Theorem 0.1 (Intermediate Value) Let $f : [a,b] \to \mathbb{R}$ be a continuous function such that $f(a) \le c \le f(b)$. Then there is an $x^* \in [a,b]$ such that $f(x^*) = c$.

A function $f : [a, b] \to \mathbb{R}$ is strictly monotone increasing if for all $a \le x < y \le b$, f(x) < f(y).

Theorem 0.2 (Inverse function) Let $f:[a,b] \to \mathbb{R}$ be a continuous strictly monotone increasing function. Then f([a,b]) = [f(a),f(b)] and the inverse function $f^{-1}:f([a,b]) \to [a,b]$ is continuous.

- **Problem 1.** Prove that $f(x) = x^3 15x + 1$ has three real roots. (Hint: Look at f(-1) and f(1).)
- **Problem 2.** True or false? If a real valued function f(x) has a point x_0 , where its derivative $f'(x_0) = 0$, then f(x) cannot have an inverse. (Prove it or find a counterexample.)
- **Problem 3.** Prove that a continuous strictly monotone function $f : \mathbb{R} \to \mathbb{R}$ has the property that for every open set $U \subset \mathbb{R}$, f(U) is open.
- **Problem 4.** Construct a set starting with a trapezoid T_1 as in Figure 1 on the left. The base is twice the length of each of the top three sides, and T_1 can be subdivided into four other congruent trapezoids. Remove the bottom trapezoid to obtain T_2 , which is the union of the three remaining smaller trapezoids. Then iterate the construction with each of the new smaller trapezoids. Let T_{∞} be the intersection of all of these T_n . What is the fractal dimension of T_{∞} ?

Figure 1: For each colored trapezoid of T_n remove the trapezoid on its base to get T_{n+1} .