Recall from the discussion in class that if there are two injective (one-to-one) maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ between sets X and Y, there is a subset $A \subset X$ such that $F: X \rightarrow Y$ is a bijection, where F is well-defined by

$$
F(x)=\left\{\begin{array}{lll}
f(x) & \text { for } & x \in A \\
g^{-1}(x) & \text { for } & x \in X-A
\end{array}\right.
$$

In the following, remember to prove your statements.
Problem 1. Let $X=Y=\mathbb{N}_{+}$be the positive natural numbers $\mathbb{N}_{+}=\{1,2,3, \ldots\}$, and let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$ and $g: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be defined by $f(n)=g(n)=n+1$. Find the subset $A \subset \mathbb{N}_{+}$such that F, as defined above, is a well-defined bijection. In other words for $n \in A, F(n)=n+1$, for $n \in \mathbb{N}_{+}-A, F(n)=n-1$, and F is a bijection.

Problem 2. Do Problem 1, but with $f(n)=g(n)=2 n$.
Problem 3. Show that the cardinality of the point in the plane is the same as the cardinality of the points in \mathbb{R} the line.

Problem 4. What is the cardinality of the set of bijections of \mathbb{N}_{+}to itself?
Problem 5. Problem 11.1 in Solow.
Problem 6. Problem 11.17 in Solow.
Problem 7. Problem 11.26 in Solow.

