Chapter 1
The Emergence of Rigorous Calculus

1.1 What Is Mathematical Analysis?

Mathematical analysis® is the critical and careful study of calculus with an em-
phasis on understanding of its basic principles. As opposed to discrete mathe-
matics or finite mathematics, mathematical analysis can be thought of as being a
form of infinite mathematics. As such, it must rank as one of the greatest, most
powerful, and most profound creations of the human mind.

The infinite! No other question has ever moved so profoundly the spirit of man — David Hilbert
(1921).

Now, as you may expect, great, profound, and powerful thoughts do not
often appear overnight. In fact, it took the best part of 2500 years from the
time the first calculus-like problems tormented Pythagoras, until the first really
solid foundations of mathematical analysis were laid in the nineteenth century.
During the seventeenth and eighteenth centuries calculus blossomed, becoming
an important branch of mathematics and, at the same time, a powerful tool, able
to describe such physical phenomena as the motion of the planets, the stability
of a spinning top, the behavior of a wave, and the laws of electrodynamics. This
period saw the emergence of almost all of the concepts that one might expect to
see in an elementary calculus course today.

But if the blossoms of calculus were formed during the seventeenth and
eighteenth centuries, then its roots were formed during the nineteenth. Calculus
underwent a revolution during the nineteenth century, a revolution in which its
fundamental ideas were revealed and in which its underlying theory was properly
understood for the first.time. In this revolution, calculus was rewritten from its
foundations by a small band of pioneers, among whom were Bernhard Bolzano,
Augustin Cauchy, Karl Weierstrass, Richard Dedekind, and Georg Cantor. You
will see their names repeatedly in this book, for it was largely as a result of their
efforts that the subject that we know today as mathematical analysis was born.
Their work enabled us to appreciate the nature of our number system and gave us
our first solid understanding of the concepts of limit, continuity, derivative, and

8 Note to instructors: This chapter is not designed for in-class teaching. It is intended to be a
reading assignment, possibly in conjunction with other material that the student can find in the

library.
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6 Chapter 1 The Emergence of Rigorous Calculus

integral. This is the great and profound theory to which you, the reader of this
book, are heir. :

In this chapter we shall focus on three earth-shaking events that have taken
place during the past 2500 years and which helped to pave the way for the emer-
gence of rigorous mathematics as we know it today. These events are sometimes
known as the Pythagorean crisis, the Zeno crisis, and the set theory crisis.

1.2 The Pythagorean Crisis

In about 500 B.C.E. an individual in the Pythagorean school noticed that, accord-
ing to the Greek concepts of number and length, it is impossible to compare the
length of a side of a square with the length of its diagonal. The Greek concept
of length required that, in order to compare two line segments AB and CD, we
need to be able to find a measuring rod that fits exactly a whole number of times
into each of them. If, for example, the measuring rod fits 6 times into AB and 10
times into C'D, as shown in Figure 1.1, then we have

AB _ 6 3
CD 10
More generally, if the measuring rod fits exactly m times into AR and exactly n
Figure 1.1
times into C'D, then we have
AB  m
CD n

Note that this kind of comparison requires that the ratio of any two lengths must
be a rational number.

The crisis came when the young Pythagorean drew a square with a side of
one unit as shown in Figure 1.2 and applied the theorem of Pythagoras to find
the length of the diagonal. As we know, the length of this diagonal is v/2 units.

From the fact that the number V2is irrational he concluded that the equation

2 m
1 n

is impossible if 1m and n, are integers and that, consequently, it is impossible to
compare the side of this square with its diagonal.

W I ST R

1.3 The Zeno Crisis

1 unit

Figure 1.2

From our standpoint today, we can see that this discovery reveals th}f- 1}1)1atdteg
quacy of the rational number system and of the Greek concept of l'engt ; bu Lo
them, the discovery was a real shocker. Just how much of a shock 11t was ﬂcla?the
gauged from the writings of the Greek philpsopher Proclus, who tel.s us ]ilas c
Pythagorean who made this terrible discovery suffered death by shipwrec

punishment for it.

1.3 The Zeno Crisis

1.3.1 The Paradoxes of Zeno ‘ . .
In the fifth century'B.C.E., Zeno of Elea came up with four 1nnpcent—fs](;ur11d1n§
statements that plagued the philosophers all the way up to the time o kno Zar;l :
and Cauchy early in the nineteenth century. These four staFements are fol\lwn )
the paradoxes of Zeno, and the first three of these appear in Bell [4] as follows:

1. Motion is impossible, because whatever moves must reach the nﬁddle .of its
course before it reaches the end, but before it has reached the middle, .zt must
have reached the quarter mark, and so on, indefinitely. Hence the motion can

r start. .
2. ’j{e:;illes running to overtake a crawling tortoise ahead of_hzm can never
overtake it, because he must first reach the place fr.om which the tortoz;e
started; when Achilles reaches that place, the tgrtozse has departed. an ;lo
is still ahead. Repeating the argument, we easily see that the tortoise wi
s be ahead. ‘ N
3. ilv;fgving arrow at any instant is either at rest or not at.re'st, .t(}izat hzs, ‘motzzl;r;g.
If the instant is indivisible, the arrow cannot move, for. if it did, the }zns
would immediately be divided. But time is made.up of zl?stants. As t' e zlzrrow
cannot move in any one instant, it cannot move in any time. Hence it always

' remains at rest.
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. ‘ Much hag been sai '
) aid about thege
. Pparadox : .
. gomg to do them justjce here. But let’s ta] es, and, quite obviously, we are not , . .
0 At any one instant of time. ¢ § talk about the thirg paradox for 3 / we have defined doesn’t measure how the function f increases at A, because, as
the arrow wil] not find its,t ° aI;ow does not move, Does that rea]] mmoment' Zeno quite rightly tells us, the function f can’t change its value at any one point. \
| front of the arpop We ttin Iz(irget. Would Zeno have been prepared}:‘.o Sf;zn éh-a ! We may therefore think of Zeno’s paradoxes as telling us that (referring to Figure
I - n . .
Statement warns yg that Velocit;tca?;,en What. was Zeno trying to tel] ug? Z:nol’ls 1.3) even though we may speak of the slope 3% of the line ;egment AB, and even
an average velocity oyey a period of ¢ Meaningful in any physical sense op] as though we may define the derivative of f at A and call it 5% and have
during the course of a second, e ? time. If an arrow Ccovers a distance of 6() 1}:eet A d
an sa :
of 60 feet per second. Byt Zeno’s statenz,egiat the arrow hag an average velocity Az - Eg as Az — 0,

. dy . ..
1.3.2  Stati . we may not think of 7= as the ratio of two quantities dy and dz, the amounts by
To st flg Z'eno’s Third Paradox in Terms of Sjo which ¢ and z increase at the point A, because, as Zeno quite rightly tells us,
‘w | pointa(t; Z«;no 8 third paradox in terms of slope, we shaup ° there are no increases in y and z at the point A.
I (21 + A (21)) on the graph of 4 functiop 7 and thae 1 DPOsC that A s the : :
|| 1+ Az, f (z1 + Ax) ), as shown in Fi » and that B is some other point 1.3.3  The Rigorous Reformulation
| 1gure 1.3. As usual, the slope of the Iine Mathematics prior to the dawn of the nineteenth century was much less pre-
cise than mathematics as we know it today. The core of pre-nineteenth century
| mathematics was the calculus that had been developed by Newton, Leibniz, and
others during the seventeenth century. That calculus represented a magnificent

\H“ |

vt |

! 8 contribution. It gave us the notation for derivatives and integrals that we still use
q Ay today and provided a mathematical basis for the understanding of such physical
T Y = fix) Ax phenomena as the motion of the planets, the motion of a spinning top and the

: vibration of a violin string. But the calculus of Newton and Leibniz did not rest

on a solid foundation.
The problem with Newtonian calculus is that it was not based on an adequate

Figure 1.3
segment AR ig d ) theory of limits. In fact, prior to the nineteenth century, there was not much
efined to be to be the ratio Ay/ Az, where : understanding that calculug needs to be based on a theory of limits at all. Nor
Ay = flz, + Az) — 7 was there much understanding of the nature of the number system R and the role
This ratio A Az i (331) of what we call today the completeness of the number system R. In a sense,
and B Hg Z 18 the ?Verage slope of the graph of f b the calculus of Newton and Leibniz did not pay sufficient heed to the paradoxes
obvious h Owever, Zeno § third paradox serves as between the points of Zeno. Although Newton and Leibniz themselves may have had some ap-
physical meaning to the notion of slope of 17, 4 warning that there g no preciation of the fundamental ideas upon which the concepts of derivative and
pe of the graph at the point A. integral depend, many of those who followed them did not. Until the end of the

‘GB o4 (134
o Zenl;t tr};;(j):ll rriay a;k, 18n°t this what calculus
& 1o tell us to abando i
n th ivati
c]?euF What we should learn from these pareemligia O'f hat o e
Tivative of the function J at the point A to b: S

eighteenth century the majority of mathematicians based their work upon an im-
possible mythology. During this time, proofs of theorems in calculus commonly
depended on a notion of “infinitely small” numbers, numbers that were zero for
some purposes yet not for others. These were known as evanescent numbers,
flz+ h) — f(z) differentials, or infinitesimals, and, undeniably, their use provided a beautiful,
%, revealing, and elegant way of looking at many of the important theorems of

: ’ calculus. Even today we like to use the notion of an infinitesimal to motivate
some of the theorems in calculus, and scientists use them even more frequently
than mathematicians. But it is one thing to use the idea of an infinitesimal to

is all about? Are the paradoxes

lim
h—0




To see just how much these paradoxes stunned the mathematical community,
one might want to look at Frege [9], Grundgesetze der Arithmetik (The Fun-
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The art of numberi ;
ing and measuring ex. : .
not be conceived. 8 exactly a thing whose existence can-

Then, in 1734, Bisho ‘
’ : ) p George Berkele . th i
Berkeley [5], in which he rebuked the e eym € philosopher, wrote an essay,

. . aticians for the weak f; i
upon which their calculus h oundations
in asking s had been based, and he no doubt took great pleasure

Whether the object, principle,
more distinctly conceived, or
leries and points of faith.

S, and inferences of the modern analysis are
more evidently deduced than religious mys-

discovered what is known today as the Bur
there are serious flaws in Cantor’s theory o
of the real number system had been base
Russell discovered his famous paradox.
paradox demonstrates the presence of fla

ali-Forti Paradox, which shows that
f sets, upon which our understanding
d_' Then, a few years later, Bertrand
Ll!ce Burali-Forti’s paradox, Russell’s
ws 1n Cantor’s set theory.

damental Laws of Arithmetic), which was written by the German philosopher
Gottlob Frege and published in two volumes, the first in 1893 and the second
in 1903. This book was Frege’s life work, and it was his pride and joy. He
had bestowed upon the mathematical community the first sound analysis of the
meaning of number and the laws of arithmetic and, although the book is quite
technical in places, it is worth skimming through, if only to see the sarcastic way
in which Frege speaks of the “stupidity” of those who had come before him.
An example of this sarcasm is Frege’s description of his attempt to induce other
mathematicians to tell him what the number one means. “One object,” would
be the reply. “Very well,” answered Frege, “I choose the moon! Now I ask you
please to tell me: Is one plus one still equal to two?” As things turned out, the
second volume of Frege’s book came out just after Russell had sent Frege his
famous paradox. There was just enough space at the end of Frege’s book for the
following acknowledgment:

A scientist can hardly encounter anything more undesirable than to have
the foundation collapse just as the work is finished. I was put in this po-
sition by a letter from Mr. Bertrand Russell when the work was almost
through the press. \

As Frege said, the foundation collapsed. It would not be stretching the truth
too much to say that all of mathematics perished in the fire storm that was ignited
by the paradoxes of Russell and Burali-Forti. The mathematics that we know
today is what emerged from that storm like a phoenix from the ashes, and it
depends upon a new theory of sets that is known as Zermelo-Fraenkel set theory
which was developed in the first few decades of the twentieth century. Within
the framework of Zermelo-Fraenkel set theory, we can once again make use of
Frege’s important work.

One question that remains is whether we are now safe from new paradoxes
that might ignite a new fire storm, and the answer is that we don’t know. A theo-
rem of Godel guarantees that, unless someone actually discovers a new paradox
that destroys Zermelo-Fraenkel set theory, we shall never know whether such a
paradox exists. Thus it is entirely possible that you, the reader of this book, may
stumble upon a snag that shows that mathematics as we know it does not work.
But don’t hold your breath. The chances of your encountering a new paradox are
very remote.
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2.1 The Quantifiers For Every and There Exists

Unknowns in a Mathematica] Statement
Some mathematical Statements

For example, the Statement 1 + 1 ¥ to the numbers 1 and 9
s 1 and 2 and

statement. To understand how unkn

= 2 refers onl

Is it true thar

T+y)® =g2 4 2
(z+y)’ =gz + y*? 2.1)
Perhaps the answer “no”

. is hovering on .
hasty, for is it not true that € on your lips.

If so, you are being a little

(3+0)* =324 0%

answered specifically:

® Isit true that, if ; — 2 and
) ’ = Y = 3, th i A
® Isit true that there exist ny en Equation (2.1) is true? No!

Y mbers x and y such that Equation (2.1) holds?

refer only to predefined mathematica] objects. |
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e Is it true that there exists a number z such that for every number y Equation
(2.1) holds? Yes!
e Is it true that for all numbers « and y Equation (2.1) holds? No!

If you look at any one of these five questions, you will see that each of the
symbols x and y was introduced either by saying “for every” or by saying “there
exists”. The symbols in these questions have been what we call quantified. The
statements that follow exhibit some more examples of quantified symbols.

1. Every tall man in this theater is wearing a hat. In this statement, “tall man”
is introduced with for every. o

2. No tall man in this theater is wearing a hat. This statement can be interpreted
as saying that every man wearing a hat in this theater fails to be tall.

3. Some tall men in this theater are wearing hats. This statement introduces
“tall man” with there exists. It says that there exists at least one tall man in
this theater who is wearing a hat.

4. Not all of the tall men in this theater are wearing hats. This statement can
be interpreted as saying that there exists at least one tall man in this theater
who is not wearing a hat. Interpreted this way, the statement introduces “tall

- man” with there exists. | :

5. For every positive integer n there is a prime number p such that p > n. This
statement contains two unknowns, 7 and p. The unknown 7 is introduced
with for every and then, after n has been introduced, the unknown p is
introduced with there exists.

2.1.2  The Quantifiers

The phrase for every is called the universal quantifier and, depending on the
context, it appears sometimes simply as every, sometimes as all, and sometimes
as the symbol V. The phrase there exists is called the existential quantifier,
and, depending on the context, it sometimes appears as there is, we can find, it is
possible to find, there must be, there is at least one, some, or as the symbol 3.

2.1.3 “Exercises on the Use of Quantifiers

Except in Exercise 2, decide whether the sentence that appears in the exercise is
meaningful or meaningless. If the sentence is meaningful, say whether what it
says is true or false.

1. (@ n V2 =z,
. (b) m For every real number = we have vz2 = x.
© m For every positive number 2 we have v 22 = x.

2. (a) -“f Point at the expression v/z?2 and click on the Evaluate button
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2. If two unknowns are introduced with 3, one directl
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Point at the expression V22 and click on the Simplify button

(©) Point at the equation /72
on Check Equality.

= Z, open the Compute menu, and click

(d) Point at the equation 7 — —2 and click on the button

the definition z = —2 to Sciensi ; y
ntific Noteb ;
on the equation /27 — . ific Notebook. Then try a Check Equality

4. “ For eve :
ry number z there is a n
we have z = g 4y, umber 2 such that for every number y

3.

y

i . 2
4l Sin°x + cos?z = 1.
7.
B For every number 2 we have sin®z + cos? 1 = 1

8. m For evgry integer n > 1, if n2 < 3, then the number 57 is prime

6.

2.1.4  Order of Appearance of Unknowns in a Statement

As we h i i
ave seen, if a statement contains some unknowns, then its truth or falsity

antified. If a statement

following two statements say exactly the same thin

(a) For.every positive number y
Y is negative.

(b) For'every negative number
Y 1s negative.

and every negative number Y, the number
Y and every positive number x, the number

y after the other, then
ortant. For example, the
ng.

positive integer n such that

;h;: or(?er in which they are introduced is not imp

ollowing two statements say exactly the same thij

(a) Ther; exists a positive integer m and g
m*=+n3 is an integer.

b) Th . L
(b) There exists a posuive integer n and g positive integer m such that

B
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m?2 + n?3 is an integer.

3. If one unknown in a sentence is introduced with V and another is introduced
with d, then the order in which they appear is very important. For example,
compare the following two sentences:

(a) For every positive number T there exists a positive number y such that
y < T
(b) There exists a positive number Yy such that for every positive number x

we have y < . [
Although these statements may look similar, they do not say the same thing.

As a matter of fact, the first one is true and the second one is false.
4. In this example we look at some sentences that contain three unknowns.
(a) For every number x and every number 2, there exists a number y such
thatx +y = 2.
(b) For every number x there exists a number y such that for every number z
we have x + 1y = z.
(c) There exists a number y such that for every number x and every number

zZwe have x + 1y = z.
If you look at these statements carefully, you will see that the first one is true

and the other two are false.

5. In this example we look at two more statements with three unknowns. Try
to decide whether they are true or false. We shall provide the answers in
Subsection 3.8.1. ' '

(a) For every number x there exists a positive number § such that for every
number t satisfying the inequality |t — x| < & we have |t* — z?| < 1.
(b) There exists a positive number & such that for every number x and
for every number t satisfying the inequality |t — x| < § we have
[t? — 2% < 1.

6. In this example we look at some statements that contain four unknowns.
Try to decide whether they are true or false. We shall provide some of the
answers in Section 3.8.

(a) For every number € > 0 and for every number x € [0, 1] there exists a
positive integer N such that for every integer n > N we have

nx

—— < €.
1"1—77/2372

(b) For every number x € [0, 1] and for every number € > 0 there exists a



2.1.5  Exercises on Order
For each of the following pai

nx

T mg? <& :

f

of Appearance of Unknowns “
i
rs of Statements, decide whether or not the state- :

ments are saying the same thi
¢ mg. Except in th ;
or not the given statements g o, p e first two exercises, say whether

1 E . ] . 1 1 . ] } 1 l .
. (a) EI) pEIS: ] 1S .f:]l lg: Ir O 1€ [ a as S E][E p“)ln

(b) “ A good movie th
at has start i :
€very person in this room, °d playing this week has been seen by

2. (a) Only men wearing
(b) Only men may en

__(©) Men wearing top

top.hats may enter this hall.
ter this hall wearing top hats.

hats only may enter this h
: all.
(d) Men Wearing only top hats may enter this ha]].

nonzero number 2.
4. (a | For ev
) u Or every number z ¢ [0, 1) there eXists a number Y € [0,1) such
)

that 2 < Y.

b .
(b) h There is a number y €0, 1) satisfying 2 < Y for every number

r€0,1).

5. (a) F
(2) For every number 7 € [0, 1] there exists g number y € [0, 1] such that

T <y

® Il There ; '
) Bl There is a number y € |0, 1] satisfying z < 4 for every number

z €0, 1].
6. (a) For every number
T < y.
(b) There is a number
z€[0,1).

z € [0,1) there exists g tumber y € [0,1) such that

yEe]|

0,1) satisfying 7 < y for every number

mgating a Mathematical Sentence 17

7. (a) For every number z € [0, 1] there exists a number y € [0, 1] such that
z <.
(b) There is a number y € [0, 1] satisfying z < y for every number
z € [0,1].
8. (a) For every odd integer m it is possible to find an integer n such that mn

is even.
(b) B8l It is possible to find an integer n such that for every odd integer m

he number mn is even.
9. (a) For every number z it is possible to find a number y such that zy = 0.

(b) N It is possible to find a number y such that for every number z we

have zy = 0.
10. (a) For every number 1 it is possible to find a number y such that zy # 0.

(b) “ It is possible to find a number y such that for every number z we
have zy # 0.
11. (a) _.i | For every number a and ever
such that ab = c.
(b) il For every number ¢ there exists a number c such that for every

number b we have ab = .
12. (a) For every number g and every number c there exists a number b such

that ab = c. '
(b) “ For every number a there exists a number b such that for every

number ¢ we have ab = c. , :
13. (a) fflf For every nonzero number a and every number c there exists a

number b such that ab = c.
(b) @@l For every nonzero number a there exists a number b such that for

every number ¢ we have ab = c.

y number b there exists a number ¢

2.2 Negating a Mathematical Sentence

When you are trying to read and understand a mathematical statement P, you will
often find it useful to ask yourself what it would mean to say that the statement
P is false. The assertion that the given statement P is false is called the negation
or denial of the statement P and is written as —P.
Thus, for example, if P is the assertion that the number 4037177 is prime,
then the statement — P is the assertion that the number 4037177 is composite. As

a matter of fact, since

4037177 = 17 x 19 x 29 x 431,
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13 ‘ I was joking when I said that you lied when you told me that it has

| i d to take your umbrella.
. ‘ . i n which you have remembere
general, if P is any mathematical statement, then one of the Statements P and never rained on a day o y

: 9
is, W i i is our client now.
| —.” will be true and the other will be false. : " “ This. Watson. it T mistuke nor i | b -
§l For every real number z there exists a real number ¥y

| 221  Negations and the Quantifiers 15. (a) i

i . L 5 9 2 Sy + 4x

il Suppose that a given statement P asserts that Everyone in this room can speak 2r° +xy —y _ 5 n 2)-

el French. The denial of P does 1ot claim that no one in the roomm can speak French, f z3 — ¢ 3(z—y) 3@ +ay+y
To deny the assertion that everyone in the Toom can speak French, all we have to : ) t true?
do is find one person in the room who cannot speak French. I this stgtemt?rlt a re.al number z such that for every real number y we

S
More generally, if a statement P contains the quantifier “for every”, saying k (b) w There exis
that every object z of a certain type has a certain property, then the denial of P [ have ) 9 ‘ 5y + da
says that there exists at least one object of this type that fails to have the required 20 + Yy —y — 5 )

property. | ‘ 73— o 3(z—y) 3(x2+zy+y

\

Is this statement true? £ we have
“w:«m{;/ () m For every real number x and every real number y # x v

e clean face. Note how the quantifiers “for every” and “there exists” change places 50 4+ da
g as we move from a statement to jts denial. ‘ 222 + zy — y? _ 2 Yy

- 2 .
2.2.2  Some Exercises on Negations and the Quantifiers . ‘ ey ( )
Write a negation for each of the following statements or say that the statement is Is this statement true?
meaningless. ;
1L n All roses are red. 2.3 | Combining Two or More Statements

| 2. h In Sam’s flower shop there is at least one rose that is not red. ) tatements can be combined into a single statement using one
g i : Two or more given sta e.m s
b 3. In e\fery flower shop there is at least one rose that is not red. or more of the conjunctions and conditionals

‘ 4. I'believe that all roses are red. [and [or [if [only if | = | < | — |

5. There is at least one erson in this room who thinks that all roses are ) : may be
IE ’ In this section we study the way in which these comblneffiﬂsl‘[.z;t;rl;znts y
' : : : i i en statements of thi .
6. " Every person in this room believes that all roses are red. formed and some of the relationships betwe
7. At least half of the people in this room believe that all roses are red. 231  The Conjunction and _
s. I8 Every man believes that all women believe that aJ] roses are red. If P and () are given statements, then the assertion
9. u You were at least an hour Iate for work every day last week. ' P and Q
i 10. " It has never rained on a day on which you have remembered to take This assertion is sometimes
I are true. 1S as
‘ your umbrella. . says that both of the statements P and Q
| ‘J 11. u You told me that it has never rained on a day on which you have written as P A Q. tatement that was
| remembered to take your umbrella. 9 The purpose of this exercise is to invite you to disilrst; a rggﬁgns%a:ﬁz SI: Holmes’ statement
12. Bl You lied when you told me that it has never rained on a day on which made by Sherlock Holmes in one of the stories by Sir

you have Temembered to take your umbrella, meaningful?
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For example, if P ig the statement

Every tall man i this theater is wearing q hat.

and @) is the statement

Eve . L
Ty man wearing a hat in this theater is inconsiderate

then the statement p A @ says that

Every tall man in this theater is wearin,

n thi ah .
hat in this theater i inconsiderage, 8 a hat and every map wearing q

From th
€ statement P A () we can deduce that every tall man in this

18 inconsiderate, theater

232 The Conjunction or

If P and Q are given statements, then the assertion

Por@Q

says that at least one of the
/ € state
written as P\ (). e Pand @

For example, if P jg the statement

18 true. This assertion is often

You have g cracked radiatoy.

and @) is the statement

Your water pump needs replacing,

then the sentence P and Q says

233 Some Examples on the Use of and and or

1. The equation 22 — i i
q 3 —4=0is €quivalent to the condition

rT=-1 or T =4,

23 Combining Two or More Statements 21

It would be quite wrong to write the solution of the equation as z = —1 and
x = 4 because the equation does not require = to be equal to both of the
numbers —1 and 4. If z is equal to either one of the numbers —1 and 4, the

equation will hold.
2. The inequality 22 — 3z — 4 < 0 is equivalent to the condition

—-1<z and z < 4.

In order for this quadratic inequality to hold we have to have both of the

conditions —1 < z and z < 4.
3. The inequality 2% — 3z — 4 > 0 is equivalent to the condition

r<-1 o z>4

4. In this example we assume that 7 and n are integers. The condition for the
number mn to be even is equivalent to the condition

miseven or niseven.

Note that mn will certainly be even in the event that both of the integers m
and n are even, but the condition that mn is even does not require that both
of m and n are even. All it requires is that at least one of the integers m and

n is even.
5. Again in this example we assume that 1m and n are integers. The condition

for the number mn to be odd is equivalent to the condition
misodd and nisodd.
6. In this example we assume that z and y are nonzero numbers. The condition
for the equation |z + | = |z| + |y| to hold is that
eitherx < Oandy < 0,orz > 0and y > 0.

2.34  The Conditional if
If P and () are given statements, then the sentence

If P, then )

says that, in the event that P is true, the sentence () must also be true. One of
the most important facts about the sentence “If P, then (" is that it places no
demands on () when P is false. The sentence “If P, then ()” can be thought of

as saying that
I don’t know whether or not P is true and I don’t care. However, if the
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1. Since the condition P A @) asserts that both of the statements P and () must
be true, the denial of this condition says that one (or both) of the statements
P and @ is false. Thus the denial of the condition P A () says that either P
is false or () is false.

2. Since the condition P V () says that at least one of the statements P and Q
must be true, the denial of this condition says that neither of the statements
P and () is true. In other words, the denial of the condition P V () says that
P is false and (@ is false.

3. Since the condition P = () says that either P is false or () is true, the
denial of the condition P = () says that P is true and Q) is false. Thus, for
example, the denial of the assertion

If you eat that grape, you will die.
says that

You will eat that grape and you will not die.

2.3.6 - Contrapositives and Converses

As we know, if P and () are mathematical statements, then the assertion P => Q
says that either P is false or () is true. We shall now make the observation that
the assertion (=()) = (—P) says exactly the same thing. In fact, the assertion
(—=Q) = (—P) says that either =) is false or =P is true; in other words, it says
that either () is true or P is false.

Thus, if P and. () are mathematical statements, then the assertions P = Q
and (—Q) = (—P) are logically equivalent to each other. We are therefore at
liberty to look at whichever of these two assertions looks easier to understand.
The assertion (—@Q)) = (—P) is called the contrapositive form of the assertion
P=qQ.

Of course, the statements P = @ and () = P do not say the same thing.
We call the statement () = P the converse of the statement P = Q.

Look, for example, at the statement: All roses are red. This statement can
be thought of as saying that if an object is a rose, then it must be red. The
contrapositive form of this statement says that all things that are not red must fail
to be roses. The converse of this statement says that all red things are roses.

237 A Word of Warning

The statement “If P, then ()" is often confused with the slightly more complex
sentence “P, and therefore (). The meaning of the latter sentence is as follows:

The statement P is known to be true and we also know that P implies Q).
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3. N In each of the following exercises we assume that f and g are given
functions. Write down a denial of each of the following statements:

(a) Whenever x > 50, we have f(z) = g(x).

(b) There exists a number w such that f(x) = g(z) for all numbers © > w.

(c) For every number x there exists a number 6 > 0 such that for every
number t satisfying the condition |xv —t| < § we have | f(x) — f(¢)| < 1.

(d) There exists a number & > 0 such that for every pair of numbers x and t
satisfying the condition |z — t| < § we have |f(z) — f(t)| < 1.

(e) For every number € > 0 and for every number x, there exists a number
6 > 0 such that for every number t satisfying |x — t| < 6, we have

170~ f@)] <e.

(f) For every positive number € there exists a positive number 6 such that for
every pair of numbers x and t satisfying the condition |x — t| < § we
have |f(z) — f(t)| <e.

4. Explain why the statement — (P = ()) is equivalent to the statement

P A (=Q).

5. Explain why the statement — (P <> () is equivalent to the assertion that
either (P is true and @ is false) or (P is false and Q) is true).
6. Explain why the statement — (P V Q) is equivalent to the statement

(=P) A (—Q). |

7. Explain why the statement - (P = (Q V R)) is equivalent to the assertion
that P is true and that both of the statements () and R are false.
8. Explain why the converse of the statement P = (@) VV R) is equivalent to

the condition (R = P) A (Q = P).

9. Write the assertion P = () V R) as simply as you can in its contrapositive
form. : -

10. Write the assertion (P A Q) = (R V S) as simply as you can in its
contrapositive form.
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Sometimes, when a proof is difficult, you will not be able to anticipate it.
Read the proof one step at a time and, when you understand the individual steps,
go back to the job of trying to anticipate it. You will gradually come to understand
the bridge between the given information and the required statement that the
proof provides. As your understanding of the proof solidifies, make sure that you
understand where all of the given information is used. If any of this information
wasn’t used, then either the theorem can be improved or (more likely) you are
misunderstanding something.

When you really understand a proof, you will feel able to explain it to others.

In fact, you will want to do so; in much the same way that you might look around
for someone to whom you could tell a good joke that you have just heard. One
of the best ways to learn a proof is to imagine that you are going to teach it
to someone else. As you study it, write it down on a blank piece of paper
and imagine that you are, in fact, explaining it to another person. You have
understood the proof if and only if you have the feeling that you did a really fine
job of explaining it.

The way we approach the task of proving a particular mathematical state-
ment depends on the nature of that statement and, in particular, on the way the
grammatical symbols if, and, or, =, V, and 3 appear. Exactly where these words
appear and how they appear plays a major role when we devise our proof writing

strategy.

3.2 Statements that Contain the Word and

If P and () are mathematical statements, then, as you know, the statement P A Q
asserts that both of the statements P and () are true. In this section we shall
discuss some strategies for proving a statement of the form P A (), and we shall
also discuss some strategies for using information that is phrased in this form.

3.2.1  Proving a Statement of the Form P A ()

If P and () are mathematical statements, then, in order to prove the statement
P A @, we have two tasks to perform: We need to show that P is true, and we
also need to show that () is true. This kind of proof can be broken down into two

steps.

° Step 1: Show that the statement P is true.
e Step 2: Show that the statement () is true.

Suppose, for example, that you want to prove that neither of the integers
1037173 nor 4087312111 is prime. We have two tasks to perform. We need to
show that the number 1037173 is not prime, and then we need to show that the
integer 4087312113 is not prime. To accomplish these two tasks we can observe
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demonstrate beyond a shadow of doubt that, on the night of June 13, 1997,
the accused, Slippery Sam Carlisle, did willfully, unlawfully and maliciously
kill and murder the deceased, Archibald Bott, by striking him on the head
with a blunt instrument”. Outline a strategy that the prosecutor might use to
prove this charge. How many separate assertions must the prosecutor prove

in order to carry out his promise to the jury?

BB One of the basic laws of arithmetic tells us that if @ and b are any two
numbers satisfying the condition a < b, and if z > 0, then az < bz. Show
how this law may be used to show thatif 0 < v < 1and 0 < v < 1, then

0<wuv <1 _
m In this exercise, if we are given three nonnegative integers a, b, and c,

then the integer that consists of a hundreds, b tens and ¢ units will be written

as [a, b, c|. Given nonnegative integers a, b, and c, prove the assertion
PAQANRAS, where P, Q, R and S are, respectively, the following

assertions:

P. If the number [a, b,
by 3.
- If the number a + b + c is divisible by 3, then [a, b, ] is also divisible

Q
by 3. ,
R. If the number [a, b, c| is divisible by 9, then a + b + ¢ is also divisible
S

c| is divisible by 3, then a + b + ¢ is also divisible

by 9. ,
. If the number a + b 4+ c s divisible by 9, then [a, b, c] is also divisible

by 9.

3.3 Statements that Contain the Word or

Suppose that / and () are mathematical statements. As you know, the statement
PV () asserts that at least one of the statements P and () must be true. The
statement P V () does not guarantee that both of the statements P and Q are
true, although they might be. In this section we shall discuss some strategies for
proving a statement of the form PV (), and we shall also discuss some strategies

for using information that is phrased in this form.

3.3.1 = Proving a Statement of the Form P V ()

If P and () are mathematical statements, then, in order to prove the statement
PV @), we need to show that at least one of the statements P and Q is true. In
other words, we need to show that if either of the statements P and () happens
to be false, then the other one must be true. Among the ways in which one may
approach a proof of this type, the following two are worth mentioning:
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3.3.4 Example of a Proof Using Information Containing or
If x = cos 20° or x = — cos40° or x = — cos 80°, then

822 — 62z —1=0. (3.1

Proof. In order to prove this statement we need to perform three tasks. We need
! to show that z = cos 20° is a solution of Equation (3.1). Then we need to show
that z = — cos 40° is a solution of Equation (3.1). Finally we need to show that

x = — cos 80° is a solution of Equation (3.1). To perform the first of these three

i tasks we deduce from the trigonometric identity :

E cos 30 = 4cos® 0 — 3cosh
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3. @ Prove that if z = — cos40° or z = — cos 80°, then

n=2 (b — an) ,
and we have shown that f, must be even, 823 — 6z —1=0.

4. E A theorem in elementary calculus, known as Fermat’s theorem, says that

3.3.3 Using Information of the Form p VQ
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3.4.3 Example of a Proof Using Information Containing =

We shall take P to be the statement that  # 1 and () to be the statement that
x = 3. Suppose that we are given that P = () and that we want to prove that

the equation
2 —4r+3=0

holds. In the event that the statement P is true we know that x = 3, and we can
verify that the equation holds in this case. In the event that the statement P is
false we have z = 1, and, once again, we can verify that the equation holds.

344 Exercises on the Symbol =
1. (@ Outline a strategy for proving an assertion that has the form
P = (QA\R).
(b) Bl Write down the assertion P = (Q A R) in its contrapositive form
and outline a strategy for proving it in this form.
2. (a) Outline a strategy for proving an assertion that has the form
P=(QVR)
(b) Write down the assertion P = (@ V R) in its contrapositive form and
outline a strategy for proving it in this form. ,
3. (@ u Outline a strategy for proving an assertion
(PAQ)= R. |
(b) 8l Write down the assertion (P A Q) = R in its contrapositive form
and outline a strategy for proving it in this form.
4. (a) Outline a strategy for proving an assertion that has the form
(PV Q)= R.
(b) Write down the assertion (P V ) = R in its contrapositive form and
outline a strategy for proving it in this form.
5. (@ ‘ Outline a strategy for proving an assertion that has the form

(PV(Q=P))= R
(b) Bl Write down the assertion (P V (Q = P)) = R in its contrapositive
form and outline a strategy for proving it in this form.

that has the for

3.5 Statements of the Form Jx (P(x))

As you know, if P (a:) is a statement about an unknown z, then the assertion
Jz (P(z)) says that there is at least one object = for which the statement P(z)
is true. In this section we shall discuss the strategy for proving a statement of
the form 3z (P(z)) and the strategy for using information that is phrased in the

forrn' EJx(P(x))
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“f : , ; came up with a different kind of proof of the existence of transcendental
; numbers that is based upon his theory of sets. What Cantor showed is that
the set R of all real numbers has a property that is called uncountability but
that the set A of algebraic numbers does not have this property. Therefore,
he reasoned, the sets R and A cannot be equal to each other and so there
il must be real numbers that are not algebraic. Thus we can use Cantor’s proof
' to guarantee the existence of transcendental numbers even if we have never

S€en one.

‘ f i \\ To sum up, if we can lay our hands on an example of a certain kind of object,
i a c A then we know that the object exists. This method is the most satisfying way
of proving existence, but it isn’t always possible. Sometimes we have to use

an indirect method to prove an existence theorem and, as you may expect, the
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Now ‘we shall assume that a statement of this type has been given and we shall
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sentence because all the first sentence says is that there is a number between 0
and 1. :

On the other hand it, would be perfectly legitimate to say:

There exists a number x such that 0 < x < 1.
Furthermore, for every x € (0,1) we have x> < .

Alternatively, you could say:

Using the fact that (0, 1) is nonempty, choose z € (0,1).
Note that % < .

3.6 Statements of the Form Vz (P(z))

As you know, if P(x) is a statement about an unknown x, then the assertion
Vz (P(z)) says that the condition P(z) is true for every object z. In this section
we shall discuss the strategy for proving a statement of the form Vz (P(z)) and
the strategy for using information that is phrased in the form Vz (P(z)). '

3.6.1 Inductive and Deductive Reasoning

A statement of the type Va (P(z)) can never be proved by giving an example.
All an example can tell us is that there is one object  for which P(x) is true. It
says nothing to guarantee that P(z) is true for every x. Thus, for example, you
cannot conclude that the identity

§/3\/§m + @22 +1)VE—a?  [3v3z— (222 + 1) V=22

+ =z
6+/3 63

holds for all numbers z € [—2, 2] merely by observing that it holds when z = 0.
Even if we were to find thousands of numbers  in [—2, 2] for which this identity
is true, in the absence of a general proof we would still not know for sure that the
identity holds for all z- € [—2, 2].

Outside of mathematics there is a type of reasoning called inductive rea-
soning, which is used to validate statements of the type Vz (P(z)). The idea of
inductive reasoning is that P(z) probably holds for all z if it is known to hold for
a representative selection of objects . For example, if every time you have used
a certain laundry detergent you have broken out in a rash, you could reasonably
conclude that this detergent is causing your problem. Every time you use the
detergent and see the rash appear you feel a little more confident that your theory
1s correct.

Inductive reasoning plays an important role in such walks of life as science,
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prove that a condition is

; tru .
» We begin our proof by writing ¢ for every number 7 in

Suppose z ¢ [-2,2].

g g

3/3v3x + (222 + Dv4 =42
— = T vd—a?
6v/3 -
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and

6/3 2 2V 3
Once these two equations have been established, the desired result will follow at
once. To establish the first of these two equations we expand and simplify the

expression
3
v 1 [4-2
2 2 3

3
(‘” 1 4—902) _ 3+ (+)Va-2
] - =

</3\/§x—(2m2+1)m—x LA

to obtain

Z 4
3 6v/3

2
The second equation can be obtained similarly by showing that

e ,
(@" 1 4—932) _3W- () Vi-aF
! . .

= 3 6v/3

Before leaving this topic we should notice that, although the proof we have just
given is valid, it is not very satisfying. It guarantees that the equation

\a/3¢§w+<2x2+1>\/m+\3/3\/§x—<2x2+1>m_x
613 6/3 -

holds for every x € [—2, 2], but it doesn’t tell us how we could have anticipated
this equation. It doesn’t motivate it. If you would like to see a better approach, go
to the on-screen text and click on the icon , which will take you to some ex-
ercises in the optional document on cubic equations. Of course, those exercises
should not be attempted unless you decide to read that optional document.

3.6.4 Using Information of the Form Vz (P(z))

Information of the type Vz (P(z)) can be useful to us only when there are certain
objects x that are of particular interest to us and for which we would like to know
that the condition P(z) is true. We can then say that because the condition P ()
is true for every x, certainly P(x) will be true for those objects x that are of

interest to us.
‘Suppose, for example, that I am standing in a used car lot and I want to buy
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5. W@l Given that P(2) is a statement that contains an unknown and that S
is a set, write down an opening line of a proof of the assertion that P (z) is

true for every z € S.
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| We shall revisit the proof that sing Information Containing fp, every 6. Wi You are given that P(z) and Q(z) are statements that contain an
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of the set §?

Ml You are given that P(z) and Q(z) are statements that contain an
unknown z, that S is a set, that P(z) is true for every z € S, and that
P(z) = Q(z). Is it possible to deduce that Q(z) is true for at least one
member z of the set S?

Bl Write down the contrapositive form of the statement that for every

member z of a given set S we have P(z) = Q(x).

CVery = € (a,b), and we roved th
»0), t =
mmbor ) od tha%) at f(a) = f (). We began by choosing a 7
f’(C) - f(bg ﬁf(a).
—a
T
hen we made use of the fact that f'(z) = 0 for every z € (a,b). Among all th
,0). g all the

humbers z € (a, b), the numper .| i B

; ,0), mber ¢ is of particular interest t i
or every ¢ (. D) we by e 7 iy Therefors 0 us. Slnce J'(x)=0 0. -‘ Write down the denial of the statement that for every x we have
P(z) = Q(z). |

1) - f(a
£ 7(a) = ' ? 10. Prove that, for every number  in the interval [—2, 2], if we define

4 b—a
’ " \3/3\/§x+(2x2+1) V4 — 12

and we deduce that fla)=f (b).
6/3

8.

e

i 6.6 Exercises on Statements Containing Quantifiers
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\3“":“5 iS pl'ime, 5 i 1 T : . . T . i . i . -
/ .o 9IS prime. 7 is prime, 9 i eXperimental error, 17 ig prime : ' 3V3z — (222 + 1) V4 — 22
~ . ' s x — (2z -
‘ V=
| \/ 6v3

o 2. B You know th ar
g g that the .
ol determine that 999 of three ooty LoPleinah then
! S people are men. What . | :
an you conclude aboyt ‘ v’ + 0 =1+ uw.
3. “ The product ryj j { + +
: ; e for dljferenl‘iation sa | Hint: Wi fi i 3403 =
functions f and g that are d; ercatiabpe o 3};5 Vl:;:lltl ;’32 CVery number z and aJ int: With an eye on the proof in Subsection 3.6.3, show that u3+v3 = y+v.

3.7 Proof by Contradiction

(£9) (2) = f'(2)g(z) + J(@)g'(z).

Write down the opening line of proof of the

line should start- Suppose that . product rule. Your Opening

The idea of proof by contradiction is that if we can deduce a contradiction by
assuming that a certain statement P is false, then P must be true. Proof by
contradiction is usually most useful when the statement P that we are considering
seems rather intangible but its denial =P is nice and concrete. If P is this kind
of statement, it is sometimes hard to find a direct proof that P is true. However,
the assumption that P is false may place some very concrete information in our
hands. If we can show that this information leads to a contradiction, then we have

proved indirectly that P is true.
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denominator of the fraction m /n yielding a fraction p/q in which p and ¢ are

. ositive integers that have no common factor. Since v/2 = , we have
= ™. a direct proof of the P s p/a

h integers 17 and 7, How r= %

Now, since ¢ has no common factor with p we see that ¢ has no common
factor with p*. But, on the other hand, since g is a factor of 2¢2, we know

- positive integers 1, and n such that

Choose integers m, and n, such that z — !
X n
S you may expect from this discussi

to prove that a given rea] number is irrati
3.7.1

onal.

Some Examples of Proof by Contradiction

1. In this example we shall show that

s o by the ot o the number log, 6 is irrational. To prove

of by contradiction we begin:

To obtain a contradiction, assume that log, 6 is rational

Using the i i
g assumption that log, 6 is a positive rational number choose

log, 6 = o

n

We observe that 2m/n — g and therefore

the assumption that log, 6 is

2. In this : 6 must be irration
eXample we again concern ourselves with the irrationality of a al.

number. This ti
This time we show that the number /2 is irrational. To obtain a

2=

on, we often use proof by contradiction

that g is a factor of p?. Therefore ¢ = 1 and we see that p*> = 2. The latter
condition is certainly impossible because there is no integer whose square
is 2. Since the assumption that /2 is rational leads to a contradiction, we
conclude that /2 must be irrational.

3.7.2  Drawbacks of Proof by Contradiction

Although the method of proof by contradiction can be very useful when we are
proving certain kinds of statements, some members of the mathematical commu-
nity are less than enthusiastic about using it. They argue that it is better to give
a positive reason why a statement P must be true rather than to conclude that P
must be true because the statement —P leads to a contradiction. Therefore, they
feel that whenever we can see a direct way of showing that a statement P is true,
we should use it. :

Then there are the logical purists who point out that, if we can deduce a
contradiction by assuming that a certain statement P is false, then this leaves
open the remote possibility that we may also be able to deduce a contradiction by
assuming that P is true. In this event, we would conclude that there is an inherent
contradiction in mathematics. Therefore, the logical purists point out, if we can
deduce a contradiction by assuming that a statement P is false, we need to say
that, as long as there is no inherent contradiction in mathematics, P must be true.

3.7.3  Exercises on Proof by Contradiction
1. Prove that the following numbers are irrational:
(a) logy, 5.
) Il log,, 24
() V4.
(d) . Any solution of the equation 823 — 62 — 1 = 0.
2. Given that 7 and n are integers and that mn does not have a factor 3, prove
that neither m nor n can have a factor 3.
3. Suppose that we know that 2> — 2z < 0 and that we wish to prove that

0 <z < 2. Write down the first line of a proof of this assertion that uses
the method of proof by contradiction. Do this in such a way that your proof
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ion defined op the interval [0, 1] and number ¢ for whic §+2z) <1,
is function Jf has the Property that there 6(6+ -
‘ hat, whenever tand x belong to the interval ) ) : ind, we define
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of a proof of thig assertion that uses the method of proof by contradiction 5= _1_
5. Suppose that {21,224, - .. T} is a subset of 4 vector space'? 1 and that we 1+ 2|z
wish to prove that the set {z, Loy -z, }is linearly independent. Write
down the first Jine of a proof of thig assertion that uses the method of proof by Note that 9 < 1 and so
contradiction (Try to be specific. Don’t just Suppose that the set ig linearly 1 (1+42]z]) = 1.
dependent.) 6(0+2[z]) < 142z

that for every
i d, we want to show

d ¢ have been introduced,

Now that both x an

: 2 — 2% < 1. We
3.8 Some Further Examples mber ¢ satisfying the inequality |t — z| < 6 we have | |
nu

. y writing:
i This section containg a few extra cXamples in which we prove or disprove state.- ‘_v therefore continue the proof by writing o <5

” / ments of the form Yy, (P(x)). The Proofs contained here wijj help you to develop Suppose that ¢ is any number satisfying |t — = :
‘/”‘ skills that wil] be useful to you when you read some of the later chapters, ' P ine that

| ' Ing tha

) 3.81 A Fact About Inequalities : And we complete the proof by observing ) < 1.

¥ 2 .

In this subsection we discuss the two Statements that appeared in Example 5 of ' |t2 -z I <o(l+2fa)) <

o Subsection 2.1.4. We begin by proving that the first of the statements is trye, tements that appeared in
- ~—This statement jg a5 follows: We shall now show that the second of the two state

d for every
‘ o t for every number T an
number t satisfying the inequality |t — z| < § we have [t2 — 22 < 1. ! There exists a positive numll?er |f § u;? imé]::)e have |t? — 2| < 1.
Proof. Since we want to prove that condition holds for every number z, we number t satisfying the zne?ua wy t is false, suppose that § is any positive
begin this proof by writing: ! Proof. To see th2>t thlsd statemen ’
| er =1 5 an
Suppose that 7 is any real number. mymber. Defin s
! : t=x+ —.
Now that we have a challenger z in oy hands we need to prove that there exists ) . 2
a positive number § such that for every number ¢ satisfying [t — 2| < § we have o t— x| =§8/2 < 8, we have
[t — 22 < 1. we shall demonstrate the existence of such 3 number § by finding Then, although |
one. ‘ 52
To help us fing this number, we observe that if § > 0, then for any number ¢ , - =z6+—>1.1
satisfying |z — ¢| < § we have | " ' 4
2 _ 2 b ; 0
|22 — ¢ | = |z— tz+t] = [ — t(t—z)+ 2z ¢ bout Inequalities ,
| Another Fact Abo . le 6 in Subsec-
< o - iI+2 =l) <o @+2 1) : fstlf s subsection we prove Statement 6a that appeared in Example
) n this

12 Skip this exercise if you have not had a course jp linear algebra, ‘ tion 2.1.4:
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number x € [0, 1] and for every integer n > N we have
nw
1+ n2z?
To prove that this statement is false we shall prove that its denial is true. We
therefore need to prove the following statement:

There exists a number € > 0 such that for every positive integer N there
exists a number x € [0, 1] and there exists an integer n > N such that

<eE.

nT
—_>€
14+n222 —

We shall demonstrate the existence of such a number ¢ by finding one. As a
matter of fact, we shall show that the number 1 / 2 is an example of such a number

€. We begin by writing:
Define € = 1/2.
Now we must show that for every positive integer IV there exists a number z €
[0, 1] and there exists an integer n > N such that :
nw
14 n2x2 —
and so we continue by writing:

Suppose that N is any positive integer.

To complete the proof we need to demonstrate the existence of a number 7 €
[0,1] and an integer n > N such that
nT
— >
1+n222 — &
and we shall do so by finding two such numbers. We define n = N and x =
1/N, and we observe that

ny 1
el

T+n222 1+1

3.8.4 - Some Additional Exercises
In each of the following exercises, decide whether the statement is true or false
and then write a carefully worded proof to justify your assertion.
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1§ For Cvery number z € [0, 1] there €XiSts a positive integer IV such that
for every number € > 0 and every integer n, > N we have

nx

T = <e.
1+ n2y2

2. t For every number z € 0, 1] and every number € > () there exists a
humber § > () such that for every number ¢ € [0, 1] satisfying [t — 2| < &
we have [t — 22

3. @ For €very number ¢ > () anq cvery number z € [0, 1] there exists a
number 6 > 0 such that for every number ¢ € [0, 1] satisfying [t — z| < ¢
we have [t — 22

4. “ For every number ¢ ~ 0 there exists a number § > 0 such that for every

number z € [0, 1] ang every number ¢ € [0, 1] satisfying |t — z| < § we
have [t? — 22| o

5. n For every number ¢ ~ 0 and every number 4 there exists a number

0 > 0 such that for every number ¢ satisfying |¢ — z[ < & we have
[t — 22| < ¢.

6. n For every number ¢ > 0 there exists 3 number § > 0 such that for every
humber z and every numper ¢ satisfying [t — 2| < § we have [t* — 22| < ¢.

7. Bl For every number z € (0, 1] there exists a number § > 0 such that for
~ every number ¢ ¢ (0,1] satisfying |¢ — z| < & we have ’
1 1
/ t =z

<L

8. B There eXists a number § > ( such that for every number o € (0,1] and
every number ¢ € (0, 1] satisfying |t — z| < § we have
1 1
T =<1
i3

9. B For every number p € (0, 1] there exists anumber § > 0 such that for

every number z ¢ [p, 1] and every number t € [p,1] satisfying |¢ — x| <§
we have

/1_1<1.

t =z

10. (a) If either 0 <O<rmorm < 0 < 27, then

arctan (tan (6/2)) + arctan (tan (7/2 — 9)) = 7T2— 9.

(b) . Ask Scientific Notebook to solve the equation

arctan (tan (6/2)) + arctan (tan (7/2 — 6)) =

oo
Are you satisfied with the answer that it gives?
11. If z is any rational number, then

lim <lim (cos (n!mg))m> =1.

n—00 \'Mm—00

12. If x is any irrational number, then

lim ( lim (cos (n!mn))m) =0.

n—00 (m—>oo

T —
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Chapter 4
Elements of Set Theory

4.1 Introduction
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4.1.1 Bertrand Russell’s Paradox \
The trouble with Cantor’s theory of sets is that when we are collecting objects
together to make a set we have to allow for the possibility that some of the objects
that we are collecting might be sets themselves. For example, the set

{3,8,{2,3}}

contains the number 3, the number 8, and the set {2, 3} whose members are the
numbers 2 and 3. Notice how the set {2, 3} is a member of the set {3, 8, {2,3}}.
It is therefore entirely possible that a set A may be one of its own members. Look

at the following two examples:
1. Suppose that £ is the set of all cows. Since E is not a cow, it is not one of
its own members.

2. Suppose that F is the set of all of those things that we could ever talk about
that are not cows. Since this set £ is not a cow, we see that this set E is one

of its own members. '

Mathematicians prefer to avoid sets that are members of themselves. They
feel that if we are going to collect some objects together to make a set A, then
all of those objects ought to be well known to us before we collect them together.
Now what if one of those objects is the set A itself? We would need to know
what the set A is even before we have collected its members together to define it.
So mathematicians dislike the idea of sets that are members of themselves. Note,
however, that this dislike is not the devastating paradox of Bertrand Russell. It
is merely a warning that something nasty is going on and that a paradox may be
lurking somewhere.

We shall call a set A self-possessed if A is one of its own members. In other
words, A is self-possessed if and only if A € A. Bertrand Russell’s idea was to
consider the set S of all of those sets A that are not self-possessed. He then asked

himself a question:
Is this set S self-possessed?

He discovered that, no matter how one answers this question, the answer
leads to a contradiction. In other words, not only does the assumption that S
is self-possessed lead to a contradiction, but so does the assumption that S isn’t
self-possessed. To see how the two contradictions may be obtained one may

reason as follows:

o Suppose that S is self-possessed; in other words, suppose that .S belongs to
S. Thus S is a self-possessed member of S. But from the definition of S we
see that the members of .S have to be sets that are not self-possessed, and we

have arrived at a contradiction.



Chapter 4 Elements of Set T heory

4.1.2 The Zermelo-Fraenkel Axioms
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4.2 Sets and Subsets

53

is a subset of B we write A C B, and we also write this condition as B D A

and say that B includes A. Figure 4.1 shows how we may picture the condition
A C B. Note that two sets A and B are equal if and only if both of the conditions
A C Band B C Ahold. In the event that A C B and the sets A and B are not
equal, we say that A is properly included in B and that A is a proper subset
of B.
If A and B are any two sets, then the denial of the condition A C B says that
there exists € A such that ¢ B. In the event that A = (), we certainly can’t
find a member z € A such that x ¢ B because there are no members of A to
find. We therefore conclude that ()} C B for every set B. '

Figure 4.1

4.2.2  Equality of Sets

Two sets A and B are equal when they contain precisely the same members.
Thus if A and B are two given sets, then the condition A = B says that every
member of A must belong to B and every member of B must belong to A. In
other words, A = B is equivalent to the condition that A C B and also B C A.

4.2.3 . The Power Set of a Given Set
Given any set A, the family of all subsets of A is called the power set of A and

is written as p (A). For a simple example, observe that

p({1,2,3}) = {0, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}.

4.2.4  Set Builder Notation

We have already used notation such as {2, 7, —3}, which stands for the set whose

members are the numbers 2, 7, and —3. This is a form of what is known as set
- builder notation. There is also another form of set builder notation. Suppose that

P(z) is a statement that contains a single unknown z. The notation {x | P(z)}



1. Writing the set of all reg] Numbers!4

as R and taking P(z) t pe the
condition —3 <{z< 2, we have

{xeR[P(x)}={x€R[~3§x<2}:[~3,2).
2. Taking P(z) to be the condition 843

{xEQ[x<Oor$2<2}

is the set of fﬂl of those rationa] numbers that are less than V2.

The Uniop of Two Sets

Suppose that Aand B are given sets. The Symbol 4 B Stands for the get of all
of those objects that belong to g¢

least one of the two sets A and B and is ca]led
the union of 4 apg B. Thus |

AUBz{x]a:EAorxeB}.

4.2.6 The Intersection of Two Sets

Suppose that 4 and B are gjyep Sets. The symbo] 4 NnB
all of those objects that belong to both of
intersection of the sets 4 ang B. Thus

stands for the set of
the sets 4 and B and js called the

AﬂB:{x]xeAandxeB}.
AﬂB:@,Wesayth

at the sets 4 ang B are disjoint from each
other.

4.2.7  The Difference of Two Sets

Suppose that 4 and B are giyep sets. The difference 4 \ B of the Sets is defined
by
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Another way of looking at A \ B is to say that
A\B={z|z€ Aand = ¢ B}.

Figure 4.2

of two sets A and B.

. f Two Sets . f
Cartesian Product o . B is the set o
25 '1;16 e any two sets, then their Cartesian pIrodglcetré] o>;ds
- ar ) . . o .
Iglfirzléfed paairs (z,y) that have z € A and y € B.In
a \

AX B = {(z,y) |z € Aandy € B}.

4.2.9 | -
i Ily written as
f all real numbers is us.ua . 0.
) gie zzt gf all rational numbers is usually w;lttenZas Q
. i T Z..

g' The set of all integers is usually ertteﬁl a:] ritt(;n o 7t o 7 ot N, or N

' itive i 1s is usually , .
S e (;)f " poasllﬂlz‘:(::f znd a < b, then we shall use the standard in
5. Ifaand b are re

Some Common Sets

notatio [a,b] — {xERlCLSIL’Sb}
[a,b) = {z€R]a<z<b}
(a,b) = {zeR]a<z<b)
| @) = {recRla<z<t}.

y y ’ Y
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and an interva] of the form ( i
: b) is called i
defin nfini 1 ed an open interval,
¢ 1ntervals of infinite length: If ¢ is any real numberr ‘t’gin“’\;e Zar;i also exercises. The proof that we are about to give is highly detailed. When you
la ) = { ’ © deline prove the other three laws, write your proofs first in as much detail as is given
i 5 TeER|a< z} here. Then rewrite them more briefly.
‘1‘1“1 (a/, OO) = {3.'; e R I a < $} . .
I (—o0 q] { To prove law 2 we shall begin by proving that
i - 9 = T & R ] x S a}
(—00,a) = {xER1x<a} AN(BUC)C(ANB)U(ANCQ).

and finally, the symbo] (—o0, 00) is the set R, of 1 We want to prove that every member of the left side must belong to the right
all real numbers, Note that side. Since we want to prove a “for every” statement, we begin our proof with

int i
erval (q, a) is the empty set (). the words

Suppose that z € AN (B U C).

We know that z € A and also that z € B U C. In other words, we know that
r € Aandeitherz € Borz € C. Thus eitherz € Aandz € B or otherwise
z € Aand z € C. Since the first of these two possibilities says that z € AN B
and the second possibility says that z € ANC, we therefore know that belongs
to at least one of the two sets A N B and A N C' in other words, )

r€(ANB)U(ANO).

4.2.10 Exercises on Set Notation

1. ! Given objects a,b, and y and given that {a b} =
. ’ h

b=y {a, y}, prove that

then either ¢ = 4 and b =

! 3. Prove that if i
| “ a, b, z, and Y are any given objects and if

- Hab {a.0}} = {{o} o0,
thena = z ang p — Y.
| 4. B8 Descrive the set p (§).
] 5. u Describe the set (r(9)).
6. . Given that 4 — {a,b

We have therefore shown that ,
AN(BUC)C (ANB)U(ANCQ),
and we shall now complete the proof of law 2 by showing that

(ANB)U(ANC)CAN(BUCQ).

T e e
i S

. »0, ¢, d}, list all of th
7. Given that 4 — {a, b}, list all of the memberes n}einhbers of the set (A4). We want to prove that every member of the left side must belong to the right
8. Use the Evaluate operg tion ; . Ot the set p (p (4) )- side. Since we want to prove a “for every” statement, we begin our proof with
{1,2,3) N 12,5,4) and fl 2131;13 Scientific Notebook to evaluate the sets f the words
42.1 o 23,4, Suppose thatz € (AN B) U (AN C).

211  The DeMorgan Laws ' .
Suppose that A, B , q0 ) We know that z must belong to at least one of the sets A N B and A N C. Since
Known as the DéM(;r n ; are given sets. The following simple identit the given information says that one or the other of two conditions must hold, we
L AU (B ) gan laws: ©s are proceed according to the method described in Subsection 3.3.3. We have two

: nc :(AUB)Q(AUC’ tasks to perform:

2. AN(BUQ) — )-
3. A\ ((BUCC*;): (AQB) U(dn C). (a) We need to show thatif x € AN B, thenz € AN (BUO).
4. A\(BHC’)_((j\\ggm((A\O)' : (b)WeneedtoshowthatifxEAﬂC,thenxeAﬂ(BUC).
= U4\ ). -
\ ) To perform the first of these two tasks we suppose that z € A N B. Since

x € Aand x € B, we know that z € A and that belongs to at least one of the

Proof. we shall
prove law 2 and ]
cave the proofs of the other three Jaws ag sets BB and C. So in this case we certainly have z € AN (B ucl )

- 4.2 Sets and Subsets 57



42.12  Exercises on Set Operations

1.
Express the set | —2,3]\ (0, 1] as the unjon of two intervals.

2. Given two sets 4 and B
bro .. . .
condition 4.} 5 - prove that the condition A € Bis equivalent to the

3. Given two sets A and B
» prove th iti . .
condition AN B = 4. prove that the condition 4 € Bis equivalent to the

\

5. Tllustrate the identity

ANBUC) =4\ B)n 4\ o)

by drawing a figure. Then wri .
. write out a det
6. Tlustrate the i dentity etailed proof.

ANBNC) =\ B)U4\ ¢)

by drawing a figure. Then write out a detailed proof,

—7. Given ]
that A, B, and O are subsets of a set X » Prove that the condition

ANBNC = holds if and only if
X\NYux\BUx\ )= x

8. iven sets an .
tE, G ts A, B, and C, determine which of the following identities are
@ AN(B\C)=(AnB)\ (anc »
AR
(©AU(B\C) = (4UB)n(4\ ()
@ AU(B\C) = (4UB)\ (4N ),
© A\(B\C)= (4\ B\ ¢
® A\(B\C)=(A\B)\(A\O)_
(g)A\(B\C):(A\B)m(A\O)_
(.h)A\(B\C)=(A\B)u(A\C)'
b ANEND =GB uanc)
=(A\B)n 4
&) A= (AN B) U((A\\ B)), (4u0).
(l)p(AUB)zp(A)Up(B)_
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m)p (AN B) =p(A)Np(B).

m) AX (BUC)=(AxB)U(AxC).
© Ax (BNC)=(AxB)N(AxC).
() Ax (B\C)=(Ax B)\ (AxC).

9. . Is it true that if A and B are setsand A = A \ B, then the sets A and B

are disjoint from each other?

10. Given that A is a set with 10 members, B is a set with 7 members, and that

the set A N B has 4 members, how many members does the set A U B have?

11. @@ Give an example of a set A that contains at least three members and that

satisfies the condition A C p (A).

12. [l For which sets A do we have A € p (A)?

4.3 Functions

4.3.1 Intuitive Definition of a Function

In this brief presentation of set.theory we shall be content with an intuitive view
of a function f defined on a set A as a rule that assigns to each member z of the
set A a unique object written as () and called the value of the function fatx.

If f is a function with domain A and if f(z) € B for every z € A, then we
say that f is a function from A to B and we write f : A — B. When fisa
function from A to B we also say that f maps A to B. Figure 4.3 shows how we

may picture this idea.

Figure 4.3

43.2° Domain of a Function
If f is a function defined on a set A, then the set A is said to be the domain of the
function f. Thus the domain of a function f is the set of all objects x for which

the symbol f(x) is defined.
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4.3.3 Range of a Function

If f is a function defined on a set A, then the set

| {f@) |z e 43

is called the range of the function f. Note that if Jf 1 A— B, then the range of
J has to be a subset of the set B.

434 Some Examples of Functions
1. Suppose that we have defined

/(@) =a?

for every number 2. Then [ is a function defined op the set R of all real
numbers. The set R is the domain of f and the range of f is [0, co).
2. Suppose that we have defined

| f(z) = 22

for every number z ¢ [—1, 3]. Then [ is a function defined on [-1, 3] and
i this interval is the domain of J. The range of f is the interval [0, 9].

3. Suppose that C'is a bag of jelly beans, any one of which can be yellow,

. green,red, or blue. Suppose that for every x € C, the symbol f (:U) is defined
to be the color of the Jelly bean x. Then f'is a function defined on C' and

Figure 4.5

Ty e g g, e e

Note that the idea of a preimage does not Flepend on the idea of an inverse
function f ‘1; which will be defined in Subsection 4.3.12.

blue 3.7  One-One Functions ' _ .
| , 4.3.5  Restriction of a Function to a Set , :x given function f i_S said to be .onef- Onfoirfvi;lés(;}lln}r)&sls)lbf ;‘o(in)d zlztdﬁge‘r;g
[ Suppose that f : A — B and that £ is any subset of A. The restriction of f to membets Z; and w2 ﬁiiﬁéﬁa}niﬁ ofle-one is to say that whenever z; and x5
E is defined to be the function g from E to B defined by g(z) = f(z) for every : of saying :E:t di rila:]iinof f and z; # x5 we must have f(z;) # f(z3). One-one
i T € E. Furthermore, the image f [F] of E under fis deﬁned by ! ?;1122%;2 are sometimes called injective. hat
” JE] = {f(z) |z e E}. Since no two different real numbers can have the same cube, we see tha
o

. i
if f(x) = 23 for every z € R, then the function f is one-one. However, i

i -one because f(2) = f(—2). If f
= z2 for every x € R, then f is not one-one _ !
1];(;3 %unctmion from a};et of real numbers into R, then we can picture the condition

o Figure 4.4 shows how we may picture this idea. Note that if A is the domain of a
; function f, then the range of f is the set f [A].

. : f f more
Suppose that f : A — B If E is any subset of B, then the Preimage of £ | than-once. Figure 4.6 illustrates the »graph. Of nction exactly once while others
under f is the set -1 [E] defined by ‘ some horizontal lines meet the graph of this fu
1 , don’t meet it at all.
I Bl ={z € A f(z) € B} |

Figure 4.5 illustrates the idea of a preimage.
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Figure 4.6

4.3.8 Monotone Functiong

Suppose that Sis a '
set of real nump

the functi is i L crs and that f . g
have I;I(Ctt)lOi J} ES )m(;;;aasmg if whenever ¢ and 4 belong t: SR;' dVZe say that
> J(x). We can picture an j . . n < Z we

never falls 1 1nCreasing function
is illustrats ;Siy;imove from left to right. The graph of tl?iss (;;eeWhF ;e grap h
gure 4.7. 1If the graph of J actually rises s \I;e r?ao Ungtlon
, ve from

Y = fix) |

Figure 4.7

monotone, and 5 functio
1s said to be strictly monotone,

We see at once that a strj
4 one-one functjop does
the graph of a one-one functj

4.3.9 Functions onte
Suppose that [ is a function fro

N

ey g
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Another way of saying this is to say that for every member y of B there is at least
one member z of A such that y = f(z).

Suppose, for example, that f(x) = 22 for every z € R.. Although f : R —
R, the function f is not onto the set R. On the other hand, f is onto the interval

[0, 00).

43.10 A Remark About Terminology

In Subsection 4.3.7 we mentioned that a one-one function is sometimes called an
injective function. When we say that a given function is injective we are saying
that the function is of a certain special type. In other words, the word injective is
an adjective. We can say that a particular function is injective in exactly the same
way that we can say that a leaf is green.

However, unlike the concept of a one-one function, the concept that we stud-
ied in Subsection 4.3.9 does not describe a property of functions. When we say
that a given function f is onto a given set B we are not only talking about the
function f; we are talking about the function f and the set B. For example, if
f(z) = z? for every real number z, then f fails to be onto the set R of real
numbers even though it is onto the set [0, co).

We can ask whether a given function f is onto a given set B but we can never
ask whether or not a given function is onfo; because such a question makes no
sense. It makes no more sense than it would make if you were to ask me whether
I am sitting on. T would have to answer such a question by asking: “Sitting on
what?” The point of this remark is that the word onto is not an adjective. It is
a preposition and we need to keep in mind that one of the fundamental rules of
grammar prohibits the use of a preposition at the end of a sentence.

In some mathematical writing, the word surjective is used to describe the
fact that a given function is “onto” some unspecified set. This word surjective is
misleading because it looks like an adjective even though it is not one, and it will
not be used in this book.

43.11 Composition of Functions

If f is a function from a set A to a set B and g is a function from B to a set C,
then the: composition g o f of f and g is the function from A to C defined by

(9o f)(z) =g (f(2))
for every x € A. Figure 4.8 illustrates this idea. For example, if f(z) = x? for
every z € Rand g(z) = 142z forevery z € [0, 00), then (g o f) () = 14222
forevery z € Rand (f o g) (z) = (1 + 2%) for every z € [0, 00).
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Figure 4.8

4.3.12 Inverse Functiong

Suppose that / is a one-one function from g get A onto a set B. Given any

member y of B there ig one and only one mempey Z of A such that y=f(z).If
for each member y of the set 3 we define 9( Y) to be the one and only one member
Z of A for which Y = f(z), then we have defined functiong : B _, A. This
function g is called the inverse function of fand is written as S
Note that -1 (f(2)) = z for all € Aand f (f(y) = yforally e B,
Note finally that if 17 j any subset of B, then the expression f~1 [E] could be

J interpreted both ag the preimage of the set & under the function f and also as the

image under the function £~ of the set K. Fortunately, thege two interpretationg
yield the same set. ‘,

4.3.13  Inverse Functions Are also One-One
Suppose thay [ is a one-one Junction from g set A onto a set B . Then the Junction

FLis also one-one. Moreover, (f “1)*1 = f.

Proof. To show that £~ is one-one We need to show that if Y1 and y, belong to

B and S y) = /™ (yz), then Y1 = Ya. Suppose that Y1 and y, belong to B
and f~1(y,) = T (y2). Then we have

yi=f (f_l(yl)) =f (fﬁl(yz)) = Y.

Finally, given 4 ¢ A, the symbol (f/H7t (z) stands for the member of B that
J 7 sends to z. Byt since f~1(£(2)) = 2 we know that this member of B is
f(z). Therefore f(@) = (1)1 (z) and we conclude that (1)~ = ¢ m

65
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4.3.14 Some Examples of Inverse Functions .
a , then f is a one-one functi
1. If we define f(z) = 2 for every = € [0, 00) e

-1
" from [0, 00) onto [0, 00) and for every y € [0, c0) we have £~ (y)

2.

—m/2,m/2), then f is a one-one
= tanz for every z € (—7/2,

fI \ Wfic?rf ffi?:n{ E:i)w /2,7/2) onto R and for every real number y we have
unc

f —1(?J) ——-t I?artczag 3;1 \ {_1, 1}. We begin with the observation that if 2 is
Suppose

. any number unequal to 1/a and y # —1/a, then the equations
' T —a
v= 1—azx
and yta
TTIF ay’ -
it i to see that if either
i . On the other hand, it is easy . :
- - e(il[jlc‘zf 231? rgl/t S:mt—erln/e cltl tsthen both of these equations are impossible. From
fhi_s—observation we deduce that the function f defined by
T—a
f(@) =

i ‘ he set
i -one function from R \ {1/a} onto t
€ R\ {1/a} is a one-one
if{r\al{l_fv 1/a}. I\Ju{'rthermore, forevery y € R\ {—1/a}, we have
-1 . y +a

defining

r—a
f“(x): 1—ax

tions that we made in
x € [—1,1]. From the observatio :
g)r eveg ?in\lwmeblfliow thit each of these functions f(? is one-on;.lesillrlltceiv tzllese
fu)ilirggns are rational functions, they are also continuous on
o B se f, is one-one and because
that —1 < a < 1. Because f, <
NOY)SIEPEieand fa(1) = 1, the number f,(z) cannot ll>le eqSu;lrloii)1 o
g? Z([—for any z in the open interval (—1, 1). It :lhe{ef‘ct);"le;rf(} E);V) from the
ties of continuous functions that ei o )
elem?gtaéY(Pﬂl)Pfl)f lzr —1 < fo(z) <1foreveryz € (—1,1),0r fo(z) > 1
every —-1,1),
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forevery z € (-1, 1). But £,(0) = — ¢ (=1,1), and so we conclude that
Ja i [-1, 1] — [—1, 1].

Finally, to see that Ja is onto the interya] [—1, 1] we observe that if

Y € [~1,1], then J-aly) € [-1, 1] and it is easy to see thaty = f, (f=a(¥)).
We deduce that for each a, the function Ja is one-one fro [—1

, 1] onto
[~1,1] and that £ is the inverse function of f,.

expressions:
@ f HO, 3”

(b) f [(“27 3”

© f7{[-3,4]).

2. (Iﬁ Point at the equation J(*) = 22 and then click on the button
your computing toolbar. Then work out the expressions in parts (a
of Exercise 1 by pointing at them and clicking on the evaluate button.

3. Supply each of the definitions f(z) = 22 and 9(z) =2 -3z t0
Scientific Notebook and then ask Scientific Notebook to solve the equation

(fo9) (@) = (g0 f) ).
4. Supply the definition -

in

(b)

z—2
T) =
f(@) 1-22 v
to Scientific Noteboot:. In this exercise we shall see how to evaluate the
composition of the function S with itself up to 20 times starting at a variety

of numbers. Open the Compute menu, click on Calculus, and move to the
right and select lterate;Ip the iterag& dialogue box

It ’
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fill in the function as f, the starting value as 3-, and the number of 1zleravt:(;ns
as 20. Repeat this process with different starting values. Can you dra

nclusion from what you see?
5 C((})iven that f(z) = 2 forallz € Rand g(z) = 1 + z forall z € R,

simplify the following expressions:
@ (fog)[[0,1]].
() (g0 f)[[0,1]].

6. ((Ca)) ((g}izei)t[tggé ]f]gm) =@Bz—2)/(z+1)forallz e R\ {=1}, determine

whether or not f is one-one and find its range.
(b) Point at the equation
3z — 2
v= rz+1 |
and ask Scientific Notebook to solve for z. How many values of  are

given? Is this result consistent with the answer that you gave in part (a)
7. Sup(;fotshc;—:et;lll.;3 S;IOTZ ;e WB;I ;[nic; 311?: gl t% ]134? Is it true that &/ = f—! [ fIE]?
if f i -one? ! \ )
8. ?ﬁ;;gzﬁf}e& 7\)&;111% ;?';1;[ (];i’lt% ll;? Is it true that E = f [f~1 [E]]?
0. Yﬁatslié;)sszltﬁ;?}e; A — B and that P and (Q are subsets of B. Prove the ‘

identities

[

f—l [PUQ _ ft [Plu f! Q]
f_-l [PNQI=fTIPINnf1Q]

FP\NQI =PI £ Q).

B?
fIPUQI=f[PlUFIQ.

FIPNQI=fIPINf[Q].
FIP\@l = £ P\ £1Q).



sthatg : B C, and that the function ¢ o fis
one-one, prove that f must be one-one. Give an example to show that the
function g does not have to be one-one,

14. “ Given that f is 4 function from A onto B, thatg: B — C, and that the

function ¢ o / is one-one, prove that both of the functions f and g have to be
one-one.

15. Given any set S, the identity function ig on 9 jg defined by i (z) =  for
every x € S. Prove that if Jf is a one-one function from a set A onto a set B,
then f~1o f =4, and fo f~1 = ;.

16. Suppose that f:A— B
(@) Given that there exists a function 9 : B — A such that 9o f =iy, what

can be said about the functions f and g?

(b) Given that there exists a function 7 - B — A such that fo h = B, What
can be said about the functions f and 4?

(¢) Given that there exists a function 9: B — A such that 9o f=iyand

that there exists 3 function b : B — A such that foh=94 B, What can be

- said about the functions f, g, and h?

17. As in Example 4 of Subsection 4.3. 14, we define
Ja (x) =

Whenever g € (-1, Dandz € [-1, 1].
(3) Prove that if ¢ and belong to (-1, 1), then so does the number

_a+b

T —aq

1—az

e e e - g e~

PART 11

Elementary Concepts of Analysis

‘ S lysis and provides a
; basic principles of ana 5 anc J
' he text introduces the basic | o i , integral, an
o paFt t(;fc;uction to the concepts of limit, continuity, deeratlt‘:in ul.) fn which
cagef_ltﬂ « ri(c)as We begin with a chapter on the real number sys :
infinite series.

all of these concepts depend.



