1. A topological space X is limit point compact if every infinite subset of X has a limit point (in X). Prove that every compact space is limit point compact. Prove that \mathbb{R} with the standard topology is not limit point compact.
2. Suppose that (X, ρ) is a metric space. Recall that for any subset $A \subseteq X$, we may define the distance from A to be $\rho_{A}: X \rightarrow \mathbb{R}$ given by $\rho_{\mathcal{A}}(x)=$ g.l.b. $\{\rho(x, a)\}$, where the greatest lower bound is taken over all elements of A. Suppose that A and B are disjoint closed subsets of X, with the metric topology. Show that the function

$$
f(x)=\frac{\rho_{A}(x)-\rho_{B}(x)}{\rho_{A}(x)+\rho_{B}(x)}
$$

is a continuous real-valued function $f: X \rightarrow[-1,1]$, with $f^{-1}(\{1\})=B$ and $f^{-1}(\{-1\})=A$.
3. Suppose that X is a connected normal topological space. Show that if X contains more than one point, then X is uncountable.
4. Suppose that X is a compact Hausdorff space. Show that X is a normal space.
5. Suppose that X is a locally compact Hausdorff space. Show that if $A \subseteq X$ is an open or closed subset, then A with the subspace topology is also locally compact.
6. Suppose that $f: X \rightarrow Y$ is a homeomorphism of locally compact Hausdorff spaces. Show that this extends to a homeomorphism of the one point compactifications.
7. Suppose that X is locally compact, and $f: X \rightarrow Y$ is continuous. Is the image $f(X)$ locally compact? What if f is a continuous and open map? Justify your answer.
8. Let \mathbb{Z}_{+}denote the positive integers, a subspace of \mathbb{R}. Show that the one point compactification of \mathbb{Z}_{+}is homeomorphic to $\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\} \subseteq \mathbb{R}$.
9. (EXTRA CREDIT) Let $O(n)$ denote the $n \times n$ orthogonal matrices with real entries. That is, $O(n)$ consists of those matrices whose columns form an orthonormal basis of \mathbb{R}^{n}. This is a subset of all $n \times n$ matrices, $\mathcal{M}_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$, and hence a topological space with the subspace topology.
a. Show that $\mathrm{O}(\mathrm{n})$ is a closed (topological) subspace of $\mathbb{R}^{\mathrm{n}^{2}}$, by considering the dot products $v_{i} \cdot v_{j}$ of columns as continuous functions $\mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$.
b. Show that $O(n)$ is compact.

