(F · ∗dx) �

N∑

i�1

(−1)i+1ψ̃∗(Fi ) dψ̃1 dψ̃2 · · · d̂ψ̃i · · · dψ̃N .

From formula (8.3) we see ∂ψ̃i (t̃)/∂t̃ j � δi , j for 1 ≤ i, j ≤ N − 1 and ∂ψ̃N (t̃)/∂t̃ j � 0
for 1 ≤ j ≤ N − 1. Therefore

(

ψ̃∗(F · ∗dx)
)

t̃ � (−1)N+1FN (x) dt̃1 dt̃2 · · · dt̃N−1.

We conclude that
(

ψ̃∗(F · n)µM
)

t̃ �
(

ψ̃∗(F · ∗dx)
)

t̃, in other words
(

(F · n)µM
)

x �

(F · ∗dx)x. Since this holds for all x ∈ M we have F · ∗dx � (F · n)µM . QED

This theorem gives insight into the physical interpretation of N − 1-forms on
RN . Think of the vector field F as representing the flow of a fluid or gas. The
direction of the vector F indicates the direction of the flow and its magnitude
measures the strength of the flow. Then Theorem 8.16 says that the N − 1-form
F · ∗dx measures, for any unit vector n in RN , the amount of fluid per unit of time
passing through a hyperplane of unit volume perpendicular to n. We call F · ∗dx
the flux of the vector field F.
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Another application of the theorem are the following formulas involving the
volume form on a hypersurface. The formulas provide a heuristic interpretation
of the vector-valued form ∗dx: if n is a unit vector in RN , then the scalar-valued
N − 1-form n · ∗dx measures the volume of an infinitesimal N − 1-dimensional
parallelepiped perpendicular to n.

8.17. Corollary. Let n be the unit normal vector field and µM the volume form of the
oriented hypersurface M. Then

µM � n · ∗dx and ∗dx � nµM .

Proof. Set F � n in Theorem 8.16. Then F · n � 1, because ‖n‖ � 1, and
hence µM � n · ∗dx. Now take F to be any vector field that is tangent to M.
Then F · n � 0, because n is normal to M, so F · ∗dx � 0. It follows that on the
hypersurface M the Rn-valued n − 1-form ∗dx is equal to the product of n and a
scalar n − 1-form ν: ∗dx � nν. Taking the dot product of both sides with n we
obtain ν � n · nν � n · ∗dx � µM , i.e. ∗dx � nµM . QED

8.18. Example. Suppose the hypersurface M is given by an equation φ(x) � c,
where c is a regular value of a function φ : U → R, with U open in Rn . Then by
Proposition 8.10 M has a unit normal n � grad(φ)/‖grad(φ)‖. The volume form is
therefore µ � ‖grad(φ)‖−1 grad(φ) · ∗dx. In particular, if M is the sphere of radius
R about the origin in Rn , then n(x) � x/R, so µM � R−1x · ∗dx.

Exercises

8.1. Let a and b be vectors in RN .

(i) Deduce from Theorem 8.4 that the area of the parallelogram spanned by a and b
is given by ‖a‖ ‖b‖ sinφ, where φ is the angle between a and b (which is taken
to lie between 0 and π).

(ii) Show that for N � 3 we have ‖a‖ ‖b‖ sinφ � ‖a×b‖. (Consider det(a, b, a×b).)

8.2. Check that the function voln (a1 , a2 , . . . , an ) �

√

det(AT A) satisfies the axioms of
Definition 8.1.

8.3. Let u1, u2 , . . . , uk and v1, v2 , . . . , vl be vectors in RN satisfying ui · v j � 0 for i � 1,

2, . . . , k and j � 1, 2, . . . , l. (“The u’s are perpendicular to the v’s.”) Prove that

volk+l (u1 , u2 , . . . , uk , v1 , v2 , . . . , vl ) � volk (u1 ,u2 , . . . , uk ) voll (v1 , v2 , . . . , vl ).

8.4. Let a1, a2 , . . . , an be real numbers, let c �

√

1 +
∑n

i�1
a2

i
and let

u1 �

*.......
,

1
0
...
0
a1

+///////
-

, u2 �

*.......
,

0
1
...
0
a2

+///////
-

, . . . , un �

*.......
,

0
0
...
1

an

+///////
-

, un+1 �

1

c

*.......
,

−a1

−a2
...
−an

1

+///////
-

be vectors in Rn+1.

(i) Deduce from Exercise 8.3 that

voln (u1 ,u2 , . . . , un ) � voln+1(u1 , u2 , . . . , un ,un+1).
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(ii) Prove that

��������������

1 + a2
1

a1a2 a1a3 . . . a1an

a2a1 1 + a2
2

a2a3 . . . a2an

a3a1 a3a2 1 + a2
3

. . . a3an

...
...

...
. . .

...
an a1 an a2 an a3 . . . 1 + a2

n

��������������

� 1 +

n∑

i�1

a2
i .

8.5. Let V be an n-dimensional vector space with basis b1, b2 , . . . , bn . Let ε � ±1.
Prove the following identities concerning orientations of V .

(i) [b1 , . . . , cbi , . . . , bn ; ε] � sign(c)[b1 , . . . , bi , . . . , bn ; ε] for all nonzero scalars c.
(ii) [b1 , b2 , . . . , bn ; ε] � ε[b1 ,b2 , . . . , bn ; 1].

(iii) [b1 , b2 , . . . , bn ;−ε] � −[b1 , b2 , . . . , bn ; ε].
(iv)

[

bσ(1) , bσ(2) , . . . , bσ(n) ; ε
]

� sign(σ)[b1 , b2 , . . . , bn ; ε] for all permutations σ in
Sn .

8.6. A frame (b1 , b2 , . . . , bn ) of Rn is orthonormal if the vectors b1, b2 , . . . , bn form
an orthonormal basis of Rn . Denote the set of orthonormal frames by Fn and the set of
positively oriented orthonormal frames by F+

n .

(i) Explain how to identify Fn with the orthogonal group O(n) and F+
n with the

special orthogonal group SO(n). Conclude that Fn and F+
n are manifolds of

dimension 1
2 n(n − 1). (Use Theorem 6.18).

(ii) Explain how to identify F+
3

with the configuration space M0 discussed in Exam-

ple 1.7 and conclude that M0 is a three-dimensional projective space. (See the
discussion following Theorem 6.18).

8.7. Show that the unit normal vector field n : M → RN defined in the proof of Proposi-
tion 8.8 is smooth. (Compute n in terms of an orientation-preserving local parametrization
ψ of M.)

8.8. Let U be open in Rn and let f : U → R be a smooth function. Let ψ : U → Rn+1 be
the embedding ψ(x) � (x, f (x)) and let M � ψ(U), the graph of f . We define an orientation
on M by requiringψ to be orientation-preserving. Deduce from Exercise 8.4 that the volume

form of M is given by ψ∗(µM ) �

√

1 + ‖grad f (x)‖2 dx1 dx2 · · · dxn .

8.9. Let M � graph( f ) be the oriented hypersurface of Exercise 8.8.

(i) Show that the positive unit normal vector field on M is given by

n �

(−1)n+1

√

1 + ‖grad( f )(x)‖2

*.......
,

∂ f /∂x1

∂ f /∂x2
...

∂ f /∂xn

−1

+///////
-

.

(ii) Derive the formula ψ∗ (µM ) �

√

1 + ‖grad f (x)‖2 dx1 dx2 · · · dxn of Exercise 8.8

from Corollary 8.17 by substituting xn+1 � f (x1 , x2 , . . . , xn ). (You must replace
N with n + 1 in Corollary 8.17.)

8.10. Let ψ : U → RN be an embedding of an open subset U of Rn into RN . Let M be
the image of ψ and let µ be the volume form of M. Now let R be a nonzero number, let ψR

be the embedding ψR (t) � Rψ(t), let MR be the image of ψR , and let µR be the volume form

of MR. Show that ψ∗
R

(µR ) � Rnψ∗(µ). (Use ψ∗ (µ) �

√

det(Dψi (t)
T Dψi (t)) dt1 dt2 · · · dtn .)



CHAPTER 9

Integration and Stokes’ theorem for manifolds

In this chapter we will see how to integrate an n-form over an oriented n-
manifold. In particular, by integrating the volume form we find the volume of the
manifold. We will also discuss a version of Stokes’ theorem for manifolds. This
requires the slightly more general notion of a manifold with boundary.

9.1. Manifolds with boundary

The notion of a spherical earth developed in classical Greece around the time of
Plato and Aristotle. Older cultures (and also Western culture until the rediscovery
of Greek astronomy in the late Middle Ages) visualized the earth as a flat disc
surrounded by an ocean or a void. A closed disc is not a manifold, because no
neighbourhood of a point on the edge is the image of an open subset of R2 under
an embedding. Rather, it is a manifold with boundary, a notion which is defined
as follows. The n-dimensional half-space is

Hn
� { x ∈ Rn | xn ≥ 0 }.

The boundary of Hn is ∂Hn
� { x ∈ Rn | xn � 0 } and its interior is int(Hn) � { x ∈

Rn | xn > 0 }.

9.1. Definition. An n-dimensional manifold with boundary (or n-manifold with
boundary) in RN is a subset M of RN such that for each x ∈ M there exist

• an open subset V ⊆ RN containing x,
• an open subset U ⊆ Rn ,
• and an embedding ψ : U → RN satisfying ψ(U ∩Hn ) � M ∩ V.

You should compare this definition carefully with Definition 6.3 of a manifold. If
x � ψ(t) with t ∈ ∂Hn , then x is a boundary point of M. The boundary of M is the
set of all boundary points and is denoted by ∂M. Its complement M \ ∂M is the
interior of M and is denoted by int(M).

Definition 9.1 does not rule out the possibility that the boundary of an n-
manifold with boundary might be empty! If the boundary of M is empty, then M
is a manifold in the sense of Definition 6.3. If the boundary ∂M is nonempty, then
∂M is an n − 1-dimensional manifold. The interior int(M) is an n-manifold.

The most obvious example of an n-manifold with boundary is the half-space
Hn itself. Its boundary is the hyperplane ∂Hn , which is a copy of Rn−1, and its
interior is the open half-space { x ∈ Rn | xn > 0 }. Here is a more interesting type
of example, which generalizes the graph of a function.

9.2. Example. Let U′ be an open subset of Rn−1 and let f : U′→ R be a smooth
function. Put U � U′ × R and write elements of U as

(x
y
)

with x in U′ and y in R.

113
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The region above the graph or the supergraph of f is the set consisting of all
(x

y
)

in U
such that y ≥ f (x).

∂M = graph f

M

x

y

We assert that the supergraph is an n-manifold with boundary, whose boundary is
exactly the graph of f . We will prove this by describing it as the image of a single
embedding. Define ψ : U → Rn by

ψ

(

t
u

)

�

(

t
f (t) + u

)

.

As in Example 6.2 one verifies that ψ is an embedding, using the fact that

Dψ

(

t
u

)

�

(

In−1 0
D f (t) 1

)

,

where 0 is the origin in Rn−1. By definition the image M � ψ(U ∩Hn ) is therefore
an n-manifold in Rn with boundary ∂M � ψ(U ∩ ∂Hn ). What are M and ∂M? A
point

(x
y
)

is in M if and only if it is of the form
(

x
y

)

� ψ

(

t
u

)

�

(

t
f (t) + u

)

for some
( t

u
)

in U ∩ Hn . Since Hn is given by u ≥ 0, this is equivalent to x ∈ U′

and y ≥ f (x). Thus M is exactly the supergraph. On ∂Hn we have u � 0, so ∂M is
given by the equality y � f (x), i.e. ∂M is the graph.

9.3. Example. If f : U′ → Rm is a vector-valued map one cannot speak about
the region “above” the graph, but one can do the following. Again put U � U′×R.
Let N � n + m − 1 and think of RN as the set of vectors

(x
y
)

with x in Rn−1 and y in
Rm . Define ψ : U → RN by

ψ

(

t
u

)

�

(

t
f (t) + uem

)

This time we have

Dψ(t) �

(

In−1 0
D f (t) em

)
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and again ψ is an embedding. Therefore M � ψ(U ∩Hn ) is an n-manifold in RN

with boundary ∂M � ψ(U ∩ ∂Hn ). This time M is the set of points
(x
y
)

of the form

(

x
y

)

�

(

t
f (t) + uem

)

with t ∈ U′ and u ≥ 0. Hence M is the set of points
(x
y
)

where x is in U′ and where
y satisfies m − 1 equalities and one inequality:

y1 � f1(x), y2 � f2(x), . . . , ym−1 � fm−1(x), ym ≥ fm (x).

Again ∂M is given by y � f (x), so ∂M is the graph of f .

Here is an extension of the regular value theorem, Theorem 6.12, to manifolds
with boundary.

9.4. Theorem (regular value theorem for manifolds with boundary). Let U be
open in RN and let φ : U → Rm be a smooth map. Let M be the set of x in RN satisfying

φ1(x) � c1 , φ2(x) � c2 , . . . , φm−1(x) � cm−1 , φm (x) ≥ cm .

Suppose that c � (c1 , c2 , . . . , cm ) is a regular value of φ and that M is nonempty. Then

M is a manifold in RN of codimension m − 1 and with boundary ∂M � φ−1(c).

We will not spell out the proof, which is similar to that of Theorem 6.12. The
statement remains true if we replace “≥” with “≤”, as one sees by replacing φwith
−φ.

9.5. Example. Let U � Rn , m � 1 and φ(x) � ‖x‖2. The set given by the
inequality φ(x) ≤ 1 is then the closed unit ball { x ∈ Rn | ‖x‖ ≤ 1 }. Since
grad(φ)(x) � 2x, any nonzero value is a regular value of φ. Hence the ball is an
n-manifold in Rn , whose boundary is φ−1(1), the unit sphere Sn−1.

If more than one inequality is involved, singularities often arise. A simple
example is the closed quadrant in R2 given by the pair of inequalities x ≥ 0 and
y ≥ 0. This is not a manifold with boundary because its edge has a sharp angle at
the origin. Similarly, a closed square is not a manifold with boundary.

However, one can show that a set given by a pair of inequalities of the form
a ≤ f (x) ≤ b, where a and b are both regular values of a function f , is a manifold
with boundary. For instance, the spherical shell

{ x ∈ Rn | R1 ≤ ‖x‖ ≤ R2 }

is an n-manifold whose boundary is a union of two concentric spheres.
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Other examples of manifolds with boundary are the pair of pants, a 2-manifold
whose boundary consists of three closed curves,

and the Möbius band shown in Chapter 1. The Möbius band is a nonorientable
manifold with boundary. We will not give a proof of this fact, but you can convince
yourself that it is true by trying to paint the two sides of a Möbius band in different
colours.

An n-manifold with boundary contained in Rn (i.e. of codimension 0) is often
called a domain. For instance, a closed ball is a domain in Rn .

The tangent space to a manifold with boundary M at a point x is defined in the
usual way: choose a local parametrization ψ of M at x and put

TxM � Dψ(t)(Rn).

As in the case of a manifold, the tangent space does not depend on the choice of
the embedding ψ. At boundary points we can distinguish between three different
types of tangent vectors. Suppose x is a boundary point of M and let v ∈ TxM be
a tangent vector. Then v � Dψ(t)u for a unique vector u ∈ Rn . We say that the
tangent vector v



points inward if un > 0,

is tangent to ∂M if un � 0,

points outward if un < 0.

The tangent space to the boundary at x is

Tx∂M � Dψ(t)(∂Hn ).

The above picture of the pair of pants shows some tangent vectors at boundary
points that are tangent to the boundary or outward pointing.

Orienting the boundary. Let M be an oriented manifold with boundary. The
orientation of M gives rise to an orientation of the boundary ∂M by a method
very similar to the one which produces an orientation of a hypersurface. (See
Proposition 8.8.) Namely, for x ∈ ∂M we let n(x) ∈ TxM be the unique outward
pointing tangent vector of length 1 which is orthogonal to Tx∂M. This defines
the unit outward pointing normal vector field n on ∂M. Let b1, b2, . . . , bn−1 be a
basis of Tx∂M. Then n(x), b1, b2, . . . , bn−1 is a basis of TxM. Choose ε � ±1
such that (n(x), b1 , b2, . . . , bn−1; ε) is a positively oriented frame of TxM. Then we
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define (b1, b2, . . . , bn−1; ε) to be a positively oriented frame of Tx∂M. The resulting
orientation of ∂M is called the induced orientation.

9.6. Example. Consider the upper half-space Hn with its standard orientation
[e1, . . . , en ; 1]. At each point of ∂Hn the outward pointing normal is −en . Since

[−en , e1, e2, . . . , en−1; 1] � −[en , e1, e2, . . . , en−1; 1]

� −(−1)n−1[e1, e2, . . . , en−1, en ; 1] � [e1, e2, . . . , en−1, en ; (−1)n],

the induced orientation on ∂Hn is [e1, e2, . . . , en−1; (−1)n].

You may wonder why we didn’t get rid of the (−1)n by adopting a different
convention for the orientation of the boundary. The justification for our convention
is that it avoids the need for sign corrections in the statement of Stokes’ theorem,
Theorem 9.9.

9.2. Integration over orientable manifolds

As we saw in Chapter 5, a form of degree n can be integrated over a chain
of dimension n. The integral does not change if we reparametrize the chain in
an orientation-preserving manner. This suggests the possibility of integrating an
n-form over an oriented n-manifold. One might try to do this by breaking up the
manifold into n-chains and then integrating over each of the chains, but that turns
out to be not so easy. Instead we shall employ the simpler method of breaking the
differential form into small pieces and then integrating each of the pieces.

In the remainder of this section M ⊆ RN denotes an n-manifold with boundary
and α denotes a differential form on M.

Support. The support of α is defined as the set of all points x in M with the
property that for every open ball B around x there is a y ∈ B ∩M such that αy , 0.
The support of α is denoted by supp(α). If αx is nonzero, then x is in the support
of α (because we can take y � x for all B). But for x to be in the support it is not
necessary for αx to be nonzero; we only need to be able to find points arbitrarily
close to x where α is nonzero. In other words, x is not in the support if and only if
there exists a ball B around x such that αy � 0 for all y ∈ B ∩M.

9.7. Example. Let M � R and αi � fi dx, where fi is one of the following smooth
functions.

(i) f1(x) � sin x. This function has infinitely many zeroes, but they are all
isolated: sinπk � 0, but sin y , 0 for y close to but distinct from πk.
Thus supp(α1) � R.

(ii) f2 is a nonzero polynomial function. Again f2 has isolated zeroes, so
supp(α2) � R.

(iii) f3(x) � exp(−1/x) for x > 0 and f3(x) � 0 for x ≤ 0. (This function is
similar to the function of Exercise B.3.) We have f3(x) > 0 for all x > 0.
It follows that x ∈ supp(α3) for all x ≥ 0. On the other hand, negative x
are not in the support, so supp(α3) � [0,∞).

(iv) f4(x) � f3(x − a) f3(b − x), where a < b are constants. We have f4(x) > 0
for a < x < b and f4(x) � 0 for x < a and x > b. Hence supp(α4) � [a, b].

9.8. Example. The volume form µ of M is nowhere 0, so supp(µ) � M.
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Partitions of unity. Chopping differential forms into “little pieces” requires a
device known as a partition of unity. Let ψi : Ui → RN be an atlas of M, where i
runs over an indexing set I . A partition of unity subordinate to the atlas is a collection
of smooth functions λi : M → R with the following properties:

(i) λi ≥ 0 for all i;
(ii) supp(λi ) is contained in ψi (Ui ) for all i;

(iii) for every x ∈ M there exists a ball B around x with the property that
supp(λi ) ∩ B is empty for all but finitely many i ∈ I ;

(iv)
∑

i∈I λi � 1.

Condition (iv) says that the functions λi add up to the constant function 1; it is in
this sense that they “partition” the “unit” function. Together with the positivity
condition (i) this implies that every λi takes values between 0 an 1. Condition
(ii) expresses that λi is “small” in another sense as well: for every point x of M
which is not contained in the coordinate patch ψi (Ui) the function λi vanishes
identically in a neighbourhood of x. Condition (iii) is imposed to ensure that even
if the indexing set I is infinite the sum in condition (iv) is finite at every point and
is a well-defined smooth function.

It is a very useful technical fact that partitions of unity exist subordinate to any
atlas of M. See Chapter 3 of the book [Spi71] for a proof, or see Exercise 9.3 for a
special case.

Defining the integral. From now on we assume that M is oriented and that α
is of degree n � dim(M). Moreover, we assume that the support of α is a compact
set. (A subset of RN is called compact if it is closed and bounded; see Appendix A.2.
The compactness assumption is made to ensure that the integral of α is a proper
integral and therefore converges. For instance, if we let M � R and αi one of the
1-forms of Example 9.7, then only α4 has a well-defined integral over M. Also note
that the support of α is certainly compact if the manifold M itself is compact.)

Step 1. Assume there exists an orientation-preserving local parametrization
ψ : U → RN of M with the property that the support of α is contained inψ(U∩Hn).
Then we define the integral of α over M by∫

M

α �

∫
U∩Hn

ψ∗(α).

The right-hand side is well-defined because the integrand is of the form ψ∗(α) �

g dt1 dt2 · · · dtn , where g is a smooth function on U ∩Hn which vanishes outside
a compact subset. Moreover, the integral does not depend on the choice of ψ: if
ψ′ : U′ → RN is another orientation-preserving local parametrization of M such
that supp(α) is contained in ψ′(U′ ∩ Hn), then, letting ζ � ψ−1 ◦ ψ′, we have
ψ ◦ ζ � ψ′, so∫

U′∩Hn
(ψ′)∗α �

∫
U′∩Hn

(ψ ◦ ζ)∗(α) �

∫
U′∩Hn

ζ∗(ψ∗(α)) �

∫
U∩Hn

ψ∗(α),

where the last step uses Theorem 5.1 and the fact that ζ preserves the orientation.
Step 2. In the general case we choose an atlas of M consisting of orientation-

preserving local parametrizationsψi : Ui → RN , and we choose a partition of unity
subordinate to this atlas consisting of functions λi : M → R. Let αi � λiα. Then αi

is an n-form with support contained in ψi (Ui ∩Hn ), so its integral is well-defined
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by step 1. Moreover,
∑

i∈I αi �
∑

i∈I λiα � (
∑

i∈I λi )α � α. We now define the
integral of α by ∫

M

α �

∑

i∈I

∫
M

αi �

∑

i∈I

∫
Ui∩Hn

ψ∗i (αi ). (9.1)

The most important property of the integral is the following version of Stokes’
theorem, which can be viewed as a parametrization-independent version of Theo-
rem 5.11.

9.9. Theorem (Stokes’ theorem for manifolds). Let α be an n − 1-form with
compact support on an oriented n-manifold with boundary M. Give the boundary ∂M the
induced orientation. Then ∫

M

dα �

∫
∂M

α.

Proof. Step 1. Suppose M � Hn . Then we can write

α �

n∑

i�1

gi dt1 dt2 · · · d̂t i · · · dtn

for certain smooth functions gi defined on Hn . We have

dα �

n∑

i�1

(−1)i+1 ∂gi

∂ti
dt1 dt2 · · · dtn .

The support of α is a compact subset of Hn and so is enclosed in a box of the shape

[a1, b1] × [a2 , b2] × · · · × [an−1, bn−1] × [0, c]. (9.2)

Therefore ∫
Hn

dα �

n∑

i�1

(−1)i+1

∫ c

0

∫ bn−1

an−1

· · ·
∫ b2

a2

∫ b1

a1

∂gi

∂ti
dt1 dt2 · · · dtn .

The coefficients gi of α are smooth functions on Hn which vanish outside the box
(9.2). In particular the gi and their partial derivatives vanish along all the walls of
the box except possibly the “floor” [a1 , b1]× [a2, b2]× · · · × [an−1, bn−1]× {0}. Hence,
by the fundamental theorem of calculus,

∫ bi

ai

∂gi

∂ti
dti � gi (t1, . . . , bi , . . . , tn) − gi (t1 , . . . , ai , . . . , tn) � 0

for i ≤ n − 1, while∫ c

0

∂gn

∂tn
dtn � gn (t1 , . . . , tn−1, c) − gn (t1 , . . . , tn−1, 0) � −gn (t1 , . . . , tn−1, 0).

Hence∫
Hn

dα � (−1)n

∫ bn−1

an−1

· · ·
∫ b2

a2

∫ b1

a1

gn (t1, . . . , tn−1, 0) dt1 dt2 · · · dtn−1 �

∫
∂Hn

α,

where the sign (−1)n is accounted for by Example 9.6, which says that the orienta-
tion of ∂Hn

� Rn−1 is (−1)n times the standard orientation of Rn−1.
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Step 2. In the general case we choose an atlas of M consisting of orientation-
preserving local parametrizations ψi : Ui → RN , and a subordinate partition of
unity consisting of functions λi : M → R. Let αi � λiα. Then∫

M

dα �

∑

i∈I

∫
Ui∩Hn

ψ∗i (dα) �

∑

i∈I

∫
Ui∩Hn

dψ∗i (α) �
∑

i∈I

∫
Ui∩∂Hn

ψ∗i (α) �

∫
∂M

α,

where the first and last equalities follow from the definition (9.1) of the integral,
and the third equality uses step 1. QED

We conclude this section by considering a few special cases of the integral. Let
M a compact oriented manifold in RN . The volume of M is vol(M) �

∫
M µ, where

µ is the volume form of M. (If dim(M) � 1, resp. 2, we speak of the arc length,
resp. surface area of M.) The integral of a function f on M is defined as

∫
M f µ. The

mean or average of f is the number f̄ � (vol(M))−1
∫

M f µ. We can think of f as
representing an electric charge density distributed over the manifold. Then the
integral of f is the total charge of M and the mean of f is the average charge per
unit volume. If f is nonnegative, we can think of f as a mass density, the integral as
the total mass, and the mean as the average mass per unit volume. The barycentre
or centre of mass of M with respect to a mass density f is the point x̄ in Rn defined
as

x̄ �

∫
M f xµ∫
M f µ

.

This is a vector-valued integral as discussed in Exercise 5.7. The i-th coordinate of
x is i.e.

x̄i �

∫
M f xiµ∫

M f µ
.

The centroid of M is its barycentre with respect to a constant mass density f .
The volume form depends on the embedding of M into RN . If we change the

embedding (i.e. distort the shape of M), then the volume form, the volume and the
centroid of M will usually change as well.

9.3. Gauss and Stokes

Stokes’ theorem, Theorem 9.9, contains as special cases the integral theorems
of vector calculus. These classical results involve a vector field F �

∑n
i�1 Fiei

defined on an open subset U of Rn . As discussed in Section 2.5, to this vector field
corresponds a 1-form α � F · dx �

∑n
i�1 Fi dxi , which we can think of as the work

done by the force F along an infinitesimal line segment dx. We will now derive
the classical integral theorems by applying Theorem 9.9 to one-dimensional, resp.
n-dimensional, resp. two-dimensional manifolds M contained in U .

Fundamental theorem of calculus. If F is conservative, F � grad(g) for a
function g, then α � grad(g) · dx � dg. If M is a compact oriented 1-manifold with
boundary in Rn , then

∫
M dg �

∫
∂M g by Theorem 9.9. The boundary consists of

two points a and b if M is connected. If the orientation of M is “from a to b”, then
a acquires a minus and b a plus. Stokes’ theorem therefore gives the fundamental
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theorem of calculus in Rn ,
∫

M

F · dx � g(b) − g(a).

If we interpret F as a force acting on a particle travelling along M, then −g stands
for the potential energy of the particle in the force field. Thus the potential energy
of the particle decreases by the amount of work done.

Gauss’ divergence theorem. We have

∗α � F · ∗dx and d∗α � div(F) dx1 dx2 · · · dxn .

If Z is a oriented hypersurface in Rn with positive unit normal n, then ∗α � (F ·n)µZ

on Z by Theorem 8.16. In this situation it is best to think of F as the flow vector
field of a fluid, where the direction of F(x) gives the direction of the flow at a point
x and the magnitude ‖F(x)‖ gives the mass of the amount of fluid passing per unit
time through a hypersurface of unit area placed at x perpendicular to the vector
F(x). Then ∗α describes the amount of fluid passing per unit time and per unit
area through the hypersurface Z. For this reason the n − 1-form ∗α is also called
the flux of F, and its integral over Z the total flux through Z.

Now let Z � ∂M, the boundary of a compact domain M in Rn . Applying
Stokes’ theorem to M and d∗α we get

∫
M d∗α �

∫
∂M ∗α. Written in terms of the

vector field F this is Gauss’ divergence theorem,

∫
M

div(F) dx1 dx2 · · · dxn �

∫
∂M

(F · n)µ∂M .

Thus the total flux out of the hypersurface ∂M is the integral of div(F) over M. If
the fluid is incompressible (e.g. most liquids) then this formula leads to the inter-
pretation of the divergence of F (or equivalently d∗α) as a measure of the sources
or sinks of the flow. Thus div(F) � 0 for an incompressible fluid without sources
or sinks. If the fluid is a gas and if there are no sources or sinks then div(F)(x) > 0
(resp. < 0) indicates that the gas is expanding (resp. being compressed) at x.

Classical version of Stokes’ theorem. Next let M be a compact two-dimen-
sional oriented surface with boundary and let us rewrite Stokes’ theorem

∫
M dα �∫

∂M α in terms of the vector field F. The right-hand side represents the work
of F done around the boundary curve(s) of M, which is not necessarily 0 if F is
not conservative. The left-hand side has a nice interpretation if n � 3. Then
∗dα � curl(F) · dx, so dα � curl(F) · ∗dx. Hence if n is the positive unit normal of
the surface M in R3, then dα � curl(F) ·n µM on M. In this way we get the classical
formula of Stokes, ∫

M

curl(F) · n µM �

∫
∂M

F · dx.

In other words, the total flux of curl(F) through the surface M is equal to the work
done by F around the boundary curves of M. This formula shows that curl(F), or
equivalently ∗dα, can be regarded as a measure of the vorticity of the vector field.
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Exercises

9.1. Let U be an open subset of Rn and let f , g : U → R be two smooth functions
satisfying f (x) < g(x) for all x in U. Let M be the set of all pairs (x, y) such that x in U and
f (x) ≤ y ≤ g(x).

(i) Show directly from the definition that M is a manifold with boundary. (Use
two embeddings to cover M.) What is the dimension of M and what are the
boundary and the interior?

(ii) Draw a picture of M if U is the open unit disc given by x2 + y2 < 1 and f (x, y) �

−
√

1 − x2 − y2 and g(x, y) � 2 − x2 − y2.

(iii) Give an example showing that M is not necessarily a manifold with boundary if
the condition f (x) < g(x) fails.

9.2. Let α and β be differential forms on a manifold M. Show that supp(αβ) is contained
in supp(α) ∩ supp(β). Give an example to show that we can have supp(αβ) , supp(α) ∩
supp(β).

9.3. Let I1 � [a1 , b1) and I2 � (a2 , b2] be two half-open intervals, where a1 < a2 < b1 <
b2, and let M � I1∪ I2 � [a1 , b2]. Show that there exist two smooth functions λ1, λ2 : M → R
with the following properties: (i) λ1 (x) ≥ 0 and λ2 (x) ≥ 0 for all x ∈ M; (ii) λ1 + λ2 � 1;
(iii) supp(λ1) ⊆ I1 and supp(λ2) ⊆ I2. (Use the function of Example 9.7(iii) as a building
block. First show there exist smooth functions χ1, χ2 : M → R with properties (i), (iii), and
property (ii)’ χ1(x) + χ2(x) > 0 for all x ∈ M.)

9.4. Let ψ : (a, b) → Rn be an embedding. Then M � ψ((a, b)) is a smooth 1-manifold.
Let us call the direction of the tangent vector ψ′(t) positive; this defines an orientation of
M. Let µ be the element of arc length of M.

(i) Show that ψ∗(µ) � ‖ψ′(t)‖ dt �

√

ψ′
1
(t)2 + ψ′

2
(t)2 + · · · + ψ′n (t)2 dt, where t

denotes the coordinate on R. Conclude that the arc length (“volume”) of M is∫ b
a ‖ψ′(t)‖ dt.

(ii) Compute the arc length of the astroid x � cos3 t, y � sin3 t, where t ∈ [0, π/2].
(iii) Consider a plane curve given in polar coordinates by an equation r � f (θ). Show

that its element of arc length is
√

f ′(θ)2 + f (θ)2 dθ. (Apply the result of part (i)

to ψ(θ) �
(

f (θ) cos θ, f (θ) sin θ
)

.)
(iv) Compute the arc length of the cardioid given by r � 1 + cos θ.

9.5. (i) Let α � x dy − y dx and let M be a compact domain in the plane R2.
Show that

∫
∂M α is twice the surface area of M.

(ii) Apply the observation of part (i) to find the area enclosed by the astroid x � cos3 t,

y � sin3 t.
(iii) Let α � x · ∗dx and let M be a compact domain in Rn . Show that

∫
∂M α is a

constant times the volume of M. What is the value of the constant?

9.6. Deduce the following gradient and curl theorems from Gauss’ divergence theorem:∫
M

grad( f ) dx1 dx2 · · · dxn �

∫
∂M

f nµ∂M ,∫
M

curl(F) dx1 dx2 dx3 � −
∫
∂M

F × ∗dx.

In the first formula M denotes a compact domain in Rn , f a smooth function defined on
M, and n the outward pointing unit normal vector field on the boundary ∂M of M. In the

second formula M denotes a compact domain in R3 and F a smooth vector field defined on
M. (Compare with Exercise 5.7. Use the second formula in Corollary 8.17.)
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9.7. Suppose the region x3 ≤ 0 in R3 is filled with a stationary fluid of (not necessarily
constant) density ρ. The gravitational force causes a pressure p inside the fluid. The gradient
of p is equal to grad(p) � −gρe3 , where g is the gravitational acceleration (assumed to be
constant). A 3-dimensional solid M is submerged in the fluid and kept stationary. At every
point of the boundary ∂M the pressure imposes a force on the solid which is orthogonal
to ∂M and points into M. The magnitude of this force per unit surface area is equal to the
pressure p.

(i) Write the gradient version of Gauss’ theorem (see Exercise 9.6) for the function
−p.

(ii) Deduce Archimedes’ Law: the buoyant force exerted on the submerged body is
equal to the weight of the displaced fluid. Eύρηκα!

(iii) Let FB denote the buoyant force and

xB �

∫
M ρx dx1 dx2 dx3∫
M ρ dx1 dx2 dx3

the centre of buoyancy, i.e. the barycentre of the fluid displaced by M. Fix any

point x0 in R3. Recall that the torque about x0 of a force F acting at a point x is
(x − x0) × F. Show that the total torque about x0 produced by the fluid pressure
on the surface of the solid is equal to (xB − x0) × FB . (Apply the curl version of
Gauss’ theorem, Exercise 9.6, to the vector field p(x − x0).)

Part (iii) explains the principle of a self-righting boat: a boat with a heavy keel has its centre
of mass below its centre of buoyancy, so that the force of gravity (which acts at the centre of
mass) and the buoyant force (which acts at the centre of buoyancy) create a net torque that
keeps the boat upright.

9.8. Let R1 ≥ R2 ≥ 0 be constants. Define a 3-cube c : [0, R2]× [0, 2π]× [0, 2π]→ R3 by

c
*.
,

r
θ1
θ2

+/
-
�

*.
,

(R1 + r cos θ2) cos θ1
(R1 + r cos θ2) sinθ1

r sinθ2

+/
-
.

(i) Sketch the image of c.

(ii) Let x1 , x2, x3 be the standard coordinates on R3. Compute c∗ (dx1), c∗ (dx2),
c∗ (dx3) and c∗ (dx1 dx2 dx3).

(iii) Find the volume of the solid parametrized by c.
(iv) Find the surface area of the boundary of this solid.

9.9. Let M be a compact domain in Rn . Let f and g be smooth functions on M. The
Dirichlet integral of f and g is D( f , g) �

∫
M grad( f ) · grad(g) µ, where µ � dx1 dx2 · · · dxn

is the volume form on M.

(i) Show that d f (∗dg) � grad( f ) · grad(g) µ.

(ii) Show that d∗dg � (∆g)µ, where ∆g �

∑n
i�1

∂2 g/∂x2
i
.

(iii) Deduce from parts (i)–(ii) that d( f (∗dg)) � (grad( f ) · grad(g) + f∆g)µ.
(iv) Let n be the outward pointing unit normal vector field on ∂M. Write ∂g/∂n for

the directional derivative (D g)n � grad(g) · n. Show that∫
∂M

f (∗dg) �

∫
∂M

f
∂g

∂n
µ∂M .

(v) Deduce from parts (iii) and (iv) Green’s formula,∫
∂M

f
∂g

∂n
µ∂M � D( f , g) +

∫
M

( f∆g)µ.
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(vi) Deduce Green’s symmetric formula,∫
∂M

(

f
∂g

∂n
− g

∂ f

∂n

)

µ∂M �

∫
M

( f∆g − g∆ f )µ.

9.10. In this problem we will calculate the volume of a ball and a sphere in Euclidean
space. Let B(R) be the closed ball of radius R about the origin in Rn . Then its boundary
S(R) � ∂B(R) is the sphere of radius R. Put Vn (R) � voln (B(R)) and An (R) � voln−1(S(R)).
Also put Vn � Vn (1) and An � An (1).

(i) Deduce from Corollary 8.17 that the volume form on S(R) is the restriction of ν
to S(R), where ν is as in Exercise 2.21. Conclude that An (R) �

∫
S(R) ν.

(ii) Show that Vn (R) � RnVn and An (R) � Rn−1An . (Substitute y � Rx in the
volume forms of B(R) and S(R).)

(iii) Let f : [0,∞) → R be a continuous function. Define g : Rn → R by g(x) � f (‖x‖).
Use Exercise 2.21(ii) to prove that∫

B(R)

g dx1 dx2 · · · dxn �

∫ R

0
f (r)An (r) dr � An

∫ R

0
f (r)rn−1 dr.

(iv) Show that
(∫ ∞
−∞

e−r2
dr

)n
� An

∫ ∞
0

e−r2
rn−1 dr.

(Take f (r) � e−r2
in part (iii) and let R →∞.)

(v) Using Exercises B.15 and B.16 conclude that

An �

2π
n
2

Γ
( n

2

) , whence A2m �

2πm

(m − 1)!
and A2m+1 �

2m+1πm

1 · 3 · 5 · · · (2m − 1)
.

(vi) By taking f (r) � 1 in part (iii) show that An � nVn and An (R) � ∂Vn (R)/∂R.
(vii) Deduce that

Vn �

π
n
2

Γ
( n

2 + 1
) , whence V2m �

πm

m!
and V2m+1 �

2m+1πm

1 · 3 · 5 · · · (2m + 1)
.

(viii) Complete the following table. (Conventions: a space of negative dimension is
empty; the volume of a zero-dimensional manifold is its number of points.)

n 0 1 2 3 4 5

Vn (R) πR2 4
3πR3

An (R) 2πR

(ix) Find limn→∞ An , limn→∞ Vn and limn→∞(An+1/An ). Use Stirling’s formula,

lim
x→∞

Γ(x + 1)ex

xx+ 1
2

�

√
2π.



CHAPTER 10

Applications to topology

In this chapter, to avoid endless repetitions it will be convenient to make a
slight change in terminology. By a “manifold” we will now mean a “manifold with
boundary”. It is understood that the boundary of a “manifold with boundary”
may be empty. If we specifically require the boundary to be empty, we will speak
of a “manifold without boundary”.

10.1. Brouwer’s fixed point theorem

Let M be a manifold (with boundary). A retraction of M onto a subset A is a
smooth map φ : M → A such that φ(x) � x for all x in A. For instance, let M be the
punctured unit ball in n-space,

M � { x ∈ Rn | 0 < ‖x‖ ≤ 1 }.

Then the normalization map φ(x) � x/‖x‖ is a retraction of M onto its boundary
A � ∂M, the unit sphere. The following theorem says that a retraction onto the
boundary is impossible if M is compact and orientable.

10.1. Theorem. Let M be a compact orientable manifold with nonempty boundary.
Then there does not exist a retraction from M onto ∂M.

Proof. Suppose φ : M → ∂M was a retraction. Let us choose an orientation of
M and equip ∂M with the induced orientation. Let β � µ∂M be the volume form
on the boundary (relative to some embedding of M into RN ). Let α � φ∗(β) be its
pullback to M. Let n denote the dimension of M. Note that β is an n − 1-form
on the n − 1-manifold ∂M, so dβ � 0. Therefore dα � dφ∗(β) � φ∗(dβ) � 0 and
hence by Stokes’ theorem 0 �

∫
M dα �

∫
∂M α. But φ is a retraction onto ∂M, so the

restriction of φ to ∂M is the identity map and therefore α � β on ∂M. Thus

0 �

∫
∂M

α �

∫
∂M

β � vol(∂M) , 0,

which is a contradiction. Therefore φ does not exist. QED

This brings us to one of the oldest results in topology. Suppose f is a map
from a set X into itself. An element x of X is a fixed point of f if f (x) � x.

10.2. Theorem (Brouwer’s fixed point theorem). Every smooth map from the closed
unit ball into itself has at least one fixed point.

Proof. Let M � { x ∈ Rn | ‖x‖ ≤ 1 } be the closed unit ball. Suppose f : M → M
was a smooth map without fixed points. Then f (x) , x for all x. For each x in the
ball consider the half-line starting at f (x) and pointing in the direction of x. This

125
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half-line intersects the unit sphere ∂M in a unique point that we shall call φ(x), as
in the following picture.

x

f (x)

φ(x)

y

f (y)

φ(y)

This defines a smooth map φ : M → ∂M. If x is in the unit sphere, then φ(x) � x,
so φ is a retraction of the ball onto its boundary, which contradicts Theorem 10.1.
Therefore f must have a fixed point. QED

This theorem can be stated imprecisely as saying that after stirring a cup of
coffee at least one molecule must return to its original position. Brouwer originally
stated his result for arbitrary continuous maps. This more general statement can be
derived from Theorem 10.2 by an argument from analysis which shows that every
continuous map is homotopic to a smooth map. (See Section 10.2 for the definition
of homotopy.) The theorem also remains valid if the closed ball is replaced by a
closed cube or a similar shape.

10.2. Homotopy

Definition and first examples. Suppose that φ0 and φ1 are two maps from a
manifold M to a manifold N and that α is a form on N . What is the relationship
between the pullbacks φ∗

0
(α) and φ∗

1
(α)? There is a reasonable answer to this

question if φ0 can be “smoothly deformed” into φ1. (See Theorems 10.8 and 10.10
below.) The notion of a smooth deformation can be defined formally as follows.
The maps φ0 and φ1 are homotopic if there exists a smooth map φ : M × [0, 1]→ N
such that φ(x, 0) � φ0(x) and φ(x, 1) � φ1(x) for all x in M. The map φ is called a
homotopy. Instead of φ(x, t) we often write φt (x). Then each φt is a map from M
to N . We can think of φt as a family of maps parametrized by t in the unit interval
that interpolates between φ0 and φ1, or as a one-second “movie” that at time 0
starts at φ0 and at time 1 ends up at φ1.

10.3. Example. Let M � N � Rn and φ0(x) � x (identity map) and φ1(x) � 0
(constant map). Then φ0 and φ1 are homotopic. A homotopy is given by φ(x, t) �

(1− t)x. This homotopy collapses Euclidean space onto the origin by moving each
point radially inward at a speed equal to its distance to the origin. There are many
other homotopies from φ0 to φ1, such as (1 − t)2x and (1 − t2)x. We can also
interchange the roles of φ0 and φ1: if φ0(x) � 0 and φ1(x) � x, then we find a
homotopy by reversing time (playing the movie backwards), φ(x, t) � tx.

10.4. Example. Let M � N be the punctured Euclidean space Rn \ {0} and let
φ0(x) � x (identity map) and φ1(x) � x/‖x‖ (normalization map). Then φ0 and
φ1 are homotopic. A homotopy is given for instance by φ(x, t) � x/‖x‖t or by
φ(x, t) � (1 − t)x + tx/‖x‖. Either of these homotopies collapses the punctured
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Euclidean space onto the unit sphere by smoothly stretching or shrinking each
vector until it has length 1.

10.5. Example. A manifold M is said to be contractible if there exists a point
x0 in M such that the constant map φ0(x) � x0 is homotopic to the identity map
φ1(x) � x. A specific homotopy φ : M × [0, 1]→ M from φ0 to φ1 is a contraction of
M onto x0. (Perhaps “expansion” would be a more accurate term, a “contraction”
being the result of replacing t with 1−t.) Example 10.3 shows that Rn is contractible
onto the origin. (In fact it is contractible onto any point x0 by means of a contraction
given by a very similar formula.) The same formula shows that an open or closed
ball around the origin is contractible. We shall see in Theorem 10.19 that punctured
n-space Rn \ {0} is not contractible.

Homotopy of paths. If M is an interval [a, b] and N any manifold, then maps
from M to N are nothing but paths (parametrized curves) in N . A homotopy of
paths can be visualized as a piece of string moving through the manifold N .

a b N

φ

Homotopy of loops. A loop in a manifold N is a smooth map from the unit
circle S1 into N . This can be visualized as a thin rubber band sitting in N . A
homotopy of loops φ : S1 × [0, 1] → N can be pictured as a rubber band floating
through N from time 0 until time 1.

S1

N

φ

10.6. Example. Consider the two loops φ0, φ1 : S1 → R2 in the plane given by
φ0(x) � x and φ1(x) � x +

(
2
0

)

. A homotopy of loops is given by shifting φ0 to the
right, φt (x) � x +

(2t
0

)

. What if we regard φ0 and φ1 as loops in the punctured
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plane R2 \ {0}? Clearly the homotopy φ does not work, because it moves the loop
through the forbidden point 0. (E.g. φt (x) � 0 for x �

(−1
0

)

and t � 1/2.) In fact,
however you try to move φ0 to φ1 you get stuck at the origin, so it seems intuitively
clear that there exists no homotopy of loops from φ0 to φ1 in the punctured plane.
This is indeed the case, as we shall see in Example 10.13.

The homotopy formula. The product M × [0, 1] is often called the cylinder
with base M. The two maps defined by ι0(x) � (x, 0) and ι1(x) � (x, 1) send M to
the bottom, resp. the top of the cylinder. A homotopy ι : M × [0, 1] → M × [0, 1]
between these maps is given by the identity map ι(x, t) � (x, t). (“Slide the bottom
to the top at speed 1.”)

ι0

ι4/10

ι1

base cylinder

If M is an open subset of Rn , a k-form α on the cylinder can be written as

α �

∑

I

fI (x , t) dxI +
∑

J

g J (x , t) dt dx J ,

with I running over increasing multi-indices of degree k and J over increasing
multi-indices of degree k − 1. (Here we write the dt in front of the dx’s because
that is more convenient in what follows.) The cylinder operator turns forms on the
cylinder into forms on the base lowering the degree by 1,

κ : Ωk (M × [0, 1])→ Ωk−1(M),

by taking the piece of α involving dt and integrating it over the unit interval,

κ(α) �

∑

J

(∫ 1

0

g J (x , t) dt
)

dx J .

(In particular κ(α) � 0 for any α that does not involve dt.) For a general manifold
M we can write a k-form on the cylinder as α � β + dt γ, where β and γ are forms
on M × [0, 1] (of degree k and k − 1 respectively) that do not involve dt. We then

define κ(α) �

∫ 1

0 dt γ.
The following result will enable us to compare pullbacks of forms under ho-

motopic maps. It can be regarded as an application of Stokes’ theorem, but we
shall give a direct proof.

10.7. Lemma (cylinder formula). Let M be a manifold. Then ι∗
1
(α) − ι∗

0
(α) �

κ( dα) + dκ(α) for all k-forms α on M × [0, 1]. In short,

ι∗1 − ι
∗
0 � κd + dκ.
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Proof. We write out the proof for an open subset M of Rn . The proof for
arbitrary manifolds is similar. It suffices to consider two cases: α � f dxI and
α � g dt dx J .

Case 1. If α � f dxI , then κ(α) � 0 and dκ(α) � 0. Also

dα �

∂ f

∂t
dt dxI +

∑

i

∂ f

∂xi
dxi dxI �

∂ f

∂t
dt dxI + terms not involving dt ,

so

dκ(α) + κ( dα) � κ( dα) �

(∫ 1

0

∂ f

∂t
(x, t) dt

)

dxI

�

(

f (x, 1) − f (x, 0)
)

dxI � ι
∗
1(α) − ι∗0(α).

Case 2. If α � g dt dx J , then ι∗
0
(α) � ι∗

1
(α) � 0 and

dα �

∑

i

∂g

∂xi
dxi dt dx J � −

∑

i

∂g

∂xi
dt dxi dx J ,

so

κ(dα) � −
n∑

i�1

(∫ 1

0

∂g

∂xi
(x, t) dt

)

dxi dx J .

Also κ(α) �

(∫ 1

0

g(x, t) dt
)

dx J , so

dκ(α) �

n∑

i�1

∂

∂xi

(∫ 1

0

g(x, t) dt
)

dxi dx J �

n∑

i�1

(∫ 1

0

∂g

∂xi
(x, t) dt

)

dxi dx J .

Hence dκ(α) + κ(dα) � 0 � ι∗
1
(α) − ι∗

0
(α). QED

Now suppose we have a pair of maps φ0 and φ1 going from a manifold M
to a manifold N and that φ : M × [0, 1] → N is a homotopy between φ0 and φ1.
For x in M we have φ ◦ ι0(x) � φ(x, 0) � φ0(x), in other words φ0 � φ ◦ ι0.
Similarly φ1 � φ ◦ ι1. Hence for any k-form α on N we have ι∗

0
(φ∗(α)) � φ∗

0
(α) and

ι∗
1
(φ∗(α)) � φ∗

1
(α). Applying the cylinder formula to the form φ∗(α) on M × [0, 1]

we see that the pullbacks φ∗
0
(α) and φ∗

1
(α) are related in the following manner.

10.8. Theorem (homotopy formula). Let φ0, φ1 : M → N be smooth maps from a
manifold M to a manifold N and let φ : M × [0, 1] → N be a homotopy from φ0 to φ1.
Then φ∗

1
(α) − φ∗

0
(α) � κφ∗(dα) + dκφ∗ (α) for all k-forms α on N . In short,

φ∗1 − φ
∗
0 � κφ∗d + dκφ∗ .

In particular, if dα � 0 we get φ∗
1
(α) � φ∗

0
(α) + dκφ∗(α).

10.9. Corollary. If φ0, φ1 : M → N are homotopic maps between manifolds and α
is a closed form on N , then φ∗

0
(α) and φ∗

1
(α) differ by an exact form.

This implies that if the degree of α is equal to the dimension of M, φ∗
0
(α) and

φ∗
1
(α) have the same integral.
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10.10. Theorem. Let M and N be manifolds and let α be a closed n-form on N , where
n � dim(M). Suppose M is compact and oriented and without boundary. Let φ0 and φ1

be homotopic maps from M to N . Then∫
M

φ∗0(α) �

∫
M

φ∗1(α).

Proof. By Corollary 10.9, φ∗
1
(α) −φ∗

0
(α) � dβ for an n−1-form β on M. Hence

by Stokes’ theorem ∫
M

(

φ∗1(α) − φ∗0(α)
)

�

∫
M

dβ �

∫
∂M

β � 0,

because ∂M is empty. QED

Alternative proof. Here is a proof based on Stokes’ theorem for the manifold
M × [0, 1]. The boundary of M × [0, 1] consists of two copies of M, namely M × {1}
and M × {0}, the first of which is counted with a plus sign and the second with a
minus. Therefore, if φ : M × [0, 1]→ N is a homotopy between φ0 and φ1,

0 �

∫
M×[0,1]

φ∗(dα) �

∫
M×[0,1]

dφ∗(α) �

∫
∂(M×[0,1])

φ∗(α)

�

∫
M

φ∗1(α) −
∫

M

φ∗0(α),

so
∫

M φ∗
1
(α) �

∫
M φ∗

0
(α). QED

10.11. Corollary. Homotopic loops in R2 \ {0} have the same winding number about
the origin.

Proof. Let M be the circle S1, N the punctured plane R2 \ {0}, and α0 the angle
form (−y dx + x dy)/(x2 + y2). Then a map φ from M to N is nothing but a loop in
the punctured plane, and the integral

∫
M φ∗(α0) is 2π times the winding number

w(φ, 0). (See Section 4.3.) Thus, if φ0 and φ1 are homotopic loops in N , Theorem
10.10 tells us that w(φ0 , 0) � w(φ1 , 0). QED

10.12. Example. Unfolding the three self-intersections in the path pictured
below does not affect its winding number.

0 0

10.13. Example. The two circles φ0 and φ1 of Example 10.6 have winding
number 1, resp. 0 about the origin and therefore are not homotopic (as loops in the
punctured plane).
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10.3. Closed and exact forms re-examined

The homotopy formula throws light on our old question of when a closed
form is exact, which we looked into in Section 2.3. The answer turns out to
depend on the “shape” of the manifold on which the forms are defined. On some
manifolds all closed forms (of positive degree) are exact, on others this is true only
in certain degrees. Failure of exactness is typically detected by integrating over a
submanifold of the correct dimension and finding a nonzero answer. In a certain
sense all obstructions to exactness are of this nature. It is to make these statements
precise that de Rham developed his cohomology theory. We shall not develop
this theory in detail, but study a few representative special cases. The matter is
explored in [Fla89] and at a more advanced level in [BT82].

0-forms. A closed 0-form on a manifold is a smooth function f satisfying
d f � 0. This means that f is constant (on each connected component of M). If this
constant is nonzero, then f is not exact (because forms of degree−1 are by definition
0). So a closed 0-form is never exact (unless it is 0) for a rather uninteresting reason.

1-forms and simple connectivity. Let us now consider 1-forms on a manifold
M. Theorem 4.7 says that the integral of an exact 1-form along a loop is 0. With
a stronger assumption on the loop the same is true for arbitrary closed 1-forms. A
loop c : S1 → M is null-homotopic if it is homotopic to a constant loop. The integral
of a 1-form along a constant loop is 0, so from Theorem 10.10 (where we set the M
of the theorem equal to S1) we get the following.

10.14. Proposition. Let c be a null-homotopic loop in M. Then
∫

c α � 0 for all closed
forms α on M.

A manifold is simply connected if every loop in it is null-homotopic.

10.15. Theorem. All closed 1-forms on a simply connected manifold are exact.

Proof. Let α be a closed 1-form and c a loop in M. Then c is null-homotopic,
so

∫
c α � 0 by Proposition 10.14. The result now follows from Theorem 4.7. QED

10.16. Example. The punctured plane R2 \ {0} is not simply connected, because
it possesses a nonexact closed 1-form. (See Example 4.6.) In contrast it can be
proved that for n ≥ 3 the sphere Sn−1 and punctured n-space Rn \ {0} are simply
connected. Intuitively, the reason is that in two dimensions a loop that encloses
the puncture at the origin cannot be crumpled up to a point without getting stuck
at the puncture, whereas in higher dimensions there is enough room to slide any
loop away from the puncture and then squeeze it to a point.

The Poincaré lemma. On a contractible manifold all closed forms of positive
degree are exact.

10.17. Theorem (Poincaré lemma). All closed forms of degree k ≥ 1 on a contractible
manifold are exact.

Proof. Let M be a manifold and let φ : M × [0, 1] → M be a contraction onto
a point x0 in M, i.e. a smooth map satisfying φ(x, 0) � x0 and φ(x, 1) � x for all
x. Let α be a closed k-form on M with k ≥ 1. Then φ∗

1
(α) � α and φ∗

0
(α) � 0, so

putting β � κφ∗ (α) we get

dβ � dκφ∗(α) � φ∗1(α) − φ∗0(α) − κdφ∗(α) � α.
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Here we used the homotopy formula, Theorem 10.8, and the assumption that
dα � 0. Hence dβ � α. QED

The proof provides us with a formula for the “antiderivative”, namely β �

κφ∗(α), which can be made quite explicit in certain cases.

10.18. Example. Let M be Rn and let φ(x, t) � tx be the radial contraction. Let
α �

∑

i fi dxi be a 1-form and let g be the function κφ∗ (α). Then

φ∗(α) �
∑

i

fi (tx)d(txi ) �
∑

i

fi (tx)(xi dt + t dxi ),

so

g � κφ∗(α) �
∑

i

xi

∫ 1

0

fi (tx) dt .

According to the proof of the Poincaré lemma the function g satisfies dg � α,
provided that dα � 0. We checked this directly in Exercise 4.3.

Another typical application of the Poincaré lemma is showing that a manifold
is not contractible by exhibiting a closed form that is not exact. For example, the
punctured plane R2 \ {0} is not contractible because it possesses a nonexact closed
1-form, namely the angle form. (See Example 4.6.) The generalized angle form is the
n − 1-form α0 on punctured n-space Rn \ {0} defined by

α0 �

x · ∗dx

‖x‖n
.

10.19. Theorem. The generalized angle form α0 is a closed but non-exact n − 1-form
on punctured n-space. Hence punctured n-space is not contractible.

Proof. That dα0 � 0 follows from Exercise 2.20. The n − 1-sphere M � Sn−1

has unit normal vector field x, so by Corollary 8.17 on M we have α0 � µ, the
volume form. Hence

∫
M α0 � vol(M) , 0. On the other hand, suppose α0 was

exact, α0 � dβ for an n − 1-form β. Then∫
M

α0 �

∫
M

dβ �

∫
∂M

β � 0

by Stokes’ theorem, Theorem 9.9. This is a contradiction, so α0 is not exact. It now
follows from the Poincaré lemma, Theorem 10.17, that Rn \ {0} is not contractible.

QED

A similar argument gives the next result.

10.20. Theorem. Compact orientable manifolds without boundary of dimension ≥ 1
are not contractible.

Proof. Let M be a compact orientable manifold of dimension n ≥ 1. Let
µ � µM be the volume form of M. Then

∫
M µ � vol(M) , 0. On the other hand,

if M was contractible, then µ would be exact by the Poicaré lemma, so µ � dν and∫
M µ �

∫
M dν �

∫
∂M ν � 0 because M has no boundary. This is a contradiction, so

M is not contractible. QED
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In particular the unit sphere Sn is not contractible for n ≥ 1: it has a closed
nonexact n-form. But how about forms of degree not equal to n−1? Without proof
we state the following fact.

10.21. Theorem. On Rn \ {0} and on Sn−1 every closed form of degree k , 1, n − 1
is exact.

For a compact oriented hypersurface without boundary M contained in Rn \{0}
the integral

w(M, 0) �
1

voln−1(Sn−1)

∫
M

x · ∗dx

‖x‖n

is called the winding number of M about the origin. It generalizes the winding
number of a closed path in R2 \ {0} around the origin. It can be shown that the
winding number in any dimension is always an integer. It provides a measure of
how many times the hypersurface wraps around the origin. For instance, the proof
of Theorem 10.19 shows that the winding number of the n − 1-sphere about the
origin is 1.

Contractibilityversus simple connectivity. Theorems 10.15and 10.17 suggest
that the notions of contractibility and simple connectivity are not independent.

10.22. Proposition. A contractible manifold is simply connected.

Proof. Use a contraction to collapse any loop onto a point.

M

x0

c1

M

x0

c1

Formally, let c1 : S1 → M be a loop, φ : M × [0, 1]→ M a contraction of M onto x0.
Put c(s, t) � φ(c1(s), t). Then c is a homotopy between c1 and the constant loop
c0(t) � φ(c1(s), 0) � x0 positioned at x0. QED

As mentioned in Example 10.16, the sphere Sn−1 and punctured n-space Rn\{0}
are simply connected for n ≥ 3, although it follows from Theorem 10.19 that they
are not contractible. Thus simple connectivity is weaker than contractibility.

The Poincaré conjecture. Not long after inventing the notion of homotopy
Poincaré posed the following question. Let M be a compact three-dimensional
manifold without boundary. Suppose M is simply connected. Is M homeomorphic
to the three-dimensional sphere? (This means: does there exist a bĳective map
M → S3 which is continuous and has a continuous inverse?) This question became
(inaccurately) known as the Poincaré conjecture. It is famously difficult and was
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the force that drove many of the developments in twentieth-century topology. It
has an n-dimensional analogue, called the generalized Poincaré conjecture, which
asks whether every compact n-dimensional manifold without boundary which
is homotopy equivalent to Sn is homeomorphic to Sn . We cannot go into this
fascinating problem in any serious way, other than to report that it has now been
completely solved. Strangely, the case n ≥ 5 of the generalized Poincaré conjecture
conjecture was the easiest and was confirmed by S. Smale in 1960. The case n � 4
was done by M. Freedman in 1982. The case n � 3, the original version of the
conjecture, turned out to be the hardest, but was finally confirmed by G. Perelman
in 2002-03. For a discussion and references, see the paper [Mil03] listed in the
bibliography.

De Rham cohomology. The distinction between closed and exact differential
forms on a manifold can be encoded in an invariant called de Rham cohomology.
To explain this we need to review a little set theory and linear algebra.

Let X be a set. A binary relation ∼ (i.e. a relation among pairs of elements) on
X is an equivalence relation if it is

(i) reflexive: x ∼ x;
(ii) symmetric: if x ∼ y then y ∼ x;

(iii) transitive: if x ∼ y and y ∼ z then x ∼ z

for all x, y, z ∈ X.

10.23. Example. Consider the following binary relations.
(i) Let X � R with the order relation ≤ (“less than or equal to”).

(ii) Let X � Z. Fix n ∈ Z. Define x ≡ y if x − y is divisible by n (“congruence
modulo n”).

(iii) Let X be the set of all people.
(a) Define x ⊲⊳ y if x is a blood relative of y.
(b) Define x ⌣ y if x is a friend of y.

(iv) Let X be the set of straight lines in the plane. Define x ‖ y if x is parallel
to y.

Then we have the following table.

reflexive symmetric transitive

(i) Y N Y
(ii) Y Y Y
(iiia) Y Y ?
(iiib) N N N
(iv) Y Y Y

Whether relation (iiia) is transitive is a matter of taste. In a broad sense we are all
blood relatives of mitochondrial Eve, but perhaps this stretches the definition too
far. Only relations (ii) and (iv) are true equivalence relations.

Let ∼ be an equivalence relation on a set X. The equivalence class of x ∈ X is the
set of all y ∈ X that are equivalent to x. Notation:

[x] � { y ∈ X | y ∼ x }.
Note that we have [x] � [y] if x ∼ y. Any element of an equivalence class is
called a representative of that class. An equivalence class usually has many different
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representatives. The set of all equivalence classes is called the quotient of X by the
equivalence relation and denoted by X/∼.

In Example 10.23(ii) we write Z/n for the quotient. An element of Z/n is a
remainder class modulo n,

[i] � {i, i + n, i − n, i + n, i + 2n, i − 2n, . . . } � { i + kn | k ∈ Z }.
Example 10.23(iv) comes up in projective geometry. The equivalence class of a

line in the plane is a point at infinity in the plane. If one adds the points at infinity
to the plane one arrives at the projective plane.

10.24. Example. Let E be a real vector space. Fix a linear subspace F. Vectors x,
y ∈ E are congruent modulo F if x − y ∈ F. Congruence modulo F is an equivalence
relation on E. The equivalence class [x] of x is the affine subspace through x parallel to
F. The equivalence class [0] is equal to the linear subspace F itself. We denote the
quotient by E/F and call it the quotient of E by F. A basic fact is that E/F is a vector
space in its own right. The vector space operations are defined by [x] + [y] � [x + y]
and c[x] � [cx] for all x, y ∈ E and c ∈ R. One can check that these operations are
well-defined and obey the axioms of a real vector space. The origin of E/F is the
equivalence class [0], and the opposite of a class [x] is the class [−x].

We have the following special case of Example 10.24 in mind. Let M be a
manifold and Ωk (M) the vector space of all k-forms on M. Let E be the linear
subspace of Ωk (M) consisting of all closed k-forms,

E � { α ∈ Ωk (M) | dα � 0 },
and let F be the subspace of E consisting of all exact k-forms,

F � { α ∈ Ωk (M) | α � dβ for some β ∈ Ωk−1(M) }.
The quotient

Hk
DR(M) � E/F �

closed k-forms on M

exact k-forms on M

is the de Rham cohomology of M in degree k. Elements of Hk
DR(M) are equivalence

classes [α] where α is a closed k-form and α ∼ β if α− β is exact. Both vector spaces
E and F are usually infinite-dimensional, but it may very well happen that the
quotient Hk

DR(M) is finite-dimensional. For any n-manifold M we have Hk (M) � 0
if k < 0 or k > n. The reason is simply that we don’t have any nonzero forms on M
in degrees below 0 or above n. More interesting are the following assertions.

10.25. Theorem. If M is contractible then

Hk
DR(M) �


R if k � 0,

0 if k ≥ 1.

Proof. This is a restatement of the Poincaré lemma, Theorem 10.17. QED

10.26. Theorem. Let M be a compact connected oriented n-manifold without bound-
ary. Then Hn

DR(M) is 1-dimensional. A basis of Hn
DR(M) is [µ], the class of the volume

form of M.

We shall not prove this theorem in general (except to note that the class [µ] is
nonzero by the proof of Theorem 10.20), but only for the unit circle.
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10.27. Theorem. H1
DR(S1) is 1-dimensional. A basis of H1

DR(S1) is [µ], the class of

the element of arc length of S1.

Proof. The 1-form µ is closed but not exact and therefore defines a nonzero
class in H1

DR(S1). We need to prove that for every 1-form α on S1 (which is
necessarily closed because dim(S1) � 1) there exists a constant k such that [α] �

k[µ]. Assuming we could do this, let us first guess what k should be. The equality
[α] � k[µ] means [α− kµ] � [0], i.e. α− kµ is exact, i.e. α � kµ+ dg for some smooth
function g on S1. Integrating over the circle and using Stokes gives∫

S1

α � k

∫
S1

µ +

∫
S1

dg � 2πk.

Let us therefore define k � (2π)−1
∫

S1 α, as we must. Next we determine what g
should be by solving dg � α − kµ for g. We do this indirectly by first solving the
equation dh � c∗(α − kµ), where c(t) � (cos t , sin t) is the usual parametrization
of the circle. We have c∗(α) � f dt, where f : R→ R is a 2π-periodic function. The
constant k is given in terms of f by

k �

1

2π

∫
S1

α �

1

2π

∫ 2π

0

c∗(α) �
1

2π

∫ 2π

0

f (t) dt . (10.1)

A solution of the equation dh � c∗(α − kµ) � ( f − k) dt is the function h(t) �∫ t

0 ( f (s) − k) ds �

∫ t

0 f (s) ds − kt. This function has the property

h(t + 2π) �

∫ t+2π

0

f (s) ds − k(t + 2π) �

∫ t

0

f (s) ds − kt +

∫ t+2π

t

f (s) ds − 2πk

� h(t) +

∫ 2π

0

f (s) ds − 2πk � h(t),

where the last step follows from the periodicity of f and from (10.1). This shows
that h is 2π-periodic, and therefore of the form h(t) � g(c(t)), i.e. h � c∗(g),
for some smooth function g on S1. The equation dh � c∗(α − kµ) then becomes
c∗(dg) � c∗(α − kµ), which implies dg � α − kµ because c is a parametrization of
the circle. QED

Exercises

10.1. Write a formula for the map φ occurring in the proof of Brouwer’s fixed point
theorem and prove that it is smooth.

10.2. Let x0 be any point in Rn . By analogy with the radial contraction onto the origin,
write a formula for radial contraction onto the point x0. Deduce that any open or closed ball
centred at x0 is contractible.

10.3. A subset M of Rn is star-shaped relative to a point x0 ∈ M if for all x ∈ M the
straight line segment joining x0 to x is entirely contained in M. Show that if M is star-shaped
relative to x0, then it is contractible onto x0. Give an example of a contractible set that is not
star-shaped.

10.4. A subset M of Rn is convex if for all x and y in M the straight line segment joining
x to y is entirely contained in M. Prove the following assertions.

(i) M is convex if and only if it is star-shaped relative to each of its points. Give an
example of a star-shaped set that is not convex.
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(ii) The closed ball B(ε, x) of radius ε centred at x is convex.
(iii) The open ball B◦(ε, x) of radius ε centred at x is convex.

10.5. Recall that GL(n,R) denotes the general linear group and O(n) the orthogonal
group. (See Theorem 6.18 and Exercise 6.13.) Define a map φ : GL(n,R) → O(n) by
φ(A) � Q, where Q is the first factor in the QR-decomposition of A. (See the proof of
Theorem 8.4.) Prove the following assertions.

(i) φ is a retraction.
(ii) φ is homotopic to the identity mapping of M.

10.6. Compute the turning number (see Exercise 4.14) of the loopsφ0 andφ1 of Example
10.12. Despite the fact that the loops are homotopic they do not have the same turning
number. Why does this not contradict Theorem 10.10?

10.7. Let k ≥ 1 and let α be the k-form f dxI � f dxi1 dxi2 · · · dxik
on Rn . Let φ : Rn ×

[0, 1]→ Rn be the radial contraction φ(x, t) � tx. Verify that

κφ∗(α) �

k∑

m�1

(−1)m+1xim

(∫ 1

0
tk−1 f (tx) dt

)

dxI\im
,

where we have written dxI\im
as an abbreviation for dxi1 dxi2 · · · d̂x im

· · · dxik
. Check directly

that dκφ∗ (α) + κdφ∗(α) � α.

10.8. Let α � f dx dy+g dz dx+h dy dz be a 2-form on R3 and letφ(x, y , z, t) � t(x, y , z)

be the radial contraction of R3 onto the origin. Verify that

κφ∗(α) �

(∫ 1

0
f (tx, t y , tz)t dt

)

(x dy − y dx) +
(∫ 1

0
g(tx, t y , tz)t dt

)

(z dx − x dz)

+
(∫ 1

0
h(tx, t y , tz)t dt

)

(y dz − z dy).

10.9. Let α �

∑

I fI dxI be a closed k-form whose coefficients fI are smooth functions
defined on Rn \ {0} that are all homogeneous of the same degree p , −k. Let

β �

1

p + k

∑

I

k∑

l�1

(−1)l+1xil
fI dxi1 dxi2 · · · d̂x il

· · · dxik
.

Show that dβ � α. (Use dα � 0 and apply the identity proved in Exercise B.6 to each fI ; see
also Exercise 2.9.)

10.10. Let α � (2xyz − x2 y) dy dz + (xz2 − y2z) dz dx + (2xyz − xy2) dx dy.

(i) Check that α is closed.
(ii) Find a 1-form β such that dβ � α.

10.11. Let M and N be manifolds and φ0, φ1 : M → N homotopic maps. Show that∫
c φ
∗
0
(α) �

∫
c φ
∗
1
(α) for all closed k-chains c in M and all closed k-forms α on N .

10.12. Prove that any two maps φ0 and φ1 from M to N are homotopic if M or N is
contractible. (First show that every map M → N is homotopic to a constant map φ(x) � y0.)

10.13. Let x0 � (2, 0) and let M be the twice-punctured plane R2 \ {0, x0}. Let c1, c2 ,
c3 : [0, 2π] → M be the loops defined by c1(t) � (cos t , sin t), c2(t) � (2 + cos t , sin t) and
c3(t) � (1 + 2 cos t , 2 sin t). Show that c1, c2 and c3 are not homotopic. (Construct a 1-form
α on M such that the integrals

∫
c1
α,

∫
c2
α and

∫
c3
α are distinct.)
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10.14. Let M be a manifold. Let [α] be a class in Hk
DR

(M) and let [β] be a class in

H l
DR

(M). Define the product of [α] and [β] to be the class [α] ·[β] � [αβ] ∈ Hk+l
DR

(M). Show
that [α] ·[β] is well-defined, i.e. independent of the choice of the representatives of the classes
[α] and [β].



APPENDIX A

Sets and functions

A.1. Glossary

We start with a list of set-theoretical notations that are frequently used in the
text. Let X and Y be sets.

x ∈ X: x is an element of X.
{a, b, c}: the set containing the elements a, b and c.
X ⊆ Y: X is a subset of Y, i.e. every element of X is an element of Y.
X ∩ Y: the intersection of X and Y. This is defined as the set of all x such

that x ∈ X and x ∈ Y.
X ∪ Y: the union of X and Y. This is defined as the set of all x such that

x ∈ X or x ∈ Y.
X \ Y: the complement of Y in X. This is defined as the set of x in X such

that x is not in Y.
(x , y): the ordered pair consisting of two elements x and y.
X × Y: the Cartesian product of X and Y. This is by definition the set of

all ordered pairs (x , y) with x ∈ X and y ∈ Y. Examples: R × R is the
Euclidean plane, usually written R2; S1× [0, 1] is a cylinder wall of height
1; and S1 × S1 is a torus.

R2

S1
× [0, 1] S1

× S1

(x1 , x2 , . . . , xk ): the k-tuple, i.e. ordered list, consisting of the k elements x1,
x2 , . . . , xk .

X1 × X2 × · · · × Xk: the k-fold Cartesian product of sets X1, X2, . . . , Xk . This
is by definition the set of all k-tuples (x1 , x2 , . . . , xk ) with xi ∈ Xi. Exam-
ples: Rn1 ×Rn2 × · · · ×Rnk

� Rn1+n2+···+nk ; and S1 × S1 × · · · × S1 (k times)
is a k-torus.
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{ x ∈ X | P(x) }: the set of all x ∈ X which have the property P(x). Examples:

{ x ∈ R | 1 ≤ x < 3 } is the interval [1, 3),

{ x | x ∈ X and x ∈ Y } is the intersection X ∩ Y,

{ x | x ∈ X or x ∈ Y } is the union X ∪ Y,

{ x ∈ X | x < Y } is the complement X \ Y.

f : X → Y: f is a function (also called a map) from X to Y. This means that
f assigns to each x ∈ X a unique element f (x) ∈ Y. The set X is called
the domain or source of f , and Y is called the codomain or target of f .

f (A): the image of a A under the map f . If A is a subset of X, then its image
under f is by definition the set

f (A) � { y ∈ Y | y � f (x) for some x ∈ A }.
f −1(B): the preimage of B under the map f . If B is a subset of Y, this is by

definition the set

f −1(B) � { x ∈ X | f (x) ∈ B }.
(This is a somewhat confusing notation. It is not meant to imply that f is
required to have an inverse.)

f −1(c): an abbreviation for f −1({c}), i.e. the set { x ∈ X | f (x) � c }. This is
often called the fibre or level set of f at c.

f |A: the restriction of f to A. If A is a subset of X, f |A is the function defined
by

( f |A)(x) �


f (x) if x ∈ A,

not defined if x < A.

In other words, f |A is equal to f on A, but “forgets” the values of f at
points outside A.

g ◦ f : the composition of f and g. If f : X → Y and g : Y → Z are functions,
then g ◦ f : X → Z is defined by (g ◦ f (x) � g( f (x)). We often say that
the function g ◦ f is obtained by “substituting y � f (x) into g(y)”.

A function f : X → Y is injective or one-to-one if x1 , x2 implies f (x1) , f (x2).
(Equivalently, f is injective if f (x1) � f (x2) implies x1 � x2.) It is called surjective
or onto if f (X) � Y, i.e. if y ∈ Y then y � f (x) for some x ∈ X. It is called bĳective
or invertible if it is both injective and surjective. The function f is bĳective if and
only if it has an inverse, that is a map g : Y → X satisfying both g( f (x)) � x for
all x ∈ X and f (g(y)) � y for all y ∈ Y. Both conditions must be satisfied; that’s
why an inverse is sometimes called a two-sided inverse for emphasis. The inverse of
a bĳective map f is unique and is denoted by f −1.

Let f : X → Y be an injective map. We can consider f as a bĳection from X
onto the image f (X) and then form the inverse f −1 : f (X) → X. We can extend
f −1 to a map g : Y → X as follows: for y ∈ f (X) put g(y) � f −1(y). For each y ∈ Y
which is not in f (X) we choose at random an element x ∈ X and define g(y) � x.
(For instance, we could choose an arbitrary x0 ∈ X and send all y’s not in f (X) to
the same x0.) The map g satisfies g( f (x)) � x for all x ∈ X, but not f (g(y)) � y
for all y ∈ Y (unless f is bĳective). We call g a left inverse of f .

If X is a finite set and f : X → R a real-valued function, the sum of all the
numbers f (x), where x ranges through X, is denoted by

∑

x∈X f (x). The set X is
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called the index set for the sum. This notation is often abbreviated or abused in
various ways. For instance, if X is the collection {1, 2, . . . , n}, one uses the familiar
notation

∑n
i�1 f (i). In these notes we will often deal with indices which are pairs

or k-tuples of integers, also known as multi-indices. As a simple example, let n be
a fixed nonnegative integer, let X be the set of all pairs of integers (i, j) satisfying
0 ≤ i ≤ j ≤ n, and let f (i, j) � i + j. For n � 3 we can display X and f in a tableau
as follows.

i

j

0

1

2

3

2

3

4

4

5 6

The sum
∑

x∈X f (x) of all these numbers is written as

∑

0≤i≤ j≤n

(i + j).

You will be asked to evaluate it explicitly in Exercise A.2.

A.2. General topology of Euclidean space

Let x be a point in Euclidean space Rn . The open ball of radius ε about a point
x is the collection of all points y whose distance to x is less than ε,

B◦(ε, x) � { y ∈ Rn | ‖y − x‖ < ε }.

x ε

A subset O of Rn is open if for every x ∈ O there exists an ε > 0 such that B◦(ε, x)

is contained in O. Intuitively this means that at every point in O there is a little bit
of room inside O to move around in any direction you like. An open neighbourhood
of x is any open set containing x.

A subset C of Rn is closed if its complement Rn \ C is open. This definition is
equivalent to the following: C is closed if and only if for every sequence of points
x1, x2, . . . , xn , . . . that converges to a point x in Rn , the limit x is contained in C.
Loosely speaking, closed means “closed under taking limits”. An example of a
closed set is the closed ball of radius ε about a point x, which is defined as the
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collection of all points y whose distance to x is less than or equal to ε,

B(ε, x) � { y ∈ Rn | ‖y − x‖ ≤ ε }.

x ε

Closed is not the opposite of open! There exist lots of subsets of Rn that are
neither open nor closed, for example the interval [0, 1) in R. (On the other hand,
there are not so many subsets that are both open and closed, namely just the empty
set and Rn itself.)

A subset A of Rn is bounded if there exists some R > 0 such that ‖x‖ ≤ R for
all x in A. (That is, A is contained in the ball B(R, 0) for some value of R.) A
compact subset of Rn is one that is both closed and bounded. The importance of the
notion of compactness, as far as these notes are concerned, is that the integral of
a continuous function over a compact subset of Rn is always a well-defined, finite
number.

Exercises

A.1. Parts (ii) and (iii) of this problem require the use of an atlas or the Web. Let X be
the surface of the earth, let Y be the real line and let f : X → Y be the function which assigns
to each x ∈ X its geographical latitude measured in degrees.

(i) Determine the sets f (X), f −1(0), f −1(90), and f −1(−90).
(ii) Let A be the contiguous United States. Find f (A). Round the numbers to whole

degrees.
(iii) Let B � f (A), where A is as in part (ii). Find (a) a country other than A that

is contained in f −1(B); (b) a country that intersects f −1(B) but is not contained

in f −1(B); and (c) a country in the northern hemisphere that does not intersect

f −1(B).

A.2. Let S(n) �
∑

0≤i≤ j≤n (i + j). Prove the following assertions.

(i) S(0) � 0 and S(n + 1) � S(n) + 3
2 (n + 1)(n + 2).

(ii) S(n) � 1
2 n(n + 1)(n + 2). (Use induction on n.)

A.3. Prove that the open ball B◦(ε, x) is open. (This is not a tautology! State your
reasons as precisely as you can, using the definition of openness stated in the text. You will
need the triangle inequality ‖y − x‖ ≤ ‖y − z‖ + ‖z − x‖.)

A.4. Prove that the closed ball is B(ε, x) is closed. (Same comments as for Exercise A.3.)

A.5. Show that the two definitions of closedness given in the text are equivalent.
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A.6. Complete the following table. Here Sn−1 denotes the unit sphere about the origin
in Rn , that is the set of vectors of length 1.

closed? bounded? compact?

[−3, 5] yes yes yes
[−3, 5)

[−3,∞)

(−3,∞)

B(ε, x)

B◦(ε, x)

Sn−1

xy-plane in R3

unit cube [0, 1]n





APPENDIX B

Calculus review

This appendix is a brief review of some single- and multi-variable calculus
needed in the study of manifolds. References for this material are [Edw94], [HH09]
and [MT11].

B.1. The fundamental theorem of calculus

Suppose that F is a differentiable function of a single variable x and that the
derivative f � F′ is continuous. Let [a, b] be an interval contained in the domain
of F. The fundamental theorem of calculus says that

∫ b

a

f (t) dt � F(b) − F(a). (B.1)

There are two useful alternative ways of writing this theorem. Replacing b with x
and differentiating with respect to x we find

d

dx

∫ x

a

f (t) dt � f (x). (B.2)

Writing g instead of F and g′ instead of f and adding g(a) to both sides in formula
(B.1) we get

g(x) � g(a) +

∫ x

a

g′(t) dt . (B.3)

Formulæ (B.1)–(B.3) are equivalent, but they emphasize different aspects of the
fundamental theorem of calculus. Formula (B.1) is a formula for a definite integral:
it tells you how to find the (oriented) surface area between the graph of the function
f and the x-axis. Formula (B.2) says that the integral of a continuous function is
a differentiable function of the upper limit; and the derivative is the integrand.
Formula (B.3) is an “integral formula”, which expresses the function g in terms of
the value g(a) and the derivative g′. (See Exercise B.1 for an application.)

B.2. Derivatives

Let φ1, φ2 , . . . , φm be functions of n variables x1, x2 , . . . , xn . As usual we write

x �

*....
,

x1

x2

...
xn

+////
-
, φ(x) �

*....
,

φ1(x)

φ2(x)
...

φm (x)

+////
-
,

and view φ(x) as a single map from Rn to Rm . (In calculus the word “map” is often
used for vector-valued functions, while the word “function” is generally reserved
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for real-valued functions.) The most basic way to differentiate a map φ from Rn to
Rm is to form a limit of the kind

dφ(x + tv)

dt

����t�0
� lim

t→0

φ(x + tv) − φ(x)

t
. (B.4)

If this limit exists, it is called the directional derivative of φ at x along v. The expression
x+ tv as a function of t parametrizes a straight line in Rn passing through the point
x in the direction of the vector v. The directional derivative (B.4) measures the rate
of change of φ along this straight line. Since φ(x + tv) − φ(x) is a vector in Rm for
all t, the directional derivative is likewise a vector in Rm .

If the map φ is not defined everywhere but only on a subset U of Rn , it may
be difficult to make sense of the limit (B.4). Let x be in the domain U of φ. The
problem is that x + tv may not be in U for all t , 0, so that we cannot evaluate
φ(x + tv). The solution is to assume that U is an open subset of Rn . Given any
direction vector v ∈ Rn , we can then find a number ε > 0 such that the points
x + tv are contained in U for −ε < t < ε. Therefore φ(x + tv) is well-defined for
−ε < t < ε and we can legitimately ask whether the limit (B.4) exists.

The partial derivatives of φ at x are by definition the directional derivatives

∂φ

∂x j
(x) �

dφ(x + te j )

dt

����t�0
, (B.5)

where

e1 �

*.........
,

1
0
0
...
0
0

+/////////
-

, e2 �

*.........
,

0
1
0
...
0
0

+/////////
-

, . . . , en �

*.........
,

0
0
0
...
0
1

+/////////
-

are the standard basis vectors of Rn , i.e. the columns of the identity n × n-matrix.
We can write the partial derivative in components as follows:

∂φ

∂x j
(x) �

*........
,

∂φ1

∂x j
(x)

∂φ2

∂x j
(x)

...
∂φm

∂x j
(x)

+////////
-

.

The total derivative or Jacobi matrix of φ at x is obtained by lining these columns up
in an m × n-matrix

Dφ(x) �

*.......
,

∂φ1

∂x1
(x)

∂φ1

∂x2
(x) . . .

∂φ1

∂xn
(x)

∂φ2

∂x1
(x)

∂φ2

∂x2
(x) . . .

∂φ2

∂xn
(x)

...
...

...
∂φm

∂x1
(x)

∂φm

∂x2
(x) . . .

∂φm

∂xn
(x)

+///////
-

.

We say that the mapφ is continuously differentiable or C1 if the partial derivatives

∂φi

∂x j
(x)
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are well-defined for all x in the domain U of φ and depend continuously on x for
all i � 1, 2, . . . , n and j � 1, 2, . . . , m. If the second partial derivatives

∂2φi

∂x j∂xk
(x)

exist for all x ∈ U and are continuous for all i � 1, 2, . . . , n and j, k � 1, 2, . . . , m,
then φ is called twice continuously differentiable or C2. Likewise, if all r-fold partial
derivatives

∂rφi

∂x j1∂x j2 · · · ∂x jr

(x)

exist and are continuous, then φ is r times continuously differentiable or Cr . If φ is Cr

for all r ≥ 1, then we say that φ is infinitely many times differentiable, or C∞, or smooth.
This means that φ can be differentiated arbitrarily many times with respect to any
of the variables. Smooth functions include such familiar one-variable functions
as polynomials, exponentials, logarithms and trig functions. (Of course for log
and tan one must make the proviso that they are smooth only on their domain of
definition.)

The following useful fact says that any directional derivative can be expressed
as a linear combination of partial derivatives. The proof is Exercise B.4.

B.1. Lemma. Let U be an open subset of Rn and let φ : U → Rm be a C1 map. Let
x ∈ U and v ∈ Rn . Then the directional derivative of φ at x along v exists and is equal to

dφ(x + tv)

dt

����t�0
� Dφ(x)v,

the vector in Rm obtained by multiplying the matrix Dφ(x) by the vector v.

Velocity vectors. Suppose n � 1. Then φ is a vector-valued function of one
variable x, called a path or parametrized curve in Rm . The matrix Dφ(x) consists of
a single column vector, called the velocity vector, and is usually denoted simply by
φ′(x).

Gradients. Suppose m � 1. Then φ is a scalar-valued function of n variables
and Dφ(x) is a single row vector. The transpose matrix of Dφ(x) is therefore a
column vector, called the gradient of φ:

Dφ(x)T
� grad(φ)(x).

The directional derivative of φ along v can then be written as an inner product,

Dφ(x)v � grad(φ)(x)T v � grad(φ)(x) · v.
There is an important characterization of the gradient, which is based on the
familiar identity a · b � ‖a‖ ‖b‖ cos θ. Here 0 ≤ θ ≤ π is the angle subtended by
a and b. Let us fix a point x in the domain of φ and let us consider all possible
directional derivatives of φ at x along unit vectors v (i.e. vectors of length 1). Then

Dφ(x)v � grad(φ)(x) · v � ‖grad(φ)(x)‖ cos θ,

where θ is the angle between grad(φ)(x) and v. So Dφ(x)v takes on its maximal
value if cos θ � 1, i.e. θ � 0. This means that v points in the same direction as
grad(φ)(x). Thus the direction of the vector grad(φ)(x) is the direction of steepest
ascent, i.e. in which φ increases fastest, and the magnitude of grad(φ)(x) is equal
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to the directional derivative Dφ(x)v, where v is the unit vector pointing along
grad(φ)(x).

B.3. The chain rule

Recall that if A, B and C are sets and φ : A → B and ψ : B → C are maps, we
can apply ψ after φ to obtain the composite map (ψ ◦ φ)(x) � ψ(φ(x)).

B.2. Theorem (chain rule). Let U ⊆ Rn and V ⊆ Rm be open and let φ : U → V

and ψ : V → Rl be Cr . Then ψ ◦ φ is Cr and

D(ψ ◦ φ)(x) � Dψ(φ(x))Dφ(x)

for all x ∈ U .

Here Dψ(φ(x))Dφ(x) denotes the composition or the product of the l × m-
matrix Dψ(φ(x)) and the m × n-matrix Dφ(x).

B.3. Example. In the one-variable case n � m � l � 1 the derivatives Dφ and
Dψ are 1 × 1-matrices (φ′(x)) and (ψ′(y)), and matrix multiplication is ordinary
multiplication, so we get the usual chain rule

(ψ ◦ φ)′(x) � ψ′(φ(x))φ′(x).

B.4. Example. Let U be an open subset of Rn and let φ : U → Rm be C1. Let I
be an open interval and let c : I → U be a path in U . Then φ ◦ c is a path in Rm .
Suppose that at time t0 ∈ I the path c passes through the point c(t0) � x at velocity
c′(t0) � v. How to compute the velocity vector of the composite path φ ◦ c at time
t0? The chain rule gives

(φ ◦ c)′(t) � D(φ ◦ c)(t) � Dφ(c(t))Dc(t) � Dφ(c(t))c′(t)

for all t ∈ I. Setting t � t0 gives (φ ◦ c)′(t0) � Dφ(x)v.

Let us write out a formula for the (i, j)-th entry of the Jacobi matrix of ψ ◦ φ.
The i-th component of the map ψ ◦φ is ψi ◦φ, so the (i, j)-th entry of D(ψ ◦φ)(x)

is the partial derivative
∂(ψi ◦ φ)

∂x j
(x).

According to Theorem B.2 this entry can be computed by multiplying the i-th row
of Dψ(φ(x)), which is

(
∂ψi

∂y1
(φ(x))

∂ψi

∂y2
(φ(x)) · · · ∂ψ

∂ym
(φ(x))

)

,

by the j-th column of Dφ(x), which is

*........
,

∂φ1

∂x j
(x)

∂φ2

∂x j
(x)

...
∂φm

∂x j
(x)

+////////
-

.

This gives the formula

∂(ψi ◦ φ)

∂x j
(x) �

m∑

k�1

∂ψi

∂yk
(φ(x))

∂φk

∂x j
(x).
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This is perhaps the form in which the chain rule is most often used. Sometimes we
are sloppy and abbreviate this identity to

∂(ψi ◦ φ)

∂x j
�

m∑

k�1

∂ψi

∂yk

∂φk

∂x j
.

Even sloppier, but nevertheless quite common, notations are

∂ψi

∂x j
�

m∑

k�1

∂ψi

∂yk

∂φk

∂x j
,

or even
∂ψi

∂x j
�

m∑

k�1

∂ψi

∂yk

∂yk

∂x j
.

In these notes we frequently prefer the so-called “pullback” notation. Instead
of ψ ◦ φ we often write φ∗(ψ), so that φ∗(ψ)(x) stands for ψ(φ(x)). Similarly,
φ∗(∂ψi/∂yk)(x) stands for ∂ψi/∂yk(φ(x)). In this notation we have

∂φ∗(ψi )

∂x j
�

m∑

k�1

φ∗
( ∂ψi

∂yk

) ∂φk

∂x j
. (B.6)

B.4. The implicit function theorem

Let φ : W → Rm be a continuously differentiable function defined on an open
subset W of Rn+m. Let us think of a vector in Rn+m as an ordered pair of vectors
(u, v) with u ∈ Rn and v ∈ Rm . Consider the equation

φ(u, v) � 0.

Under what circumstances is it possible to solve for v as a function of u? The
answer is given by the implicit function theorem.

B.5. Example. To motivate the general result let us consider the case m � n � 1.
Then φ is a function of two real variables (u, v), and the equation φ(u, v) � 0

represents a curve in the plane, such as the lemniscate (u2 + v2)2 − 2(u2 − v2) � 0.

(u0, v0)

Suppose we manage to find a special solution (u0 , v0) of the equation. The gradient
grad(φ) � (∂φ/∂u, ∂φ/∂v) is perpendicular to the curve at every point, so if
∂φ/∂v , 0 at (u0 , v0), then the curve has a nonvertical tangent line at (u0 , v0).
Then for u close to u0 and v close to v0 (i.e. for (u, v) in a box centred at (u0 , v0),
such as the little grey box in the picture above) the curve looks like the graph of a
function, so we can solve the equation φ(u, v) � 0 for v as a function v � f (u) of
u. How to find the derivative of f ? By differentiating the relation φ(u, f (u)) � 0.
We rewrite this as φ(ψ(u)) � 0, where ψ is defined by ψ(u) � (u, f (u)) for u
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in an open interval I containing u0. According to the chain rule, Theorem B.2,
D(φ ◦ ψ)(u) � Dφ(ψ(u)Dψ(u). We have

Dφ

(

u
v

)

�

(
∂φ
∂u (u, v)

∂φ
∂v (u, v)

)

, Dψ(u) �

(

1
f ′(u)

)

,

and therefore

D(φ ◦ ψ)(u) �
∂φ

∂u
(u, f (u)) +

∂φ

∂v
(u, f (u)) f ′ (u).

The relation φ(u, f (u)) � 0 (which holds for all u ∈ I) tells us that D(φ ◦ψ)(u) � 0
for u ∈ I. Solving for f ′ gives the implicit differentiation formula

f ′(u) � −
∂φ

∂u
(u, f (u))

/ ∂φ

∂v
(u, f (u)).

For general m and n we form the Jacobi matrices of φ with respect to the u-
and v-variables separately,

Duφ �

*....
,

∂φ1

∂u1
. . .

∂φ1

∂un

...
...

∂φm

∂u1
. . .

∂φm

∂un

+////
-
, Dvφ �

*....
,

∂φ1

∂v1
. . .

∂φ1

∂vm

...
...

∂φm

∂v1
. . .

∂φm

∂vm

+////
-
.

Observe that the matrix Dvφ is square. We are in business if we have a point
(u0, v0) at which φ is 0 and Dvφ is invertible.

B.6. Theorem (implicit function theorem). Let φ : W → Rm be Cr , where W
is open in Rn+m . Suppose that (u0 , v0) ∈ W is a point such that φ(u0 , v0) � 0 and
Dvφ(u0 , v0) is invertible. Then there are open neighbourhoods U ⊆ Rn of u0 and
V ⊆ Rm of v0 such that for each u ∈ U there exists a unique v � f (u) ∈ V satisfying
φ(u, f (u)) � 0. The function f : U → V is Cr with derivative given by implicit
differentiation:

D f (u) � −Dvφ(u, v)−1Duφ(u, v)��v� f (u)

for all u ∈ U .

As a special case we take φ to be of the form φ(u, v) � g(v) − u, where
g : W → Rn is a given function with W open in Rn . Solving φ(u, v) � 0 here
amounts to inverting the function g. Moreover, Dvφ � D g, so the implicit function
theorem yields the following result.

B.7. Theorem (inverse function theorem). Let g : W → Rn be continuously
differentiable, where W is open in Rn . Suppose that v0 ∈ W is a point such that D g(v0)

is invertible. Then there is an open neighbourhood U ⊆ Rn of v0 such that g(U) is
an open neighbourhood of g(v0) and the map g : U → g(U) is invertible. The inverse
g−1 : V → U is continuously differentiable with derivative given by

D g−1(u) � D g(v)−1��v�g−1 (u)

for all v ∈ V.

Again let us spell out the one-variable case n � 1. Invertibility of D g(v0)

simply means that g′(v0) , 0. This implies that near v0 the function g is strictly
monotone increasing (if g′(v0) > 0) or decreasing (if g′(v0) < 0). Therefore if I is
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a sufficiently small open interval around u0, then g(I) is an open interval around
g(u0) and the restricted function g : I → g(I) is invertible. The inverse function
has derivative

(g−1)′(u) �
1

g′(v)
,

with v � g−1(u).

B.8. Example (square roots). Let g(v) � v2. Then g′(v0) , 0 whenever v0 , 0.
For v0 > 0 we can take I � (0,∞). Then g(I) � (0,∞), g−1(u) �

√
u, and (g−1)′(u) �

1/(2
√

u). For v0 < 0 we can take I � (−∞, 0). Then g(I) � (0,∞), g−1(u) � −
√

u,
and (g−1)′(u) � −1/(2

√
u). In a neighbourhood of 0 it is not possible to invert g.

B.5. The substitution formula for integrals

Let V be an open subset of Rn and let f : V → R be a function. Suppose we
want to change the variables in the integral

∫
V f (y) dy. (This is shorthand for an

n-fold integral over y1, y2 , . . . , yn .) This means we substitute y � p(x), where
p : U → V is a map from an open U ⊆ Rn to V. Under a suitable hypothesis we
can change the integral over y to an integral over x.

B.9. Theorem (change of variables formula). Let U and V be open subsets of Rn

and let p : U → V be a map. Suppose that p is bĳective and that p and its inverse are
continuously differentiable. Then for any integrable function f we have

∫
V

f (y) dy �

∫
U

f (p(x)) |det(Dp(x)) | dx.

Again this should look familiar from one-variable calculus: if p : (a, b) → (c, d)

is C1 and has a C1 inverse, then∫ d

c

f (y) dy �



∫ b

a f (p(x))p′(x) dx if p is increasing,∫ a

b f (p(x))p′(x) dx if p is decreasing.

This can be written succinctly as
∫ d

c f (y) dy �

∫ b

a f (p(x)) |p′(x) | dx, which looks
more similar to the multidimensional case.

Exercises

B.1. Let g : [a, b] → R be a Cn+1-function, where n ≥ 0. Suppose a ≤ x ≤ b and put
h � x − a.

(i) By changing variables in the fundamental theorem of calculus (B.3) show that

g(x) � g(a) + h

∫ 1

0
g′(a + th) dt.

(ii) Show that

g(x) � g(a) + h(t − 1)g′(a + th)��10 + h2

∫ 1

0
(1 − t)g′′(a + th) dt

� g(a) + hg′ (a) + h2

∫ 1

0
(1 − t)g′′(a + th) dt.

(Integrate the formula in part (i) by parts and don’t forget to use the chain rule.)
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(iii) By induction on n deduce from part (ii) that

g(x) �

n∑

k�0

g(k) (a)

k!
hk +

hn+1

n!

∫ 1

0
(1 − t)n g(n+1) (a + th) dt.

This is Taylor’s formula with integral remainder term.

B.2. Let φ : R → R be the function defined by φ(x) � x |x |. Show that φ is C1 but not

C2. For each r ≥ 1 give an example of a function which is Cr but not Cr+1.

B.3. Define a function f : R→ R by f (0) � 0 and f (x) � e−1/x2
for x , 0.

(i) Show that f is differentiable at 0 and that f ′(0) � 0. (Use the definition of the
derivative,

f ′(0) � lim
x→0

f (x) − f (0)

x
.)

(ii) Show that f is smooth and that f (n) (0) � 0 for all n. (By induction on n, prove
the following assertion:

f (n) (x) �


0 if x � 0,

gn (1/x)e−1/x2
if x , 0,

where, for each n ≥ 0, gn (1/x) is a certain polynomial in 1/x, which you need
not determine explicitly.)

(iii) Plot the function f over the interval −5 ≤ x ≤ 5. Using software or a graphing
calculator is fine, but pay special attention to the behaviour near x � 0.

B.4. (i) Let x and v be vectors in Rn . Define a path c : R→ Rn by c(t) � x + tv.
Find c′(t).

(ii) Prove Lemma B.1. (Let φ : U → Rm be a C1 map, where U is open in Rn .
Combine the result of part (i) with the formula of Example B.4.)

B.5. According to Newton’s law of gravitation, a particle of mass m1 placed at the origin

in R3 exerts a force on a particle of mass m2 placed at x ∈ R3 \ {0} equal to

F � −Gm1m2

‖x‖3
x,

where G is a constant of nature. Show that F is the gradient of f (x) � Gm1m2/‖x‖.

B.6. A function f : Rn \ {0} → R is homogeneous of degree p if f (tx) � tp f (x) for all
x ∈ Rn \ {0} and t > 0. Here p is a real constant.

(i) Show that the functions f1(x, y) � (x2 − xy)/(x2 + y2), f2(x, y) �

√

x3 + y3,

f3(x, y , z) � (x2z6 + 3x4 y2z2)−
√

2 are homogeneous. What are their degrees?
(ii) Let f be a homogeneous function of degree p. Assume that f is defined at 0 and

continuous everywhere. Also assume f (x) , 0 for at least one x ∈ Rn . Show that
p ≥ 0. Show that f is constant if p � 0.

(iii) Show that if f is homogeneous of degree p and smooth, then

n∑

i�1

xi
∂ f

∂xi
(x) � p f (x).

(Differentiate the relation f (tx) � tp f (x) with respect to t.)

B.7. A function f : Rn \ {0} → R is quasihomogeneous of degree p if there exist real
constants a1, a2 , . . . , an with the property that

f (ta1 x1 , t
a2 x2 , . . . , t

an xn ) � tp f (x)
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for all x ∈ Rn \ {0} and t > 0. Suppose that f is quasihomogeneous of degree p and smooth.

Show that
∑n

i�1 ai xi
∂ f
∂xi

(x) � p f (x).

B.8. Define a map ψ from Rn−1 to Rn by

ψ(t) �
1

‖t‖2 + 1

(

2t + (‖t‖2 − 1)en
)

.

(Here we regard a point t � (t1 , t2 , . . . , tn−1) in Rn−1 as a point in Rn by identifying it with
(t1 , t2 , . . . , tn−1 , 0).)

(i) Show that ψ(t) lies on the unit sphere Sn−1 about the origin.
(ii) Show that ψ(t) is the intersection point of the sphere and the line through the

points en and t.
(iii) Compute Dψ(t).

(iv) Let X be the sphere punctured at the “north pole”, X � Sn−1 \ {en }. Stereographic

projection from the north pole is the map φ : X → Rn−1 given by φ(x) � (1 −
xn )−1(x1 , x2 , . . . , xn−1)T . Show that φ is a two-sided inverse of ψ.

(v) Draw diagrams illustrating the maps φ and ψ for n � 2 and n � 3.
(vi) Now let y be any point on the sphere and let P the hyperplane perpendicular to

y. (A hyperplane in Rn is a linear subspace of dimension n − 1.) The stereographic
projection from y of any point x in the sphere distinct from y is defined as the
unique intersection point of the line joining y to x and the hyperplane P. This

defines a map φ : Sn−1 \ {y} → P. The point y is called the centre of the projection.
Write a formula for the stereographic projection φ from the south pole −en and

for its inverse ψ : Rn−1 → Sn−1.

B.9. Let φ : Rn → Rm be a C1 map. Prove the following assertions.

(i) φ is constant if and only if Dφ(x) � 0 for all x ∈ Rn .
(ii) φ is linear if and only if Dφ(x)v � φ(v) for all x and v in Rn .

B.10. A map φ : Rn → Rm is called even if φ(−x) � φ(x) for all x in Rn . Find Dφ(0) if

φ is even and C1.

B.11. Let f : R2 → R be a smooth function which satisfies f (x, y) � − f (y , x) for all x
and y. Show that

∂ f

∂x
(a, b) � −

∂ f

∂y
(b, a)

for all a and b.

B.12. Let f : R2 → R and g : R→ R be smooth functions. Show that

d

dx

∫ g(x)

0
f (x, y) dy � f (x, g(x))g′ (x) +

∫ g(x)

0

∂ f (x, y)

∂x
dy.

B.13. Thermodynamicists like to use rules such as

∂y

∂x

∂x

∂y
� 1.

Explain the rule and show that it is correct. (Assume that the variables are subject to a
relation F(x, y) � 0 defining functions x � f (y), y � g(x), and apply the multivariable
chain rule. See also Example B.5.) Similarly, explain why

∂y

∂x

∂z

∂y

∂x

∂z
� −1.

Naively cancelling numerators against denominators gives the wrong answer!
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B.14. Let a0, a1, a2 , . . . , an be vectors in Rn . A linear combination
∑n

i�0
ciai is convex

if all coefficients are nonnegative and their sum is 1: ci ≥ 0 and
∑n

i�0
ci � 1. The simplex ∆

spanned by the ai ’s is the collection of all their convex linear combinations,

∆ �

{ n∑

i�0

ciai
���� c1 ≥ 0, . . . , cn ≥ 0,

n∑

i�0

ci � 1
}

.

The standard simplex in Rn is the simplex spanned by the vectors 0, e1, e2 , . . . , en .

(i) For n � 1, 2, 3 draw pictures of the standard n-simplex as well as a nonstandard
n-simplex.

(ii) The volume of a region R in Rn is defined as vol(R) �

∫
R

dx1 dx2 · · · dxn . Show

that the volume of the standard n-simplex is 1/n!.
(iii) Show that

vol(∆) �
1

n!
|det(A) |,

where A is the n × n-matrix with columns a1 − a0, a2 − a0 , . . . , an − a0. (Map ∆ to
the standard simplex by an appropriate substitution and apply the substitution
formula for integrals.)

The following two calculus problems are not review problems, but the results are
needed in Chapter 9.

B.15. For x > 0 define

Γ(x) �

∫ ∞
0

e−t tx−1 dt

and prove the following assertions.

(i) Γ(x + 1) � x Γ(x) for all x > 0.
(ii) Γ(n) � (n − 1)! for positive integers n.

(iii)

∫ ∞
0

e−u2
ua du �

1

2
Γ

(
a + 1

2

)

.

B.16. Calculate Γ(n+ 1
2 ) (where Γ is the function defined in Exercise B.15) by establishing

the following identities. For brevity write γ � Γ( 1
2 ).

(i) γ �

∫ ∞
−∞

e−s2
ds.

(ii) γ2
�

∫ ∞
−∞

∫ ∞
−∞

e−x2−y2
dx dy.

(iii) γ2
�

∫ 2π

0

∫ ∞
0

re−r2
dr dθ.

(iv) γ �

√
π.

(v) Γ
(

n +
1

2

)

�

1 · 3 · 5 · · · (2n − 1)

2n

√
π for n ≥ 1.
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The Greek alphabet

upper case lower case name

A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ǫ, ε epsilon
Z ζ zeta
H η eta
Θ θ, ϑ theta
I ι iota
K κ kappa
Λ λ lambda
M µ mu
N ν nu
Ξ ξ xi
O o omicron
Π π, ̟ pi
P ρ rho
Σ σ, ς sigma
T τ tau
Υ υ upsilon
Φ φ, ϕ phi
X χ chi
Ψ ψ psi
Ω ω omega
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Notation Index

∗, Hodge star operator, 24
relativistic, 30

[0, 1]k , unit cube in Rk , 64
#, connected sum, 7
·, Euclidean inner product (dot product), 8
◦, composition of maps, 39, 140, 148∫

, integral of a form
over a chain, 49, 63
over a manifold, 119
∇, nabla, 73
‖ ‖, Euclidean norm (length), 8
⊗, tensor multiplication, 100
∂
∂xi

, partial derivative, 146
⊥, orthogonal complement, 84
∧, exterior multiplication, 17, 96

AT , transpose of a matrix A, 37
Ak (V), set of alternating k-multilinear func-

tions on V , 96
Aσ, permutation matrix, 46
AI , J, (I , J)-submatrix of A, 44
∗α, Hodge star of α, 24

relativistic, 30∫
M α, integral of α over a manifold M, 119∫
c α, integral of α over a chain c, 49, 63

Alt(µ), alternating form associated to µ, 100

B(ε, x), closed ball in Rn , 142
B◦(ε, x), open ball in Rn , 141
[B], orientation defined by oriented frame B,

105

C∞, smooth, 147
Cr , r times continuously differentiable, 147
curl, curl of a vector field, 27

Dφ, Jacobi matrix of φ, 146
∂, boundary

of a chain, 66
of a manifold, 113

d, exterior derivative, 20
∆, Laplacian of a function, 29
δI , J, Kronecker delta, 96
δi , j , Kronecker delta, 53

det(A), determinant of a matrix A, 31
div, divergence of a vector field, 27
∗dx, infinitesimal hypersurface, 26
dx, infinitesimal displacement, 26
dxI , short for dxi1 dxi2 · · · dxik

, 17
dxi , covector (“infinitesimal increment”), 17,

95
d̂x i , omit dxi , 18

ei , i-th standard basis vector of Rn , 146

f (A), image of A under f , 140
f −1 , inverse of f , 140
f −1 (B), preimage of B under f , 140
f −1 (c), preimage of {c} under f , 140
f |A, restriction of f to A, 140

g ◦ f , composition of f and g, 39, 140, 148
Γ, Gamma function, 124, 154
GL(n), general linear group, 89
grad, gradient of a function, 26
graph, graph of a function, 76

Hn , upper half-space in Rn , 113

I, multi-index (i1 , i2 , . . . , ik ) (usually increas-
ing), 17

int(M), interior of a manifold with boundary,
113

ker(A), kernel (nullspace) of a matrix A, 83

l(σ), length of a permutation σ, 34

µM , volume form of a manifold M, 107

(n
k

)

, binomial coefficient, 19, 24
n, unit normal vector field, 106
nullity(A), dimension of the kernel of A, 83

O(n), orthogonal group, 86
Ωk (M), vector space of k-forms on M, 19, 92

φ∗, pullback
of a form, 39, 98
of a function, 39, 149

159
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Rn , Euclidean n-space, 1
rank(A), dimension of the column space of A,

83

Sn , unit sphere about the origin in Rn+1, 8, 72
Sn , permutation group, 34
sign(σ), sign of a permutation σ, 35
SL(n), special linear group, 89
SO(n), special orthogonal group, 87

TxM, tangent space to M at x, 8, 76, 83, 84
τ(c), turning number of regular closed path c,

60

V∗, dual of a vector space V , 93
V k , k-fold Cartesian product of a vector space

V , 95
voln , n-dimensional Euclidean volume, 101

w(M, x), winding number of a hypersurface M
about a point x, 133

w(c, x), winding number of a closed path c
about a point x, 58

‖x‖, Euclidean norm (length) of a vector x, 8
x · y, Euclidean inner product (dot product) of

vectors x and y, 8



Index

Page numbers in boldface refer to definitions; page numbers in
italic refer to theorems, examples, or applications. Italic boldface
is used when both types of items occur on the same page.

affine space, 8, 82
alternating

algebra, 92
multilinear function, 37, 95, 97–100
property, 18, 20, 21

Ampère, André Marie (1775–1836), 30
Ampère’s Law, 30
angle

form, 23, 27, 38, 49, 52, 54, 60, 71, 130, 132
function

along a path, 56

on an open subset, 54

anticommutativity, 18
antisymmetric

matrix, 86, 89
multilinear function, see alternating

multilinear function
arc length, 99, 108, 120, 122
Archimedes of Syracuse (287–212 BC), 3, 123
Archimedes’ Law, 123

atlas, 75, 76, 92
average of a function, 120

ball, see closed ball, open ball
barycentre, 120, 123

bilinear, 95, 96, 100
block, 104

rectangular, see rectangular block
Bonnet, Pierre (1819–1892), 157
boundary

of a chain, 66, 68–73
of a manifold, 2–7, 113, 114–124, 125, 130

bounded, 49, 118, 142

Brouwer, Luitzen Egbertus Jan (1881–1966),
125, 136

Brouwer’s fixed point theorem, 125, 136
buoyant force, 123

Cartan, Élie (1869–1951), 17
Cartesian product, 7, 11, 95, 128, 139

Cartesius, Renatus, see Descartes, René

centre
of buoyancy, 123

of mass, 120, 123
centroid, 120

chain, 65, 66–73
chart, 75, 76, 79, 80
circle, 9, 49, 50, 52, 58, 59, 69, 71, 80, 127, 130
closed

ball, 9, 115, 116, 124, 127, 137, 142

chain, 68, 71, 137
curve, 1

form, 22, 28–30, 42, 52, 58, 59, 129, 131–138
path, 52, 57, 68
set, 4, 38, 49, 93, 113, 118, 141, 142, 143

codimension, 76, 83, 84, 115
cohomology, 131, 134, 157
column

operation, 32, 45
vector, 1, 31, 47, 77, 100, 102, 147

compact, 63, 118–121, 123, 130, 133, 142

complementary, 24

composition of maps, 140

configuration space, 10, 15
connected, 42, 52–54, 120
connected component, 13, 131
connected sum, 7

conservative, 51, 120, 121
constant form, 19, 29, 94
continuously differentiable, 147

contractible, 127, 131–137
contraction, 127, 132, 133–137
contravariance, 40
convex, 136

linear combination, 154

coordinate map, see chart
covariant vector, see covector
covector, 93, 93, 96, 100

field, 94

Coxeter, Harold Scott MacDonald
(1907–2003), 46

Coxeter relations, 46
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critical point, 90

cross-cap, 7
cube in an open set, 65, 66–69, 71–72
curl, 27, 30, 72–73, 121–123
curvature, 17
curve, 1, 77

cycle, 68, 71
cylinder

formula, 128
with base M, 128

d’Alembert, Jean Le Rond (1717–1783), 30
d’Alembertian, 30
de Rham, Georges (1903–1990), 131, 134, 157
degenerate chain, 68, 71
degree

of a form, 17

of a homogeneous function, 152

of a multi-index, 17

of a quasihomogeneous function, 153

degrees of freedom, 10, 15
Descartes, René (1596–1650), 11, 95, 139
determinant, 33, 33–37, 43–45, 46, 89, 95–97,

101, 102, 105
differential

equation, 16
form, see form

dimension, 1–12, 76

Dirichlet, Lejeune (1805–1859), 123
Dirichlet integral, 123
disconnected, 13
divergence, 27, 30, 72–73, 121, 123
domain, 116, 121, 122

of a function or a form, 17, 22, 39, 50, 140,
146

dot product, see inner product
dual

basis, 94, 96–98, 99
vector, see covector

space, 93

electromagnetic wave, 30
electromagnetism, 30
element

of arc length, 99, 108, 122
of surface area, 108

embedding, 75, 76–78, 88–89, 91, 99, 107–110,
112, 113, 114, 120, 122

equivalence relation, 134

Euclid of Alexandria (ca. 325–265 BC), 1, 75,
76, 101, 124, 126, 127, 139, 141

Euclidean
motion, 101
plane, 139
space, 1, 75, 76, 124, 126, 127, 141
volume, 101

εύρηκα, 123
even

map, 153

permutation, 35, 45
exact form, 22, 28, 51–58, 71, 129, 131–133
exterior

algebra, 92
derivative, 20, 22, 26, 27, 67, 70

on a manifold, 92

differential calculus, 17
product, see product of forms

Faraday, Michael (1791–1867), 30
Faraday’s Law, 30
fibre, see level set
fixed point, 125

flux, 26, 110, 121
form

as a vector-eating animal, 93, 99
closed, see closed form
exact, see exact form
on a manifold, 92, 99

on Euclidean space, 17, 18–30, 94, 98

vector-valued, see vector-valued form
volume, see volume form

frame, 105

oriented, see oriented frame
orthonormal, see orthonormal frame

free space, 30
Freedman, Michael (1951–), 134
function, 140, 146
fundamental theorem of calculus, 28, 49, 51,

71, 145, 151
in Rn , 51, 70, 121

Gamma function, 124, 154

Gauss, Carl Friedrich (1777–1855), v, 30, 70,
72, 107, 121, 122, 157

Gauss map, 107
Gauss’ Law, 30
Gauss’ theorem, 72, 121

gradient and curl versions, 73, 122
general linear group, 89, 137
generalized angle form, 132

gluing diagram, 5, 14, 15
graded commutativity, 18, 19
gradient, 26, 29, 51, 72–73, 83–90, 107, 111,

112, 120, 122, 123, 147

Gram, Jørgen (1850–1916), 102, 103
Gram matrix, 102

Gram-Schmidt process, 103
graph, 76, 77, 83, 108, 112, 113, 145
Grassmann, Hermann (1809–1877), 92
gravitation, 58, 152
Greek alphabet, 155

Green, George (1793–1841), v, 70, 72, 123
Green’s theorem, 72, 123

half-space, 113

Hodge, William (1903–1975), 24, 26, 29, 30, 40
Hodge star operator, 24, 26, 29, 40, see also

relativity
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homogeneous function, 28, 89, 137, 152

homotopy, 126

formula, 129
of loops, 127, 131, 133
of paths, 127

hyperplane, 77, 110, 153

hypersurface, 26, 77, 106–112, 116, 121, 133

image of a set under a map, 37, 63, 65, 72, 75,
77, 83, 88, 91, 108, 113, 123, 140

image of a set under a map, 49
increasing multi-index, 19, 24, 29, 44, 96, 97,

see also complementary
index of a vector field, 59

inner product, 8, 95, 102, 109, 147
of forms, 29

integrability condition, 23
integral

of a 1-form over a path, 49, 50–52
of a form

over a chain, 63, 64–65, 70–73, 117
over a manifold, 119, 119–121, 129, 131,

133, 137
inverse, 45, 75, 76, 79, 88, 133, 140, 140, 150,

153
inversion, 34

inward pointing, 116

k-chain, see chain
k-cube, see cube
k-form, see form
k-multilinear function, see multilinear

function
k-tuple, see tuple
Klein, Felix (1849–1925), 5
Klein bottle, 5
Kronecker, Leopold (1823–1891), 53, 93, 96
Kronecker delta, 53, 93, 96

Laplace, Pierre-Simon (1749–1827), 29
Laplacian, 29

left inverse, 81, 82, 140

Leibniz, Gottfried Wilhelm von (1646–1716),
20, 21, 42

Leibniz rule
for forms, 21, 42
for functions, 20

length
of a permutation, 34, 45
of a vector, 8, 86, 90, 106, 116, 127, 143

level
curve, 84

hypersurface, 84

set, 82, 140

surface, 84

lightlike, 29
line segment, 31
linear functional, see covector
local

parametrization of a manifold, 76, 81, 106
representative, 92, 99, 107

Lotka, Alfred (1880–1949), 16, 89
Lotka-Volterra model, 16, 89

manifold, 1–16, 76, 77–90
abstract, 10–14, 76
given explicitly, 9, 82
given implicitly, 7, 82
with boundary, 2–7, 113, 114–124, 125, 130

map, 140, 146
Maxwell, James Clerk (1831–1879), 30
mean of a function, 120

measurable set, 38
Milnor, John (1931–), 134
minimum, 85
Minkowski, Hermann (1864–1909), 29
Minkowski

inner product, 29

space, 29

Möbius, August (1790–1868), 4, 116
Möbius band, 4, 116
multi-index, 17, 141, see also increasing

multi-index
multilinear

algebra, 17
function, 95, 100

n-manifold, see manifold
nabla, 73

naturality of pullbacks, 40, 50, 64
Newton, Isaac (1643–1727), 58, 152, 157
norm of a vector, 8

normal vector field, see unit normal vector
field

odd permutation, 35, 45
open

ball, 141

neighbourhood, 141

set, 141, 142, 146
is a manifold, 77

ordered basis, see frame
ordered pair, 139

orientation
of a boundary, 117, 119
of a hypersurface, 106, 112
of a manifold, 99, 106, 120
of a vector space, 101, 105, 112

preserving, 50, 63, 106, 107, 109, 112, 117
reversing, 50, 63, 106

oriented frame, 105

orthogonal
complement, 84, 106
group, 86, 89, 112, 137
matrix, 86, 101, 102
operator, 29
projection, 103

orthonormal, 29, 102



164 INDEX

frame, 112

outward pointing, 116, 123

pair of pants, 116
paraboloid, 4
parallelepiped, 31, 31, 45, 101, 107
parallelogram, 14, 15, 31, 111
parametrization, 9, 63, 75
parametrized curve, see path
partial differential

equation, 23
operator, 20

path, 10, 14, 49, 51, 58–59, 81, 81, 88–89, 127,
147

pentagon, 16
Perelman, Grigori (1966–), 134
permutation, 34, 35, 36, 44, 45–46, 95, 112

group, 34, 45
matrix, 46

pinch point, 7
plane curve, 1, 14, 77
Poincaré, Jules Henri (1854–1912), 131, 134
Poincaré

conjecture, 133

lemma, 131

potential, 51, 58, 121
predator, 16
preimage of a set or a point under a map, 82,

84, 89, 107, 115, 140

prey, 16
product

of forms, 19, 27–28

on a manifold, 92

of permutations, 35, 45
of sets, see Cartesian product

product rule, see Leibniz rule
projective

plane, 5, 135

space, 88, 112
pullback

of a form
on a manifold, 99, 108, 126, 128, 129
on Euclidean space, 39, 43–45, 49, 50, 63,

64, 92, 98

of a function, 149

punctured
Euclidean space, 90, 126, 131–133
plane, 49, 54, 71, 88, 128, 131, 132

QR-decomposition, 103, 137
quadrilateral, 12
quasihomogeneous function, 153

rectangular block, 18, 63, 72
regular

path, 60

value, 83, 84–87, 89–90, 107, 111, 115
relativity, 29, 30, 157
reparametrization

of a path, 49, 50, 52, 64

of a rectangular block, 63, 64

restriction of a map, 124, 140

retraction, 125

Riemann, Bernhard (1826–1866), 157
rigid body, 11
row

operation, 45
vector, 1, 47, 83, 100, 147

saddle point, 85
Schmidt, Erhard (1876–1959), 103
sign of a permutation, 35, 45
simple permutation, 46

simplex, 154

simply connected, 131, 133
singular

cube, see cube
value, 83, 84–86, 89

singularity, 2, 8, 14, 16, 75, 79, 115
Smale, Stephen (1930–), 134
smooth

curve, 77

function or map, 147, 152

hypersurface, 77

manifold, 4
point, 2
surface, 77

solution curve, 10, 16
space curve, 1

space-time, 30
spacelike, 29
special linear group, 89

special orthogonal group, 87

sphere, 4, 8, 10, 11, 15, 72, 75, 85, 90, 107, 111,
115, 124–126, 131–133, 143, 153

spherical
coordinates, 47
pendulum, 10

standard
basis of Rn , 25, 36, 46, 86, 91, 94–96, 98, 105,

106, 109, 110, 146

orientation of Rn , 105, 106, 117
simplex, 154

star-shaped, 136

state space, see configuration space
steepest ascent, 85, 148

stereographic projection, 80, 153

Stirling, James (1692–1770), 124
Stirling’s formula, 124
Stokes, George (1819–1903), v, 49, 70, 72, 119,

121
Stokes’ theorem

classical version, 72, 121

for chains, 49, 70, 71

for manifolds, 113, 119, 128, 130, 132

gradient and divergence versions, 73

submanifold, 76
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support of a differential form, 117

surface, 4, 15, 77, 91, 121
area, 9, 17, 108, 120, 122, 123, 145

symmetric
bilinear function, 96
matrix, 87, 90

tangent
bundle, 89

hyperplane, 77

line, 1, 14, 77, 78, 88
map, 88

plane, 15, 77, 88
space, 1, 15, 76, 77, 83–86, 89, 90, 99, 106,

107, 116

vector, 50, 76, 90, 99, 116
Taylor, Brook (1685–1731), 152
Taylor’s formula, 152
tensor product, 17, 96, 100

timelike, 29
topological manifold, 4
torque, 123

torus, 4, 79
n-torus, 7
trace, 89

trajectory, 16, 89
transformation law, 92
transpose of a matrix or a vector, 26, 37, 83, 95,

147
transposition, 45

tuple, 1, 34, 75, 95, 99, 105, 108, 139

turning number
of regular closed path, 60

two-sided inverse, see inverse

unit
circle, see circle
cube, 33, 37, 45, 64, 72, 143
interval, 31, 37, 64, 101, 126, 128
normal vector field, 106, 109, 111, 112, 116,

121, 123, 132
sphere, see sphere
square, 37, 66, 69
vector, 54, 147

vector, see also column, length, position, row,
tangent, unit

field, 25, 29, 30, 50, 59, 72, 94, 109, 120, 122,
see also conservative, curl, divergence,
gradient, index, potential, unit normal

vector-valued form, 26, 72, 109, 111, 120, 122
velocity, 10, 60, 79, 147

Volterra, Vito (1860–1940), 16, 89
volume

change, 38, 45
element, 17, 108

Euclidean, see Euclidean volume
form, 72, 107, 108, 113

of a hypersurface, 111

on Rn , 18, 24, 45
on a hypersurface, 112, 124, 132

of a block, 18, 104
of a manifold, 99, 120, 122, 123
of a parallelepiped, 31, 101, 102
of a simplex, 154

wave operator, 30
wedge product, 17, 96, 100
winding number

of closed path, 58, 58–59, 130, 133
of hypersurface, 133

work, 17, 26, 50, 52, 68, 120, 121

zero of a vector field, 25
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