2.1.5 \#3 The two statements are not the same. One says " $\forall x \exists y \ldots$..." and the other says " $\exists y \forall x \ldots$. " They are therefore different syntactically, and you can see that it makes a difference since the first is true and the second is false.
2.3 .8 a) There exists an $x>50$ such that $f(x) \neq g(x)$.
b) For all w there exists an $x>w$ such that $f(x) \neq g(x)$.
c) There exists a number x such that for all $\delta>0$ there is a number t such that $|x-t|<\delta$ and $|f(x)-f(t)| \geq 1$.
d) For all $\delta>0$ there exists a pair of numbers x and t such that $|x-t|<\delta$ and $|f(x)-f(t)| \geq 1$.
e) There exists $\epsilon>0$ and a number x such that for all $\delta>0$ there exists a t such that $|x-t|<\delta$ and $|f(x)-f(t)| \geq \epsilon$.
f) There exists $\epsilon>0$ such that for all $\delta>0$ there is a pair of numbers x and t such that $|x-t|<\delta$ and $|f(x)-f(t)| \geq \epsilon$.
3.6.6 \#2 You can conclude nothing about the 1000th person; they could be either male or female.
3.7.3 \#4 Assume that for all $\delta>0$ there exists t and x belonging to $[0,1]$ such that $|t-x|<\delta$ and $|f(t)-f(x)| \geq 1$.
3.8.4 \#7 Suppose we're given $x \in(0,1]$. Let

$$
\delta=\frac{x^{2}}{2(1+x)}
$$

Note that we are allowed to choose this value since $x^{2}>0$ and $2(1+x)>0$, so $\delta>0$.

Suppose that $t \in(0,1]$ is such that $|x-t|<\delta$. Then

$$
\left|\frac{1}{x}-\frac{1}{t}\right|=\left|\frac{t-x}{t x}\right|<\frac{\delta}{|t x|}
$$

Note that $t x$ is positive, since both t and x are.
Since $|x-t|<\delta, t>x-\delta$, and $\delta /(t x)<\delta /((x-\delta) x)$. Since $\delta<x^{2} /(1+x)$, this is less than

$$
\frac{x^{2} /(1+x)}{\left(x-x^{2} /(1+x)\right) x}
$$

which simplifies to 1 .
4.3.15 $\# \mathbf{9}$ For this problem, there are some things to watch out for: First, f does not have to be injective for $f^{-1}[A]$ to be defined for subsets A of its range. It only has to be injective for $f^{-1}(x)$ to be defined for elements x in its range.

Second, $f\left[f^{-1}[A]\right]$ need not equal A. Take $f(x)=x^{2}$ and $A=\mathbb{R}$, for example.

Third, $f^{-1}[f[A]]$ need not equal A. Take $f(x)=x^{2}$ and $A=\{x \in \mathbb{R} \mid x \geq 0\}$ for example.

Fourth, $f[A \cap B]$ need not equal $f[A] \cap f[B]$. Take $f(x)=x^{2}, A=\{-1\}$ and $B=\{1\}$ for example.
a) By definition, $f^{-1}[A \cup B]$ is equal to $\{x \mid f(x) \in A \cup B\}$. Since an element is in the union of two sets just in case it is in one of the two, this is equal to
$\{x \mid f(x) \in A$ or $f(x) \in B\}$, which is equal to $\{x \mid f(x) \in A\} \cup\{x \mid f(x) \in B\}$. By definition, this is $f^{-1}[A] \cup f^{-1}[B]$

