1. Let A be a subset of a topological space X. Prove that every closed set V that contains A also contains the closure \bar{A}.
2. Let X be a topological space, and Y a subspace. Show that if A is closed in Y, and Y is closed in X, then A is closed in X. Prove the same statement for open subsets.
3. Let X be a topological space, U an open subset, and A a closed subset. Show that

$$
\mathrm{u}-\mathrm{A}=\{\mathbf{u} \in \mathrm{U} \mid \boldsymbol{u} \notin \mathrm{A}\}
$$

is open in X, and

$$
A-U=\{a \in A \mid a \notin U\}
$$

is closed in X .
4. Let A and B be subsets of a topological space X. Determine which of the following equalities hold. If the equality does not hold, determine if one containment or the other holds. Justify your answer with a proof or counterexample.
(a) $\overline{A \cup B}=\overline{\bar{A}} \cup \bar{B}$.
(b) $\overline{A \cap B}=\bar{A} \cap \bar{B}$.
(c) $\overline{\left(\bigcup_{\alpha} A_{\alpha}\right)}=\bigcup_{\alpha} \bar{A}_{\alpha}$.
5. Let Y be a subspace of X, and Z a subspace of Y. Prove that Z is a subspace of X.
6. Let C_{i} denote the circle of radius $\frac{1}{i}$ in \mathbb{R}^{2}, and let

$$
X=\bigcup_{i=1}^{\infty} C_{i} .
$$

Determine whether or not X is a closed subset of \mathbb{R}^{2} (with the usual topology). Why or why not?
7. Consider the set

$$
\{[\mathbf{a}, \mathbf{b})=\{x \mid a \leq x<b\} \mid a, b \in \mathbb{R}\} .
$$

Show that this is a basis for a topology on \mathbb{R}. This topology is called the lower limit topology.
8. Declare a subset of \mathbb{R} to be open if its complement is finite or all of \mathbb{R}. Show that this defines a topology on \mathbb{R}. This is known as the finite complement topology. What is the closure of a subset \mathcal{A} in \mathbb{R} ?
9. Let I_{a} denote the subset (a, ∞) of \mathbb{R}. Notice that $I_{\infty}=\emptyset$ and $I_{-\infty}=\mathbb{R}$. Show that the collection $\mathcal{O}=\left\{\mathrm{I}_{\mathfrak{a}} \mid \mathrm{a} \in \mathbb{R}\right\}$, is a topology on \mathbb{R}. What is the closure of a subset A in \mathbb{R} ?
10. Compare the topologies on \mathbb{R} that we have seen so far:
(a) the discrete topology \mathcal{D};
(b) the finite complement topology \mathcal{F};
(c) the topology \mathcal{O};
(d) the standard topology \mathcal{S}; and
(e) the topology $\mathcal{T}=\{\emptyset, \mathbb{R}\}$.

What is the partial ordering on these? That is, which are finer than which? Which are incomparable?
*11. (Kuratowski) Consider the power set of a topological space X : the set of all subsets of X. The operations closure $A \mapsto \bar{A}$ and complement $A \mapsto A^{\prime}$ are functions on the power set.
(a) Show that for any set $A \subseteq X$, one can form no more than 14 distinct sets by successively applying these two operations.
(b) Find a subset A of \mathbb{R} with the standard topology that achieves this maximum.

