- 1. Suppose that $f : X \to Y$ is a continuous bijection. Show that if X is compact and Y is Hausdorff, then f is a homeomorphism.
- 2. Show that if Y is a compact space, then the projection $p_X : X \times Y \to X$ is a **closed map**: one that carries closed sets to closed sets.
- 3. Suppose that $A \subset X$. A **retraction** of X onto A is a continuous map $r : X \to A$ such that r(a) = a for every $a \in A$. Show that a retraction is a quotient map.
- 4. Suppose that T and T' are both topologies on X.
 - a. Suppose $T \subseteq T'$. What does compactness of X under one of these topologies imply about compactness under the other?
 - b. If X is compact and Hausdorff under both T and T', show that either T = T', or the topologies are incomparable.
- 5. If X is a set, recall that in the **finite complement topology**, a subset $A \subseteq X$ is open if its complement X A is either a finite set or all of X. Show that in this topology, every subspace is compact.
- 6. Let X be a topological space. Consider the relation $x \sim y$ if there exists a connected subspace $A \subseteq X$ with $x, y \in A$.
 - a. Show that this is an equivalence relation on X. It's equivalence classes are called **components** or **connected components**.
 - b. Show that each component is connected, any two components are equal or disjoint, and that the union of all the components is X.
 - c. Show that a component is a closed subset of X.
- 7. Show that a finite set in a Hausdorff space is closed.
- 8. Let $\{X_{\alpha}\}$ be a collection of topological spaces, and let p_{α} denote the projection to the α coordinate. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of points in the product $\prod X_{\alpha}$. Show that this sequence converges to a point \mathbf{x} (in the product topology) if and only if the sequence $p_{\alpha}(\mathbf{x}_1), p_{\alpha}(\mathbf{x}_2), \ldots$ converges to $p_{\alpha}(\mathbf{x})$ for every α . Is this fact true if you use the box topology rather than the product topology?
- 9. (EXTRA CREDIT) If X and Y are topological spaces, recall that the product topology on $X \times Y$ is the coarsest topology on the set so that the projection maps $p_X : X \times Y \to X$ and $p_Y : X \times Y \to Y$ are continuous. Show that $X \times Y$ satisfies that following property:

For every topological space Z and pair of continuous maps $f : Z \to X$ and $g : Z \to Y$, there exists a unique continuous map $h : Z \to X \times Y$ so that $f = p_X \circ h$ and $g = p_Y \circ h$.

This can be described by the following diagram:

No matter which way you follow maps from Z down to X or to Y, whether or not you pass through $X \times Y$, you end up with the same result (because $f = p_X \circ h$ and $g = p_Y \circ h$). Such a diagram is called a **commutative diagram**.

Finally, show that $X \times Y$ is the unique topological space that satisfies this property.

A defining property like this is called a **universal property**.