Recall from Solow that $N_{\epsilon}\left(x_{0}\right)=\left\{x \in \mathbb{R}| | x-x_{0} \mid<\epsilon\right\}$ is called an ϵ-neighborhood of $x_{0} \in \mathbb{R}$.

Figure 1: An example of a neighborhood of x_{0} in \mathbb{R}.

A set $U \subset \mathbb{R}$ is called an open set if for every $x_{0} \in U$, there is a neighborhood of $x_{0}, N_{\epsilon}\left(x_{0}\right) \subset U$. If a set $X \subset \mathbb{R}$, an $A \subset X$, we say that A is relatively open in X if there is an open set $U \subset \mathbb{R}$ such that $A=U \cap X$. For example, the interval $A=[0,1 / 2)$ is relatively open in the interval $X=[0,1]$ because $A=[0,1 / 2)=(-1 / 2,1 / 2) \cap[0,1)=U \cap X$, where $U=(-1 / 2,1 / 2)$ is open in \mathbb{R}.

Figure 2: Intervals showing a relatively open set.

For any function $f: X \rightarrow Y, A \subset X$, and $B \subset Y$, we define $f(A)=\{f(a) \mid a \in A\}$, and $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$.

In class we showed:
Theorem 0.1 A function $f:[a, b] \rightarrow \mathbb{R}$ is continuous if and only if for every open set $U \subset \mathbb{R}$, $f^{-1}(U)$ is relatively open in the interval $[a, b]$.

Problem 1. Prove or find a counterexample to the statement: For any function $f: X \rightarrow Y, A \subset X$, and $B \subset Y, f(A)=B$ if and only $f^{-1}(B)=A$.

Problem 2. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x \sin (\pi / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Calculate $f^{-1}(\mathbb{R}-\{0\})$.
Problem 3. Prove that the set $[0,1] \cap(\mathbb{R}-\{x \in \mathbb{R} \mid x=1 / n, n \geq 1, n \in \mathbb{Z}\} \cup\{0\})$ is relatively open in in the interval $[0,1]$. (Hint: You can use that the function in Problem 2 is continuous, if you like.)

Problem for the Quiz on Tuesday, April 22 (To be written in class): Describe all the relatively open subsets of the set $\{x \in \mathbb{R} \mid x=1 / n, n \geq 1, n \in \mathbb{Z}\} \cup\{0\}$.

