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SECTION 22

THE SCHRODER-BERNSTEIN THEOREM

The purpose of counting is to compare the size of one set with that of
another; the most familiar method of counting the elements of a set is to
arrange them in some appropriate order. The theory of ordinal numbers
s an ingenious abstraction of the method, but it falls somewhat short of
achieving the purpose. This is not to say that ordinal numbers are use-
less; it just turns out that their main use is elsewhere, in topology, for in-
stance, as a source of illuminating examples and counterexamples. In
what follows we shall continue to pay some attention to ordinal numbers,

but they will cease to occupy the center of the stage. (It is of some impor-

tance to know that we could in fact dispense with them altogether. The
theory of cardinal numbers can be constructed with the aid of ordinal
numbers, or without it; both kinds of constructions have advantages.)
With these prefatory remarks out of the way, we turn to the problem of
comparing the sizes of sets.

The problem is to compare the sizes of sets when their elements do not
appear to have anything to do with each other. It is easy enough to de-
cide that there are more people in France than in Paris. It is not quite
so easy, however, to compare the age of the universe in seconds with the
population of Paris in electrons. For some mathematical examples, con-
sider the following pairs of sets, defined in terms of an auxiliary set 4: (i)
X =A4,Y =A7T; (i) X = ®4), Y = 24; (iii) X is the set of all one-to-
one mappings of 4 into itself, ¥ is the set of all finite subsets of 4. In
each case we may ask which of the two sets X and Y has more elements.
The problem is first to find a rigorous interpretation of the question and
then to answer it. :

The well ordering theorem tells us that every set can be well ordered.

For well ordered sets we have what seems to be a reasonable measure of
86
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size, namely, their ordinal number. Do these two remarks solve the prob-
lem? To compare the sizes of X and Y, may we just well order each of
them and then compare ord X and ord Y? The answer is most emphati-
cally no. The trouble is that one and the same set can be well ordered in
many ways. The ordinal number of a well ordered set measures the well
ordering more than it measures the set. For a concrete example consider
the set w of all natural numbers. Introduce a new order by placing 0 after
everything else. (In other words, if n and m are non-zero natural num-
bers, then arrange them in their usual order; if, however, n = 0 and m 5 0,
let m precede n.) The result is a well ordering of w; the ordinal number of
this well ordering is w + 1. :

If X and Y are well ordered sets, then a necessary and sufficient condi-
tion that ord X < ord Y is that X be similar to an initial segment of Y.
It follows that we could compare the ordinal sizes of two well ordered sets
even without knowing anything about ordinal numbers; all we would need
to know is the concept of similarity. Similarity was defined for ordered
sets; the central concept for arbitrary unordered sets is that of equivalence.
(Recall that two sets X and Y are called equivalent, X ~ Y, in case there
exists a one-to-one correspondence between them.) If we replace similar-
ity by equivalence, then something like the suggestion of the preceding
paragraph becomes usable. The point is that we do not have to know
what size is if all we want is to compare sizes.

If X and Y are sets such that X is equivalent to a subset of ¥, we shall
write

XXV

The notation is temporary and does not deserve a permanent name. As
long as it lasts, however, it is convenient to have a way of referring to it; a
reasonable possibility is to say that ¥ dominates X. The set of those or-
dered pairs (X, Y) of subsets of some set E for which X X Y constitutes a
relation in the power set of E. The symbolism correctly suggests some of
the properties of the concept that it denotes. Since the symbolism is remi-
niscent of partial orders, and: since a partial order is reflexive, antisym-
metric, and transitive, we may expect that domination has similar
properties.

Reflexivity and transitivity cause no trouble. Since each set X is
equivalent to a subset (namely, X) of itself, it follows that X < X for
all X. If f is a one-to-one correspondence between X and a subset of ¥,
and if ¢ is a one-to-one correspondence between Y and a subset of Z, then
we may restrict g to the range of f and compound the result with f; the
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conclusion is that X is equivalent to a subset of Z. In other words, if
XZ<XYand Y X Z then X X Z.

The interesting question is that of antisymmetry. If X X YV and ¥ :

X, can we conclude that X = ¥Y? This is absurd; the assumptions are
satisfied whenever X and Y are equivalent, and equivalent sets need not
be identical. What then can we say about two sets if all we know is that
each of them is equivalent to a subset of the other? The answer is con-
tained in the following celebrated and important result.

Schroder-Bernstein theorem. If X S Yand Y 3 X ,then X ~ Y.

Remark. Observe that the converse, which is incidentally a consider-
able strengthening of the assertion of reflexivity, follows trivially from the
definition of domination.

Proor. Let f be a one-to-one mapping from X into ¥ and let g be a
one-to-one mapping from Y into X; the problem is to construct a one-to-
one correspondence between X and Y. It is convenient to assume that
the sets X and Y have no elements in common; if that is not true, we can
so easily make it true that the added assumption involves no loss of
generality.

‘We shall say that an element z in X is the parent of the element f(z) in
Y, and, similarly, that an element y in ¥ is the parent of g(y) in X. Each
element z of X has an infinite sequence of descendants, namely, f(z), g(f(x)),
fg(f(x))), ete., and similarly, the descendants of an element y of Y are
g, flg)), 9(flg(y))), ete. This definition implies that each term in the
sequence is a descendant of all preceding terms; we shall also say that each
term in'the sequence is an ancestor of all following terms. j

For each element (in either X or Y) one of three things must happen.
If we keep tracing the ancestry of the element back as far as possible, then
either we ultimately come to an element of X that has no parent (these
orphans are exactly the elements of X — ¢g(Y)), or we ultimately come to
an element of Y that has no parent (¥ — f(X)), or the lineage regresses
ad infinitum. Let Xx be the set of those elements of X that originate in
X (i.e., Xx consists of the elements of X — g(Y) together with all their
descendants in X), let Xy be the set of those elements of X that originate
in Y (i.e., Xy consists of all the descendants in X of the elements of ¥ —
f(X)), and let X,, be the set of those elements of X that have no parentless
ancestor. Partition Y similarly into the three sets Yx, Yy, and Y.

If x e Xx, then f(z) e Yx, and, in fact, the restriction of f to Xx is a
one-to-one correspondence between Xx and Yx. If z ¢ Xy, then x belongs
to the domain of the inverse function ¢~ and g™ (z) € Yy; in fact the re-
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striction of g~ to Xy is a one-to-one correspondence between Xy and Yy.
If, finally, x € X,,, then f(z) € Y, and the restriction of f to X, is a one-to-
one correspondence between X, and Y,; alternatively, if z e X,, then
g7 (x) € Y, and the restriction of g™ to X, is a one-to-one correspondence
between X,, and Y,. By combining these three one-to-one correspond-
ences, we obtain a one-to-one correspondence between X and Y.

Exgercise. Suppose that f is a mapping from X into ¥ and ¢ is a map-
ping from Y into X. Prove that there exist subsets 4 and B of X and
Y respectively, such that f(4) = B and ¢g(Y — B) = X — A. This
result can be used to give a proof of the Schréder-Bernstein theorem
that looks quite different from the one above.

By now we know that domination has the essential properties of a partial
order; we conclude this introductory discussion by observing that the order
is in fact total. The assertion is known as the comparability theorem for
sets: it says that if X and Y are sets, then either X XYorYXX. The
proof is an immediate consequence of the well ordering theorem and of
the comparability theorem for well ordered sets. Well order both X and
Y and use the fact that either the well ordered sets so obtained are similar
or one of them is similar to an initial segment of the other; in the former
case X and Y are equivalent, and in the latter one of them is equivalent
to.a subset of the other.




SECTION 23

COUNTABLE SETS

If X and Y are sets such that ¥ dominates X and X dominates Y, then
the Schréder-Bernstein theorem applies and says that X is equivalent to
Y. If Y dominates X but X does not dominate Y, so that X is not equiva-
lent to Y, we shall write

X<y,

and we shall say that Y stricily dominates X.

Domination and strict domination can be used to express some of the
facts about finite and infinite sets in a neat form. Recall that a set X is
called finite in case it is equivalent to some natural number; otherwise it
is infinite. We know that if X X-Y and Y is finite, then X is finite, and
we know that o is infinite (§ 13); we know also that if X is infinite, then
w X X (§15). The converse of the last assertion is true and can be proved
either directly (using the fact that a finite set cannot be equivalent to a
proper subset of itself) or as an application of the Schroder-Bernstein the-
orem. (If w X X, then it is impossible that there exist a natural number
n such that X ~ n, for then we should have » < n, and that contradicts
the fact that w is infinite.)

We have just seen that a set X is infinite if and only if w < X; next we
shall prove that X is finite if and only if X < w. The proof depends on

the transitivity of strict domination: if X X ¥ and ¥ X Z, and if at least

one of these dominations is strict, then X < Z. Indeed, clearly, X X Z.

If we had Z X X, then we should have ¥ X X and Z < ¥ and hence (by

the Schroder-Bernstein theorem) X ~ Y and ¥ ~ Z, in contradiction to

the assumption of strict domination. If now X is finite, then X ~ n for

some natural number n, and, since « is infinite, n < w, so that X < w.
’ 90 :
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If, conversely, X < w, then X must be finite, for otherwise we should have
® X X, and hence & < », which is absurd.

A set X is called countable (or denumerable) in case X X w and countably
infinite in case X ~ w. Clearly a countable set is either finite or countably
infinite. Our main purpose in the immediate sequel is to show that many
set-theoretic constructions when performed on countable sets lead again to
countable sets.

We begin with the observation that every subset of w is countable, and
we go on to deduce that every subset of each countable set is countable.
These facts are trivial but useful.

If f is a function from w onto a set X, then X is countable. For the proof,
observe that for each z in X the set f~*({z}) is not empty (this is where
the onto character of f is important), and consequently, for each z in X, we
may find a natural number g(z) such that f(g(z)) = 2. Since the function
g is a one-to-one mapping from X into w, this proves that X < w. The
reader who worries about such things might have noticed that this proof
made use of the axiom of choice, and he may want to know that there is
an alternative proof that does not depend on that axiom. (Thereis.) The
same comment applies on a few other occasions in this section and its

_successors but we shall refrain from making it.

It follows from the preceding paragraph that a set X is countable if and
only if there exists a function from some countable set onto X. A closely
related result is this: if ¥ is any particular countably infinite set, then a
necessary and sufficient condition that a set X be counta.ble is that there
exist a function from Y onto X.

The mapping n — 2n is a one-to-one correspondence between w and
the set A of all even numbers, so that 4 is countably infinite. This implies
that if X is a countable set, then there exists a function f that maps 4
onto X. " Since, similarly, the mapping n — 2n 4 1 is a one-to-one cor-
respondence between w and the set B of all odd numbers, it follows that if
Y is a countable set, then there exists a function g that maps B onto Y.
The function & that agrees with f on A and with ¢ on B (i.e., h(z) = f(z)
when z ¢ A and h(z) = g(z) when z e B) maps w onto X U Y. Conclu-
sion: the union of two countable sets is countable. From here on #n easy
argument by mathematical induction proves that the union of a finite set
of countable sets is countable. The same result can be obtained by imitat-
ing the trick that worked for two sets; the basis of the method is the fact
that for each non-zero natural number n there exists a pairwise disjoint
family {4;} (¢ < n) of infinite subsets of w whose union is equal to w.

The same method can be used to prove still more. Assertion: there
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exists a pairwise disjoint family {4,} (n e w) of infinite subsets of & whose
union is equal to . One way to prove this is to write down the elements
of  in an infinite array by counting down the diagonals, thus:

0 1 3 6 10 15
2 4 7 11 16

5 8 12 17

9 13 18

14 19 ---

20

and then to consider the sequence of the rows of this array. Another way
is to let Aq consist of 0 and the odd numbers, let A; be the set obtained by
doubling each non-zero element of Ao, and, inductively, let 4,4, be the
set obtained by doubling each element of 4,, n = 1. Either way (and
there are many others still) the details are easy to fill in. Conclusion: the
union of a countably infinite family of countable sets is countable. Proof:
given the family {X,} (n € w) of countable sets, find a family {f,} of func-
tions such that, for each n, the function f, maps 4, onto X,, and define
a function f from « onto |J, X, by writing f(k) = f,(k) whenever k e A,.
This result combined with the result of the preceding paragraph implies
that the union of a countable set of countable sets is always countable.

An interesting and useful corollary is that the Cartesmn product of two
countable sets is also countable. Since

XXY= Uer(X X {y})7

and since, if X is countable, then, for each fixed y in ¥, the set X X {y} is
obviously countable (use the one-to-one correspondence z — (z,y)), the
result follows from the preceding paragraph.

EXE‘PCISE. Prove that the set of all finite subsets of a countable set is
countable. Prove that if every countable subset of a totally ordered
set X is well ordered, then X itself is well ordered.

On the basis of the preceding discussion it would not be unreasonable
to guess that every set is countable. We proceed to show that that is not
s0; this negative result is what makes the theory of cardinal numbers
interesting.
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Cantor’s theorem. Every set is strictly dominated by ils power set, or, in
other words, ,

X < @(X)
for all X.

Proor. There is a natural one-to-one mapping from X into ®(X),
namely, the mapping that associates with each element z of X the single-
ton {z}. The existence of this mapping proves that X X ®(X); it remains
to prove that X is not equivalent to ®(X).

Assume that f is a one-to-one mapping from X onto ®(X); our purpose
is to show that this assumption leads to a contradiction. Write 4 =
{reX:z € f(x)}; in words, A consists of those elements of X that .are
not contained in the corresponding set. Since 4 ¢ ®(X) and since f maps
X onto ®(X), there exists an element a in X such that f(a) = A. The ele-
ment a either belongs to the set A or it does not. If-a e 4, then, by the
definition of 4, we must have a ¢ f(a), and since f(a) = A this is impos-
sible. If a ¢ A, then, again by the definition of 4, we must have a ¢f(a),
and this too is impossible. The contradiction has arrived and the proof of
Cantor’s theorem is complete.

Since ®(X) is always equivalent to 2% (where 2% is the set of all functions
from X into 2), Cantor’s theorem implies that X < 2% for all X. If in
particular we take w in-the role of X, then we may conclude that the set
of all sets of natural numbers is uncouniable (i.e., not countable, non-de-
numerable), or, equivalently, that 2¢ is uncountable. Here 2“ is the set
of all infinite sequences of 0’s and 1’s (i.e., functions from « into 2). Note
that if we interpret 2° in the sense of ordinal exponentiation, then 2¢ is
countable (in fact 2° = w).



SECTION 24

CARDINAL ARITHMETIC

One result of our study of the comparative sizes of sets will be to define
a new concept, called cardinal number, and to associate with each set X a
cardinal number, denoted by card X. The definitions are such that for
each cardinal number o there exist sets A with card 4 = a. We shall
also define an ordering for cardinal numbers, denoted as usual by £. The
connection between these new concepts and the ones already at our dis-
posal is easy to describe: it will turn out that card X = cardY if and only
if X~ Y, and card X < card Y if and only if X < Y. (If a and b are
cardinal numbers, ¢ < b means, of course, that a = b but a 7 b.)

The definition of cardinal numbers can be approached in several different
ways, each of which has its strong advocates. To keep the peace as long
as possible, and to demonstrate that the essential properties of the concept
are independent of the approach, we shall postpone the basic construction.
We proceed, instead, to study the arithmetic of cardinal numbers. In the
course of that study we shall make use of the connection, described above,
between cardinal inequality and set domination; that much of a loan from
the future will be enough for the purpose.

If @ and b are cardinal numbers, and if 4 and B are disjomnt sets with
card A = ¢ and card B = b, we write, by definition,a 4 b = card (4 U B).
If C and D are disjoint sets with card C = a and card D = b, then 4 ~ C
and B ~ D; it follows that A U B~ C U D, and hence that o + b is un-
ambiguously defined, independently of the arbitrary choice of A and B.
Cardinal addition, thus defined, is commutative (¢ + b =0+ a), and
associative (a + (b + ¢) = (@ + b) + ¢); these identities are immediate
consequences of the corresponding facts about the formation of unions:
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Exercise. Prove that if a, b, ¢, and d are cardinal numbers such that
a<bandc=d,thena+c=b+d.

There is no difficulty about defining addition for infinitely many sum-
mands. If {a;} is a family of cardinal numbers, and if {A4;} is a corre-
spondingly indexed family of pairwise disjoint sets such that card 4; = a;
for each 4, then we write, by definition,

> ia; = card (U: 45).

As before, the definition is unambiguous.

To define the product ab of two cardinal numbers a and b, we find sets
A and B with card A = e and card B = b, and we write ab = card (4 X B).
The replacement of A and B by equivalent sets yields the same value of the
product. Alternatively, we could have defined ab by “adding a to itself b
times” ; this refers to the formation of the infinite sum > i er @i, where the
index set I has cardinal number b, and where a; = a for each 7 in I. The
reader should have no difficulty in verifying that this proposed alternative
definition is indeed equivalent to the one that uses Cartesian products.
Cardinal multiplication is commutative (ab = ba) and associative (a(bc) =
(ab)c), and multiplication distributes over addition (a(b + ¢) = ab + ac);
the proofs are elementary.

Exmrcise. Prove that if a, b, ¢, and d are cardinal numbers such that
a < band ¢ £ d, then ac < bd.

There is no difficulty about defining multiplication for infinitely many
factors. If {a;} is a family of cardinal numbers, and if {4} is a correspond-
ingly indexed family of sets such that card 4; = a; for each 7, then we

write, by definition,
1L: a; = card (X: 45).
The definition is unambiguous. '

TxeroisE. If {a;} G eI) and {b;} (¢ el) are families of cardinal num-
bers such that a; < b; for each 7 in I, then Zi a; < IL- b;.

We can go from products to exponents the same way as we went from
sums to products. The definition of a?, for cardinal numbers a and b, is
most profitably given directly, but an alternative approach goes via re-
peated multiplication. For the direct definition, find sets A and B with
card A = ¢ and card B =.b, and write a® = card 4%. Alternatively, to
define o® “multiply a by itself b times.” More precisely: form 1Lz as
where the index set I has cardinal number b, and where a; = a for each ¢
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in I. The familiar laws of exponents hold. That is, if a, b, and ¢ are car- .

dinal numbers, then

ab+c — abac’
(ab)® = a%b",
abc — (ab)c-

Exercise. Prove that if a, b, and ¢ are cardinal numbers such that
@ < b, then a° £ b°. Prove that if ¢ and b are finite and ¢ is infinite,
then a® = b°.

The preceding definitions and their consequences are reasonably straight-
forward and not at all surprising. If they are restricted to finite sets only,
the result is the familiar finite arithmetic. The novelty of the subject
arises in the formation of sums, products, and powers in which at least
one term is infinite. The words “finite’”” and “infinite’” are used here in a
very natural sense: a cardinal number is finste if it is the eardinal number
of a finite set, and infinite otherwise.

If @ and b are cardinal numbers such that a is finite and b is infinite, then

a+b=0>

For the proof, suppose that A and B are disjoint sets such that 4 is equiv-
alent to some natural number k& and B is infinite; we are to prove that
A U B~ B. Since w X B, we may and do assume that « C B. We de-
fine a mapping f from 4 U B to B as follows: the restriction of f to 4 is a
one-to-one correspondence between A and k, the restriction of f to « is
given by f(n) = n + k for all n, and the restriction of f to B — w is the
identity mapping on B — w. Since the result is a one-to-one correspond-
ence between A U B and B, the proof is complete.
Next: if a is an infinite cardinal number, then

a4+ a=a.

For the proof, let A4 be a set with card 4 = a. Since the set A X 2 is the
union of two disjoint sets equivalent to A (namely, A X {0} and 4 X {1}),
it would be sufficient to prove that A X 2 is equivalent to A. The ap-
proach we shall use will not quite prove that much, but it will come close
enough. The idea is to approximate the construction of the desired one-to-
one correspondence by using larger and larger subsets of A.

Precisely speaking, let § be the collection of all functions f such that the
domain of f is of the form X X 2, for some subset X of A4, and such that
f is a one-to-one correspondence between X X 2 and X. If X is a count-

Skc. 24 CARDINAL ARITHMETIC 97

ably infinite subset of 4, then X X 2~ X. This implies that the collec-
tion & is not empty; at the very least it contains the one-to-one corre-
spondences between X X 2 and X for the countably infinite subsets X of
A. The collection & is partially ordered by extension. Since a straight-
forward verification shows that the hypotheses of Zorn’s lemma are satis-
fied, it follows that & contains a maximal element f with ran f = X, say.

Assertion: A — X is finite. If 4 — X were infinite, then it would in-
clude a countably infinite set, say Y. By combining f with a one-to-one
correspondence between Y X 2 and Y we could obtain a proper extension
of f, in contradiction to the assumed maximality.

Qince card X + card X = card X, and since card 4 = card X +
card (A — X), the fact that A — X is finite completes the proof that
card A 4+ card A = card 4.

Here is one more result in additive cardinal arithmetic: if a and b are
cardinal numbers at least one of which is infinite, and if ¢ is equal to the
larger one of @ and b, then

a+b=c

Suppose that b is infinite, and let A and B be disjoint sets with card A = a
and card B = b. Since a < ¢ and b =< ¢, it follows that ¢ +0 = ¢ + ¢,
and since ¢ < card (4 U B), it follows that ¢ = a + b. The result fol-
lows from the antisymmetry of the ordering of cardinal numbers.

The principal result in multiplicative cardinal arithmetic is that if a is
an infinite cardinal number, then

a-a = a.

The proof resembles the proof of the corresponding additive fact. Let &
be the collection of all functions f such that the domain of f is of the form
X X X for some subset X of 4, and such that f is a one-to-one correspond-

ence between X X X and X. If X is a countably infinite subset of A4,

then X X X ~ X. This implies that the collection § is not empty; at the
very least it contains the one-to-one correspondences between X X X and
X for the countably infinite subsets X of A. The collection ¥ is partially
ordered by extension. The hypotheses of Zorn’s lemma are easily verified,
and it follows that & contains a maximal element f with ran f = X, say.
Since (card X)(card X) = card X, the proof may be completed by showing
that card X = card A.

Assume that card X < card A. Since card 4 is equal to the larger one
of card X and card (4 — X), this implies that card 4 = card (4 — X)),
and hence that card X < card (4 — X). From this it follows that 4 — X
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has a subset Y equivalent to X. Since each of the disjoint sets X X 7,

Y X X, and Y X Y is infinite and equivalent to X X X, hence to X, and -

hence to Y, it follows that their union is equivalent to ¥. By combining f
with a one-to-one correspondence between that union and Y, we obtain a
proper extension of f, in contradiction to the assumed maximality. This
implies that our present hypothesis (card X < card A) is untenable and
hence completes the proof.

Exgrcise. Prove that if  and b are cardinal numbers at least one of
which is infinite, then @ + b = ab. Prove that if @ and b are cardinal
numbers such that @ is infinite and b is finite, then a® = a.

— e —— e

SECTION 25

CARDINAL NUMBERS

We know quite a bit about cardinal numbers by now, but we still do not
know what they are. Speaking vaguely, we may say that the cardinal
number of a set is the property that the set has in common with all sets
equivalent to it. We may try to make this precise by saying that the
cardinal number of X is equal to the set of all sets equivalent to X, but
the attempt will fail; there is no set as large as that. - The next thing to
try, suggested by analogy with our approach to the definition of natural
numbers, is to define the cardinal number of a set X as some particular
carefully selected set equivalent to X. This is what we proceed to do.

For each set X there are too many other sets equivalent to X; our first
problem is to narrow the field. Since we know that every set is equivalent
to some ordinal number, it is not unnatural to look for the typical sets, the
representative sets, among ordinal numbers.

To be sure, a set can be equivalent to many ordinal numbers. A hopeful
sign, however, is the fact that, for each set X, the ordinal numbers equiv-
alent to X constitute a set. To prove this, observe first that it is easy to
produce an ordinal number that is surely greater, strictly greater, than all the
ordinal numbers equivalent to X. Suppose in fact that v is an ordinal num-
ber equivalent to the power set ®(X). Ifaisan ordinal number equivalent
to X, then the set « is strictly dominated by the set v (i.e., card a < card %).
Tt follows that we cannot have v < «, and, consequently, we must have
a < v. Since, for ordinal numbers, & < y means the same thing as « €7,
we have found a set, namely v, that contains every ordinal number equiv-
alent to X, and this implies that the ordinal numbers equivalent to X do
constitute a set.

Which one among the ordinal numbers equivalent to X deserves to be
singled out and called the cardinal number of X? The question has only
one natural answer. Every set of ordinal numbers is well ordered; the

: 99
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least element of a well ordered set is the only one that seems to clamor for
special attention. .

We are now prepared for the definition: a cardinal number is an ordinal
number @ such that if 8 is an ordinal number equivalent to & (i.e., card
o = card B), then o £ 8. The ordinal numbers with this property have
also been called initial numbers. If X is a set, then card X, the cardinal
number of X (also known as the power of X), is the least ordinal number
equivalent to X.

TxErCISE. Prove that each infinite cardinal number is a limit number.

Since each set is equivalent to its cardinal number, it follows that if
card X = card ¥, then X ~ V. If, conversely, X ~ Y, then card X ~
card V. Since card X is the least ordinal number equivalent to X, it fol-
lows that card X < card Y, and, since the situation is symmetric in X and
Y, we also have card ¥ < card X. In other words card X = card Y if
and only if X ~ ¥; this was one of the conditions on cardinal numbers
that we needed in the development of cardinal arithmetic.

A finite ordinal number (i.e., a natural number) is not equivalent to any
finite ordinal number distinct from itself. It follows that if X is finite,
then the set of ordinal numbers equivalent to X is a singleton, and, con-
sequently, the cardinal number of X is the same as the ordinal number of
X. Both cardinal numbers and ordinal numbers are generalizations of the
natural numbers; in the familiar finite cases both the generalizations coin-
cide with the special case that gave rise to them in the first place. As an
almost trivial application of these remarks, we can now calculate the car-
dinal number of a power set ®(A):if card A = a, then card ®(4) = 2%
(Note that the result, though simple, could not have been stated before
this; till now we did not know that 2 is a cardinal number.) The proof is
immediate from the fact that ®(4) is equivalent to 24,

If « and B are ordinal numbers, we know what it means to say that
a < Bora=p Itfolows that cardinal numbers come to us automati-
cally equipped with an order. The order satisfies the conditions we bor-
rowed for our discussion of cardinal arithmetic. Indeed: if card X <
card Y, then card X is a subset of card Y, and it follows that X X V.

If we had X ~ Y, then, as we have already seen, we should have card X =

card Y; it follows that we must have X < Y. If, finally, X < Y, then it
is impossible that card ¥ < card X (for similarity implies equivalence),
and hence card X < card Y.

As an application of these considerations we mention the igequality

a < 2°
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valid for all cardinal numbers a. Proof: if 4 is a set with card 4 = a,
then A < ®(A), hence card 4 < card ®(4), and therefore a < 2%

Exercisg. If card A = a, what is the cardinal number of the set of all
one-to-one mappings of A onto itself? What is the cardinal number of
the set of all countably infinite subsets of A?

The facts about the ordering of ordinal numbers are at the same time
facts about the ordering of cardinal numbers. Thus, for instance, we know
that any two cardinal numbers are comparable (always either a < b, or
a = b, or b < a), and that, in fact, every set of cardinal numbers is well
ordered. We know also that every set of cardinal numbers has an upper
bound (in fact, a supremum), and that, moreover, for every set of cardinal
numbers, there is a cardinal number strictly greater than any of them.
This implies of course that there is no largest cardinal number, or, equiv-
alently, that there is no set that consists exactly of all the cardinal num-
pers. The contradiction, based on the assumption that there is such a set,
is known as Cantor’s paradox.

The fact that cardinal numbers are special ordinal numbers simplifies
some aspects of the theory, but, at the same time, it introduces the possi-
bility of some confusion that it is essential to avoid. One major source of
difficulty is the notation for the arithmetic operations. If a and b are
cardinal numbers, then they are also ordinal numbers, and, consequently,
the sum a + b has two possible meanings. The cardinal sum of two car-
dinal numbers is in general not the same as their ordinal sum. All this
sounds worse than it is; in practice it is easy to avoid confusion. The
context, the use of special symbols for cardinal numbers, and an occasional
explicit warning can make the discussion flow quite smoothly.

Exurcse. Prove that if o and 8 are ordinal numbers, then card (o + £)
— card « 4 card 8 and card (o) = (card a) (card B). Use the ordinal
interpretation of the operations on the left side and the cardinal inter-
pretation on the right.

One of the special symbols for cardinal numbers that is used very fre-
quently is the first letter (%, aleph) of the Hebrew alphabet. Thus in par-
ticular the smallest transfinite ordinal number, i.e., «, is a cardinal number,
and, as such, it is always denoted by Xo.

Every one of the ordinal numbers that we have explicitly named so far
is countable. In many of the applications of set theory an important role
is played by the smallest uncountable ordinal number, frequently denoted
by Q. The most important property of w is that it is an infinite well or-
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dered set each of whose initial segments is finite; correspondingly, the most ’

important property of Q is that it is an uncountably infinite well ordered
set each of whose initial segments is countable.

The least uncountable ordinal number Q clearly satisfies the defining
condition of a cardinal number; in its cardinal role it is always denoted by

' §;. Equivalently, 8 may be characterized as the least cardinal number
strictly greater than Ny, or, in other words, the immediate successor of &g
in the ordering of cardinal numbers.

The arithmetic relation Letween &, and §; is the subject of a famous old
problem about cardinal numbers. How do we get from ¥, to & by arith-
metic operations? We know by now that the most elementary steps, in-
volving sums and products, just lead from ¥y back to ¥y again. The sim-
plest thing we know to do that starts with 8 and ends up with something
larger is to form 2%, We know therefore that & = 2%, Ig the inequality
strict? Is there an uncountable cardinal number strictly less than 2N?
The celebrated continuum hypothesis asserts, as a guess, that the answer
is no, or, in other words, that & = 2% All that is known for sure is that
the continuum hypothesis is consistent with the axioms of set theory.

For each infinite cardinal number a, consider the set ¢(a) of all infinite
cardinal numbers that are strictly less than a. If @ = &, then ¢(a) = &;
if @ = &y, then ¢(@) = {Ng}. Since c(a) is a well ordered set, it has an or-
dinal number, say a. The connection between a and « is usually expressed
by writing @ = 8,. An equivalent definition of the cardinal numbers ¥,
proceeds by transfinite induction ; according to that approach &, (for « > 0)
is the smallest cardinal number that is strictly greater than all the ¥g’s with
B < a. The generalized continuum hypothesis is the conjecture that 8,1 =
2%a for each ordinal number a.
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