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Problem #1 Let A = {2n − 1 | n ∈ N+}, and let F be as given in the
problem statement using that definition of A.

We must show that F is a bijection from N+ to N+; i.e., that it is an injection
and that it is a surjection. Observe first that if x is even then F (x) is odd, and
if x is odd then F (x) is even.

To show that F is an injection: Suppose that F (x) = F (y). First suppose
that F (x) = F (y) is even. Then x and y must be odd and hence F (x) = x + 1
and F (y) = y + 1. Thus, from F (x) = F (y) we see that x + 1 = y + 1 and
therefore x = y. Now suppose that F (x) = F (y) is odd. Then x and y are
even and F (x) = x− 1 and F (y) = y − 1. Thus, from F (x) = F (y) we see that
x− 1 = y − 1 and therefore x = y.

To show that F is a surjection: Let y ∈ N+. If y is even, then y − 1 is odd
and therefore F (y − 1) = (y − 1) + 1 = y. If y is odd, then y + 1 is even and
therefore F (y + 1) = (y + 1)− 1 = y.

Problem #2 Let A = {4k · m | m odd, k ∈ N}, and let F be as given in
the problem statement using that definition of A. We will show that F is a
bijection.

For any x ∈ N+, let p(x) be the greatest k such that 2k divides x. That
is, for any x, x = 2p(x) ·m, where m is odd. Observe that if p(x) is even then
p(F (x)) is odd, and if p(x) is odd then p(F (x)) is even.

To show that F is an injection: Suppose that F (x) = F (y). First suppose
that p(F (x)) is even. Then p(x) and p(y) must be odd and hence F (x) = 2x
and F (y) = 2y. Thus, from F (x) = F (y) we see that 2x = 2y and therefore
x = y. Now suppose that p(F (x)) is odd. Then p(x) and p(y) are even and
F (x) = x/2 and F (y) = y/2. Thus, from F (x) = F (y) we see that x/2 = y/2
and therefore x = y.

To show that F is a surjection: Let y ∈ N+. If p(y) is even, then p(y/2) is
odd and therefore F (y/2) = 2(y/2) = y. If p(y) is odd, then p(2y) is even and
therefore F (2y) = (2y)/2 = y.

Problem #3 In the Halmos reading, we are told that if A is infinite, then
|A| = |A×A|. The problem follows immediately from that.

Alternatively, we can construct an explicit bijection between R and R2 or
construct injections both ways and use the Schroeder-Bernstein theorem. I’ll
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demonstrate how to do the latter.
To construct an injection from R to R2: take f(x) = (x, 0) for example.
To construct an injection from R2 to R:
A common attempt is as follows: First we construct an injection from [0, 1)2

to R. This will suffice since we can cover R2 with countably infinitely many
half-open squares [0, 1)2 (and R is infinite).

We do that as follows: Given a pair of real numbers in decimal form (0.x1x3x5 . . . , 0.x2x4x6 . . .)
send it to the real number 0.x1x2x3x4 . . . ∈ [0, 1). This almost works, but
it has the problem that decimal expansions are not unique. (For example,
0.09999 . . . = 0.1.) This means that the map is not actually injective: the pairs
(0.09999 . . . , 0.999 · · · ) and (0.1, 0.0) are different but get sent to the same num-
ber. In fact that map is not even well-defined, since (0.1, 0.0) could get mapped
to 0.1 or to 0.00909090 . . . depending on the representation of 0.1 that you use.

However, we can observe the following: Let I be the set of irrationals in [0, 1).
Let Q[0,1) = Q∩[0, 1) be the set of rationals in [0, 1). Let g be a bijection from Q
to N. The above does give an injection from I2 to I since the irrational number
have a unique decimal expansion. Since [0, 1)2 = I2 ∪ (Q[0,1) × I) ∪ (I×Q[0,1)),
we can complete the injection by having it send (x, y) to 2f(x) + y when x is
rational and x + 2f(y) + 1 when y is rational.

Problem #4 Let B = {f | f is a bijection from N+ to N+}. We will show
that |B| = 2ℵ0 . Recall that 2ℵ0 = |P(N+)|, the cardinality of the power set of
N. To do this we will show that there is an injection from P(N+) to B and an
injection from B to P(N+).

To find an injection from P(N+) to B: Given S ⊂ N+, define fS : N+ → N+

as follows: If x ∈ S, let fS(2x) = 2x − 1 and fS(2x − 1) = 2x. If x /∈ S, let
fS(2x) = 2x and fS(2x− 1) = 2x− 1.

We must show both that for any S, fS is a bijection and that the map
S 7→ fS is an injection. I will omit the proof that fS is always a bijection as it
is similar to problem 1. To show that the map S 7→ fS is an injection, suppose
that S1 6= S2 and we will show that fS1 6= fS2 . If S1 6= S2, then one of the
two sets must contain an element not in the other. Without loss of generality,
suppose that x ∈ S1 and x /∈ S2. Then fS1(2x) = 2x − 1, but fS2(2x) = 2x.
Thus, fS1 6= fS2 .

To find an injection from B to P(N+): Given a bijection f ∈ B, let Sf =
{f(1), f(1)+f(2), f(1)+f(2)+f(3), . . .}. (Ryan Zhou came up with this idea.)
We will show that the map f 7→ Sf is an injection. Let Sf = Sg. We will show
by induction on x that f(x) = g(x), thus showing that f = g.

Base case: It must be that f(1) = g(1) since they must both be the smallest
element of Sf = Sg.

Inductive case: Suppose that f(x′) = g(x′) for all x′ ≤ x. Then f(x + 1)
must be the (x+1)th smallest element of Sf minus f(1)+f(2)+ · · · f(x). Since
Sf = Sg and f(x′) = g(x′) for x′ ≤ x, f(x + 1) = g(x + 1).

Problem #5 The only difficult part of this problem is that, in order to
show that y is unique, you must show both that there is a y with the required
property, and that there is at most one y with the required property.
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Problem #6 Let P (n, m) be the following statement: If there are 2n + 1
chocolates and 2m+1 caramels in the machine, then the machine must eventu-
ally dispense a chocolate/caramel pair. We will prove ∀m P (n, m) by induction
on n.

The base case is when n = 0: In this case there is one chocolate and we
must prove that no matter what odd number of caramels are in the machine,
it must eventually dispense a chocolate/caramel pair. Since we want to prove
∀m P (0,m), we can use a subinduction on m.

The base case of the subinduction is m = 0: Now we’re in the case where
there is one chocolate and one caramel. Obviously, the machine can do nothing
but give a chocolate/caramel pair.

For the inductive case of the subinduction we assume that we’ve proven
P (0,m) and try to prove P (0,m + 1). Suppose that we have 1 chocolate and
2(m+1)+1 caramels. Either the machine can dispense a chocolate/caramel pair,
in which case we’re done, or it can dispense two caramels. In that case we’re
left with one chocolate and 2m + 1 caramels, and we’re done by the inductive
hypothesis.

For the inductive case (of the main induction) we assume that we’ve proven
∀m P (n, m) and try to show ∀m P (n+1,m). We will show it by a subinduction
on m.

The base case of this subinduction is m = 0. In this case we know that
∀m P (n, m) holds and we want to show that P (n + 1, 0) holds. So we have one
caramel and 2(n + 1) + 1 chocolates. Either the machine can dispense a choco-
late/caramel pair in which case we’re done, or it can dispense two chocolates.
In that case we have one caramel and 2n + 1 chocolates left and we’re done by
induction.

For the inductive case of this subinduction we assume that we know ∀m P (n, m)
(the main inductive hypothesis) and P (n + 1,m) (the subinductive hypothesis)
and try to show P (n + 1,m + 1). So we assume we have 2(n + 1) + 1 chocolates
and 2(m + 1) + 1 caramels in the machine. Either the machine can dispense
a chocolate/caramel pair and be done, or it can dispense two chocolates and
we’re done by the main inductive hypothesis, or it can dispense two caramels
and we’re done by the subinductive hypothesis.
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