Math 304
 Homework 8 Solutions

Michael O'Connor

May 4, 2008

Problem 1 Both directions are false:
To show that $f(A)=B$ does not imply that $f^{-1}(B)=A$: Let $f(x)=x^{2}$, $A=[0,2], B=[0,4]$. Then $f(A)=B$, but $f^{-1}(B)=[-2,2] \neq A$.

To show that $f^{-1}(B)=A$ does not imply $f(A)=B$: Let $A=X=[0,1]$, $B=Y=[0,2]$ and $f(x)=x$ for $x \in[0,1]$. Then $f^{-1}(B)=A$, but $f(A)=$ $[0,1] \neq B$.

Problem 2 In order to calculate $f^{-1}(\mathbb{R}-\{0\})$ we must find all x for which $f(x) \neq 0$.

We know that $f(0)=0$. If $x \neq 0, f(x)=x \sin (\pi / x)$. Then $f(x)=0$ if $x=0$ or $\sin (\pi / x)=0$. Since $x \neq 0, \sin (\pi / x)=0$. For any $y, \sin y=0$ iff $y=\pi k$ for some integer k. So, if $x \neq 0$ and $f(x)=0$, then $x=1 / k$ for some integer, and $f(1 / k)=0$ for all integers k.

Therefore, $f^{-1}(\mathbb{R}-\{0\})=[0,1]-(\{1 / k \mid k \in \mathbb{N}\} \cup\{0\})$.
Problem 3 Given that the f from Problem 2 is continuous, $f^{-1}(\mathbb{R}-\{0\})$ is relatively open in $[0,1]$, since $\mathbb{R}-\{0\}$ is an open set. By Problem 2, this set is $[0,1]-(\{1 / k \mid k \in \mathbb{N}\} \cup\{0\})$ and we are done.

