SECTION 7

\ RELATIONS

{

Using ordered pairs, we can formulate the mathematical theory of rela-
tions in set-theoretic language. By a relation we mean here something like
marriage (between men and women) or belonging (between elements and
sets). More explicitly, what we shall call a relation is sometimes called a
binary relation. An example of a ternary relation is parenthood for people
(Adam and Eve are the parents of Cain). In this book we shall have no
occasion to treat the theory of relations that are ternary, quaternary, or
worse. '

Looking at any specific relation, such as marriage for instance, we might
be tempted to consider certain ordered pairs (z, y), namely just those for
which z is a man, y is a woman, and z is married to y. We have not yet
seen the definition of the general concept of a relation, but it seems plausi-
ble that, just as in this marriage example, every relation should uniquely
determine the set of all those ordered pairs for which the first coordinate
does stand in that relation to the second. If we know the relation, we know
the set, and, better yet, if we know the set, we know the relation. If, for
instance, we were presented with the set of ordered pairs of people that
corresponds to marriage, then, even if we forgot the definition of marriage,
we could always tell when a man z is married to a woman y and when not;
we would just have to see whether the ordered pair (z, y) does or does not
belong to the set. ‘

We may not know what a relation is, but we do know what a set is, and
the preceding considerations establish a close connection between relations
and sets. The precise set-theoretic treatment of relations takes advantage
of that heuristic connection; the simplest thing to do is to define a relation
to be the corresponding set. This is what we do; we hereby define a rela-
tion as a set of ordered pairs. Explicitly: a set R is a relation if each ele-
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ment of R is an ordered pair; this means, of course, that if z e R, then there
exist  and y so that z = (z,y). If R is a relation, it is sometimes con-
venient to express the fact that (z, ) € B by writing

zRy

and saying, as in everyday language, that 2 stands in the relation R to 3.

The least exciting relation is the empty one. (To prove that & is a set
of ordered pairs, look for an element of & that is not an ordered pair.)
Another dull example is the Cartesian product of any two sets X and Y.
Here is a slightly more interesting example: let X be any set, and let B be
the set of all those pairs (z, ¥) in X X X for which x = y. The relation R
is just the relation of equality between elements of X; if  and y are in X,
then z B y means the same as z = y. One more example will suffice for
now: let X be any set, and let R be the set of all those pairs (z, 4) in X X
®(X) for which x e A. This relation R is just the relation. of belonging
between elements of X and subsets of X; if 2 ¢ X and 4 ¢ ®(X), then
2 B A means the same as z € A.

In the preceding section we saw that associated with every set R of
ordered pairs there are two sets called the projections of R onto the first
and second coordinates. In the theory of relations these sets are known
as the domain and the range of B (abbreviated dom B and ran R); we
recall that they are defined by

. dom R = {z: for some y (xR y)}
and .
ran R = {y: for some z (xR y)}.

If R is the relation of marriage, so that z B y means that z is a man, y is a
woman, and z and y are married to one another, then dom R is the set of
married men and ran R is the set of married women. Both the domain
and the range of & are equal to &. If R = X X Y, then domR = X
and ranR = Y. If R is equality in X, then dom R =ranR = X. If R
is belonging, between X and ®(X), then dom R = X and ran R = @(X)
- {J}.

If R is a relation included in a Cartesian product X X Y (so that dom R
C X andran R C Y), it is sometimes convenient to say that R is a relation
from X to Y; instead of a relation from X to X we may speak of a relation
in X. Arelation R in X is reflexive if z R x for every = in X ; it is symmetric
if B y implies that y R ; and it is {ransitive if x R y and y R z imply that
z Rz (Exercise: for each of these three possible properties, find a relation
that does not have that property but does have the other two.) A relation
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in a set is an equivalence relation if it is reflexive, symmetric, and transitive.
The smallest equivalence relation in a set X is the relation of equality in
X; the largest equivalence relation in X is X X X.

There is an intimate connection between equivalence relations in a set
X and certain collections (called partitions) of subsets of X. A partition
of X is a disjoint collection @ of non-empty subsets of X whose union is X.
If R is an equivalence relation in X, and if z is in X, the equivalence class
of z with respect to I is the set of all those elements y in X for which z R .
(The weight of tradition makes the use of the word “class” at this point
unavoidable.) Examples: if R is equality in X, then each equivalence class
is a singleton; if B = X X X, then the set X itself is the only equivalence
class. There is no standard notation for the equivalence class of z with
respect to R ; we shall usually denote it by z/R, and we shall write X /R for
the set of all equivalence classes. (Pronounce X/R as “X modulo R,” or,
in abbreviated form, “X mod R.” Exercise: show that X/R is indeed a

set by exhibiting a condition that specifies exactly the subset X/R of the.

power set ®(X).) Now forget R for a moment and begin anew with a
partition € of X. A relation, which we shall call X/€, is defined in X by
writing

z X/e y

just in case z and y belong to the same set of the collection €. We shall
call X /@ the relation induced by the partition €.

In the preceding paragraph we saw how to associate a set of subsets of
X with every equivalence relation in X and how to associate a relation in
X with every partition of X. The connection between equivalence rela-
tions and partitions can be described by saying that the passage from @
to X/@ is exactly the reverse of the passage from R to X/R. More explic-
itly: if R is an equivalence relation in X, then the set of equivalence classes
is a partition of X that induces the relation R, and if € is a partition of X,
then the induced relation is an equivalence relation whose set of equivalence
classes is exactly €.

For the proof, let us start with an equivalence relation B. Since each z
belongs to some equivalence class (for instance z e z/R), it is clear that the
union of the equivalence classes is all X. If z e xz/R N y/R, then z R z and
2Ry, and therefore x Ry. This implies that if two equivalence classes
have an element in common, then they are identical, or, in other words,
. that two distinct equivalence classes are always disjoint. The set of
equivalence classes is therefore a partition. To say that two elements be-
long to the same set (equivalence class) of this partition means, by defini-
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tion, that they stand in the relation R to one another. This proves the
first half of our assertion.

The second half is easier. Start with a partition @ and consider the
induced relation. Since every element of X belongs to some set of @, re-
flexivity just says that « and « are in the same set of €. Symmetry says
that if z and y are in the same set of @, then y and z are in the same set of
@, and this is obviously true. Transitivity says that if 2 and y are in the
same set of € and if y and 2 are in the same set of @, then x and z are in the
same set of ©, and this too is obvious. The equivalence class of each z in
X is just the set of @ to which  belongs. This completes the proof of every-
thing that was promised.



