Math 304 Homework 10 Solutions

Michael O'Connor

May 4, 2008

Problem 1 Since f(-10) < 0, f(-1) > 0, f(1) < 0 and f(10) > 0, it follows by the intermediate value theorem that f has a root in each of (-10, -1), (-1,1), (1,10). Therefore f has at least three real roots. By a problem on the first prelim, we know that f can have at most three real roots.

Problem 2 False. Let $f(x) = x^3$. Then f'(0) = 0, but $g(x) = \sqrt[3]{x}$ is such that f(g(x)) = g(f(x)) = x for all x in \mathbb{R} .

Problem 3 Assume that f is increasing. Let U be an open set. We would like to show that f(U) is open. So let $y \in f(U)$ and we must find an ϵ so that $N_{\epsilon}(y) \subset f(U)$.

Since $y \in f(U)$ there is some $x \in U$ such that f(x) = y. Since U is open there is some ϵ' such that $N_{\epsilon'}(x) \subset U$. Since $N_{\epsilon'}(x) = [x - \epsilon', x + \epsilon']$ by the inverse function theorem, $f(N_{\epsilon'}(x)) = [f(x - \epsilon'), f(x + \epsilon')] \subset f(U)$.

Since $y = f(x) \in [f(x - \epsilon'), f(x + \epsilon')]$, we may take $\epsilon = \min\{y - f(x - \epsilon'), f(x + \epsilon') - y\}$ and we have $N_{\epsilon}(y) \subset f(U)$.

For the case where f is decreasing, we may simply take g(x) = -f(x). Then g is strictly monotonically increasing, and we may use the same proof.

Problem 4 Since 3 copies of T_{∞} scaled down by 2 in each direction cover T_{∞} , its fractal dimension is $\log_2 3$.