- 1. We say that a sequence of points $x_1, x_2, \dots \in X$ converges to $x \in X$ if for every neighborhood U of x, there is an integer n > 0 so that $x_i \in U$ for every $i \ge n$.
 - Show that if $f : X \to Y$ is a continuous function and if $\{x_i\}$ is a sequence that converges to x, then $\{f(x_i)\}$ converges to f(x).
- 2. Show that a function $f : X \to Y$ between two topological spaces is continuous if and only if $f^{-1}(A)$ is closed for every closed subset $A \subseteq Y$.
- 3. Let X be a topological space. We say that x ~ y if there is a path in X from x to y.(a) Show that this is an equivalence relation on X.
 - (a) Show that this is an equivalence relation on λ .
 - (b) What are the equivalence classes for this relation for X = the topologist's sine curve?
- 4. Let X be an infinite set with the **finite complement topology**. That is, a set $A \subseteq X$ is open if its complement is a **finite set** or all of X. Show that X with this topology is connected.
- 5. Suppose that $A \subseteq X$. The **boundary** of A, denoted Bd(A), is the set $\overline{A} \cap (X A)$.
 - (a) If A is connected, are the interior int(A) and boundary Bd(A) also connected? Prove or find a counterexample.
 - (b) If the interior int(*A*) and the boundary Bd(*A*) are connected, then is *A* necessarily connected? Prove or find a counterexample.
- 6. Show that if A is connected, \overline{A} is connected.
- 7. Let D_1 and D_2 be two disjoint open discs in \mathbb{R}^2 that are tangent to each other, as shown in the figure below.

FIGURE 1. A pair of open tangent discs D_1 and D_2 in \mathbb{R}^2 , with point of tangency x. Which of the following subsets of \mathbb{R}^2 are connected? Why or why not?

- (a) $D_1 \cup D_2$
- (b) $\overline{D}_1 \cup \overline{D}_2$
- (c) $\overline{D}_1 \cup D_2$
- 8. Consider the capital letters of the alphabet, as below, in the sans serif style with no adornments.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Each letter is a topological space, with the subspace topology inherited from R^2 .

- (a) Prove that K is not homeomorphic to X.
- (b) Give an explicit homeomorphism from O to D
- (c) Consider the equivalence relation "is homeomorphic to" on the set of these letters. What are its equivalence classes?
- 9. (EXTRA CREDIT) Let X be a subspace of \mathbb{R}^n with the standard topology, for some n. Suppose $X = A \sqcup B \sqcup C$ is a disjoint union of path-connected subsets.
 - (a) Show that if $A \sqcup B$, $B \sqcup C$ and $A \sqcup C$ are **not** connected, then X cannot be connected.
 - (b) Find an example of such X, A, B, and C all path-connected so that **none** of A ⊔ B, B ⊔ C and A ⊔ C is path-connected.