# Math 304 <br> Homework 8 Solutions 

Michael O'Connor

May 4, 2008
D. 9 A sequence $X=\left(x_{1}, x_{2}, \ldots\right)$ is not monotone increasing if and only if for some $i, x_{i} \geq x_{i+1}$.
D. 11 In order to show that a sequence $X=\left(x_{1}, x_{2}, \ldots\right)$ does not converge to a value $L$, we must show that there is an $\epsilon>0$ such that for all $j$ there is a $k>j$ such that $\left|x_{k}-L\right| \geq \epsilon$.

Let $\epsilon=1 / 2$. Note that $\left|x_{i}-1\right|=(i-1) / i$ which is greater than $1 / 2$ if $i \geq 3$. Therefore, given any $j$, we may take $k$ to be the maximum of $\{3, j+1\}$ and we are done.
D. 12 a) Suppose that $Y=\left(y_{1}, y_{2}, \ldots\right)$ converges to $y$. Then for all $\epsilon$ there is a $j(\epsilon)$ such that for all $k \geq j(\epsilon),\left|y_{k}-y\right|<\epsilon$.

In order to show that $-Y=\left(-y_{1},-y_{2}, \ldots\right)$ converges to $-y$ we must find, for each $\epsilon$, a $j^{\prime}(\epsilon)$ such that for all $k \geq j^{\prime}(\epsilon),\left|-y_{k}-(-y)\right|<\epsilon$. However, since $\left|-y_{k}-(-y)\right|=\left|y_{k}-y\right|$, we may take, for each $\epsilon, j^{\prime}(\epsilon)=j(\epsilon)$.
b) Since $X$ coverges to $x$ and $-Y$ converges to $-y, X-Y=X+(-Y)$ converges by Proposition 41 to $x+(-y)=x-y$.

