1. We say that a sequence of points $x_{1}, x_{2}, \cdots \in X$ converges to $x \in X$ if for every neighborhood U of x, there is an integer $n>0$ so that $x_{i} \in U$ for every $i \geq n$.
Show that if $f: X \rightarrow Y$ is a continuous function and if $\left\{x_{i}\right\}$ is a sequence that converges to x, then $\left\{f\left(x_{i}\right)\right\}$ converges to $f(x)$.
2. Show that a function $f: X \rightarrow Y$ between two topological spaces is continuous if and only if $f^{-1}(A)$ is closed for every closed subset $A \subseteq Y$.
3. Let X be a topological space. We say that $x \sim y$ if there is a path in X from x to y.
(a) Show that this is an equivalence relation on X.
(b) What are the equivalence classes for this relation for $X=$ the topologist's sine curve?
4. Let X be an infinite set with the finite complement topology. That is, a set $\mathcal{A} \subseteq X$ is open if its complement is a finite set or all of X. Show that X with this topology is connected.
5. Suppose that $A \subseteq X$. The boundary of A, denoted $B d(A)$, is the set $\bar{A} \cap \overline{(X-A)}$.
(a) If A is connected, are the interior $\operatorname{int}(\mathcal{A})$ and boundary $\operatorname{Bd}(A)$ also connected? Prove or find a counterexample.
(b) If the interior $\operatorname{int}(A)$ and the boundary $\operatorname{Bd}(A)$ are connected, then is A necessarily connected? Prove or find a counterexample.
6. Show that if A is connected, \bar{A} is connected.
7. Let D_{1} and D_{2} be two disjoint open discs in \mathbb{R}^{2} that are tangent to each other, as shown in the figure below.

FIGURE 1. A pair of open tangent discs D_{1} and D_{2} in \mathbb{R}^{2}, with point of tangency x. Which of the following subsets of \mathbb{R}^{2} are connected? Why or why not?
(a) $D_{1} \cup D_{2}$
(b) $\overline{\mathrm{D}}_{1} \cup \overline{\mathrm{D}}_{2}$
(c) $\bar{D}_{1} \cup D_{2}$
8. Consider the capital letters of the alphabet, as below, in the sans serif style with no adornments.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Each letter is a topological space, with the subspace topology inherited from R^{2}.
(a) Prove that K is not homeomorphic to X .
(b) Give an explicit homeomorphism from O to D
(c) Consider the equivalence relation "is homeomorphic to" on the set of these letters. What are its equivalence classes?
9. (Extra Credit) Let X be a subspace of \mathbb{R}^{n} with the standard topology, for some n. Suppose $X=A \sqcup B \sqcup C$ is a disjoint union of path-connected subsets.
(a) Show that if $A \sqcup B, B \sqcup C$ and $A \sqcup C$ are not connected, then X cannot be connected.
(b) Find an example of such X, A, B, and C all path-connected so that none of $A \sqcup B, B \sqcup C$ and $A \sqcup C$ is path-connected.

