Math 304 Homework 6 Solutions

Michael O'Connor

May 4, 2008
C. 2 Let a and b be such that $a \mid b$ and $b \mid a$. Then there is a k_{1} and a k_{2} such that $a=k_{1} b$ and $b=k_{2} a$. Therefore, $a=k_{1} k_{2} a$, and $\left(1-k 1 k_{2}\right) a=0$.

Therefore, either $a=0$ or $1-k_{1} k_{2}=0$. If $a=0$, then b must be 0 as well, and $a=b$.

If $1-k_{1} k_{2}=0$, then $k_{1} k_{2}=1$. Since k_{1} and k_{2} are integers, either $k_{1}=$ $k_{2}=1$ or $k_{1}=k_{2}=-1$. In either case, $a= \pm b$.

A note on C. 5 The proof actually has a mistake in it. When Solow says " $r=a(1-m q)+b(-n q) \in M$," actually r is not in M. We would have that $r \in M$ if $r>0$, but since we know that r cannot be in M (since $d \in M$ is the least element of M and $r<d$), we know that $r=0$.

Garbage Tag Problem By dividing by 5 we may reduce the problem to that of determining which natural numbers are nonnegative combinations of 4 and 7 .

Suppose that x is such that each of $x, x+1, x+2$, and $x+3$ are all nonnegative combinations of 4 and 7 . Say

$$
\begin{gathered}
x=4 a_{0}+7 b_{0} \\
x+1=4 a_{1}+7 b_{1} \\
x+2=4 a_{2}+7 b_{2} \\
x+3=4 a_{3}+7 b_{3}
\end{gathered}
$$

where each a_{i} and each b_{i} is nonnegative.
Then each $y \geq x$ is also a nonnegative combination of 4 and 7: Let $y=$ $x+4 d+r$ where $d \geq 0$ and $0 \leq r \leq 3$. Then $y=4\left(a_{r}+d\right)+7 b_{r}$.

Similarly, if x is a nonnegative combination of 4 and 7 , then so is $x+4 k$ for any nonnegative k. Since 0 is congruent to $0 \bmod 4,7$ is congruent to $1 \bmod 4$, 14 is congruent to $2 \bmod 4$, and 21 is congruent to $3 \bmod 4$, it follows that 18, 19,20 and 21 are all nonnegative combinations of 4 and 7 . Therefore, all greater numbers are as well. So, to complete the problem, we just have to determine which numbers below 18 are positive combinations of 4 and 7 .

You could do this by hand, or notice that by our argument above, any number which is a nonnegative combination of 4 and 7 can be written as a
nonnegative combination $4 a+7 b$ where $0 \leq b \leq 3$. Therefore, just find the numbers below 18 of the form $4 a, 4 a+7,4 a+14$, and $4 a+21$.

