Math 304 Homework 4 Solutions

Michael O'Connor

March 3, 2008

Problem \#1 By a Cantor diagonalization argument which you saw in class, the set of positive rationals \mathbb{Q}^{+}is countable. The set of all rationals is equal to $\mathbb{Q}^{+} \cup \mathbb{Q}^{-} \cup\{0\}$, where \mathbb{Q}^{-}is the set of negative rationals.

By precisely the same argument, \mathbb{Q}^{-}is countable, and $\{0\}$ is countable since it is finite. Therefore, \mathbb{Q} is countable as it is the union of countably many (in fact, 3) countable sets.

Problem \#2 By the Intermediate Value Theorem, f is surjective. Therefore, there is an injective function $g:[0,1] \rightarrow[0,1]$ such that $f(g(y))=y$ for all $y \in[0,1]$. Assume that f maps no irrational to an irrational. Then g must map each irrational to a rational. But, since g is injective, this implies that $|\mathbb{R}-\mathbb{Q}| \leq|\mathbb{Q}|$ which is false, since $|\mathbb{Q}|=\aleph_{0}$ but $|\mathbb{R}-\mathbb{Q}|=2^{\aleph_{0}}$.

Problem \#3 Let A be a countable set. For each $n \in \mathbb{N}$, let $A_{n}=\{S \subset A \mid$ $\operatorname{card}(S)=n\}$.

Each A_{n} is countable: For all $n \in \mathbb{N}, A^{n}=\overbrace{A \times \cdots \times A}^{n \text { times }}$ is countable and there is a surjection f_{n} from A^{n} to A_{n} defined by $f_{n}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=$ $\left\{x_{1}, \ldots, x_{n}\right\}$. Since any finite set has cardinality some $n \in \mathbb{N}$, the set of finite subsets of A is equal to $\bigcup_{n \in \mathbb{N}} A_{n}$. Since this is a countable union of countable sets, there are only countably many finite subsets of A.

