Theorem 0.1 (Intermediate Value) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(a) \leq$ $c \leq f(b)$. Then there is an $x^{*} \in[a, b]$ such that $f\left(x^{*}\right)=c$.

A function $f:[a, b] \rightarrow \mathbb{R}$ is strictly monotone increasing if for all $a \leq x<y \leq b, f(x)<f(y)$.
Theorem 0.2 (Inverse function) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous strictly monotone increasing function. Then $f([a, b])=[f(a), f(b)]$ and the inverse function $f^{-1}: f([a, b]) \rightarrow[a, b]$ is continuous.

Problem 1. Prove that $f(x)=x^{3}-15 x+1$ has three real roots. (Hint: Look at $f(-1)$ and $f(1)$.)
Problem 2. True or false? If a real valued function $f(x)$ has a point x_{0}, where its derivative $f^{\prime}\left(x_{0}\right)=0$, then $f(x)$ cannot have an inverse. (Prove it or find a counterexample.)

Problem 3. Prove that a continuous strictly monotone function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that for every open set $U \subset \mathbb{R}, f(U)$ is open.

Problem 4. Construct a set starting with a trapezoid T_{1} as in Figure 1 on the left. The base is twice the length of each of the top three sides, and T_{1} can be subdivided into four other congruent trapezoids. Remove the bottom trapezoid to obtain T_{2}, which is the union of the three remaining smaller trapezoids. Then iterate the construction with each of the new smaller trapezoids. Let T_{∞} be the intersection of all of these T_{n}. What is the fractal dimension of T_{∞} ?

Figure 1: For each colored trapezoid of T_{n} remove the trapezoid on its base to get T_{n+1}.

