Math 304 Homework 8 Solutions

Michael O'Connor

May 4, 2008

- **D.9** A sequence $X = (x_1, x_2, ...)$ is not monotone increasing if and only if for some $i, x_i \geq x_{i+1}$.
- **D.11** In order to show that a sequence $X = (x_1, x_2, ...)$ does not converge to a value L, we must show that there is an $\epsilon > 0$ such that for all j there is a k > j such that $|x_k - L| \ge \epsilon$.
- Let $\epsilon = 1/2$. Note that $|x_i 1| = (i 1)/i$ which is greater than 1/2 if $i \ge 3$. Therefore, given any j, we may take k to be the maximum of $\{3, j+1\}$ and we are done.
- **D.12 a)** Suppose that $Y = (y_1, y_2, ...)$ converges to y. Then for all ϵ there

is a $j(\epsilon)$ such that for all $k \geq j(\epsilon)$, $|y_k - y| < \epsilon$. In order to show that $-Y = (-y_1, -y_2, \ldots)$ converges to -y we must find, for each ϵ , a $j'(\epsilon)$ such that for all $k \geq j'(\epsilon)$, $|-y_k - (-y)| < \epsilon$. However, since $|-y_k-(-y)|=|y_k-y|$, we may take, for each ϵ , $j'(\epsilon)=j(\epsilon)$.

b) Since X coverges to x and -Y converges to -y, X - Y = X + (-Y)converges by Proposition 41 to x + (-y) = x - y.