Problem 1. Prove the statement in Problem 2.17 in Solow, but explain how you went about finding the proof.

Problem 2. Say two triangles are friendly if they have two sides that are the same length. In other words if a triangle has sides of length $2,4,5$ and another triangle has sides of length $2,3,4$ they are friendly. Is being friendly an equivalence relation? Explain.

Problem 3. We say that two real numbers x and y are rationally different if $x-y$ is rational.
(a) Show that being rationally different is an equivalence relation.
(b) If we "define" the sum of equivalence classes by $[x]+[y]=[x+y]$, is this well-defined? Explain.
(c) If we "define" the product of equivalence classes by $[x] \cdot[y]=[x \cdot y]$, is this well-defined? Explain.

