Math 304 Homework 8 Solutions

Michael O'Connor

May 4, 2008

Problem 1 Both directions are false:

To show that f(A) = B does not imply that $f^{-1}(B) = A$: Let $f(x) = x^2$, A = [0, 2], B = [0, 4]. Then f(A) = B, but $f^{-1}(B) = [-2, 2] \neq A$. To show that $f^{-1}(B) = A$ does not imply f(A) = B: Let A = X = [0, 1],

To show that $f^{-1}(B) = A$ does not imply f(A) = B: Let A = X = [0, 1], B = Y = [0, 2] and f(x) = x for $x \in [0, 1]$. Then $f^{-1}(B) = A$, but $f(A) = [0, 1] \neq B$.

Problem 2 In order to calculate $f^{-1}(\mathbb{R} - \{0\})$ we must find all x for which $f(x) \neq 0$.

We know that f(0) = 0. If $x \neq 0$, $f(x) = x \sin(\pi/x)$. Then f(x) = 0 if x = 0 or $\sin(\pi/x) = 0$. Since $x \neq 0$, $\sin(\pi/x) = 0$. For any y, $\sin y = 0$ iff $y = \pi k$ for some integer k. So, if $x \neq 0$ and f(x) = 0, then x = 1/k for some integer, and f(1/k) = 0 for all integers k.

Therefore, $f^{-1}(\mathbb{R} - \{0\}) = [0, 1] - (\{1/k \mid k \in \mathbb{N}\} \cup \{0\}).$

Problem 3 Given that the f from Problem 2 is continuous, $f^{-1}(\mathbb{R} - \{0\})$ is relatively open in [0,1], since $\mathbb{R} - \{0\}$ is an open set. By Problem 2, this set is $[0,1] - (\{1/k \mid k \in \mathbb{N}\} \cup \{0\})$ and we are done.