Recall from the discussion in class that if there are two injective (one-to-one) maps $f: X \to Y$ and $g: Y \to X$ between sets X and Y, there is a subset $A \subset X$ such that $F: X \to Y$ is a bijection, where F is well-defined by

$$F(x) = \begin{cases} f(x) & \text{for } x \in A \\ g^{-1}(x) & \text{for } x \in X - A. \end{cases}$$

In the following, remember to prove your statements.

- Problem 1. Let $X = Y = \mathbb{N}_+$ be the positive natural numbers $\mathbb{N}_+ = \{1, 2, 3, \dots\}$, and let $f : \mathbb{N}_+ \to \mathbb{N}_+$ and $g : \mathbb{N}_+ \to \mathbb{N}_+$ be defined by f(n) = g(n) = n + 1. Find the subset $A \subset \mathbb{N}_+$ such that F, as defined above, is a well-defined bijection. In other words for $n \in A$, F(n) = n + 1, for $n \in \mathbb{N}_+ A$, F(n) = n 1, and F is a bijection.
- Problem 2. Do Problem 1, but with f(n) = g(n) = 2n.
- Problem 3. Show that the cardinality of the point in the plane is the same as the cardinality of the points in \mathbb{R} the line.
- Problem 4. What is the cardinality of the set of bijections of \mathbb{N}_+ to itself?
- Problem 5. Problem 11.1 in Solow.
- Problem 6. Problem 11.17 in Solow.
- Problem 7. Problem 11.26 in Solow.