Math 304
 Homework 10 Solutions

Michael O'Connor

May 4, 2008

Problem 1 Since $f(-10)<0, f(-1)>0, f(1)<0$ and $f(10)>0$, it follows by the intermediate value theorem that f has a root in each of $(-10,-1)$, $(-1,1),(1,10)$. Therefore f has at least three real roots. By a problem on the first prelim, we know that f can have at most three real roots.

Problem 2 False. Let $f(x)=x^{3}$. Then $f^{\prime}(0)=0$, but $g(x)=\sqrt[3]{x}$ is such that $f(g(x))=g(f(x))=x$ for all x in \mathbb{R}.

Problem 3 Assume that f is increasing. Let U be an open set. We would like to show that $f(U)$ is open. So let $y \in f(U)$ and we must find an ϵ so that $N_{\epsilon}(y) \subset f(U)$.

Since $y \in f(U)$ there is some $x \in U$ such that $f(x)=y$. Since U is open there is some ϵ^{\prime} such that $N_{\epsilon^{\prime}}(x) \subset U$. Since $N_{\epsilon^{\prime}}(x)=\left[x-\epsilon^{\prime}, x+\epsilon^{\prime}\right]$ by the inverse function theorem, $f\left(N_{\epsilon^{\prime}}(x)\right)=\left[f\left(x-\epsilon^{\prime}\right), f\left(x+\epsilon^{\prime}\right)\right] \subset f(U)$.

Since $y=f(x) \in\left[f\left(x-\epsilon^{\prime}\right), f\left(x+\epsilon^{\prime}\right)\right]$, we may take $\epsilon=\min \{y-f(x-$ $\left.\left.\epsilon^{\prime}\right), f\left(x+\epsilon^{\prime}\right)-y\right\}$ and we have $N_{\epsilon}(y) \subset f(U)$.

For the case where f is decreasing, we may simply take $g(x)=-f(x)$. Then g is strictly monotonically increasing, and we may use the same proof.

Problem 4 Since 3 copies of T_{∞} scaled down by 2 in each direction cover T_{∞}, its fractal dimension is $\log _{2} 3$.

