Recall from Solow that  $N_{\epsilon}(x_0) = \{x \in \mathbb{R} \mid |x - x_0| < \epsilon\}$  is called an  $\epsilon$ -neighborhood of  $x_0 \in \mathbb{R}$ .



Figure 1: An example of a neighborhood of  $x_0$  in  $\mathbb{R}$ .

A set  $U \subset \mathbb{R}$  is called an *open set* if for every  $x_0 \in U$ , there is a neighborhood of  $x_0, N_{\epsilon}(x_0) \subset U$ . If a set  $X \subset \mathbb{R}$ , an  $A \subset X$ , we say that A is *relatively open in* X if there is an open set  $U \subset \mathbb{R}$  such that  $A = U \cap X$ . For example, the interval A = [0, 1/2) is relatively open in the interval X = [0, 1] because  $A = [0, 1/2) = (-1/2, 1/2) \cap [0, 1) = U \cap X$ , where U = (-1/2, 1/2) is open in  $\mathbb{R}$ .



Figure 2: Intervals showing a relatively open set.

For any function  $f: X \to Y$ ,  $A \subset X$ , and  $B \subset Y$ , we define  $f(A) = \{f(a) \mid a \in A\}$ , and  $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ . In class we showed:

**Theorem 0.1** A function  $f:[a,b] \to \mathbb{R}$  is continuous if and only if for every open set  $U \subset \mathbb{R}$ ,  $f^{-1}(U)$  is relatively open in the interval [a,b].

Problem 1. Prove or find a counterexample to the statement: For any function  $f: X \to Y$ ,  $A \subset X$ , and  $B \subset Y$ , f(A) = B if and only  $f^{-1}(B) = A$ .

Problem 2. Let  $f:[0,1]\to\mathbb{R}$  be defined by

$$f(x) = \begin{cases} x \sin(\pi/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Calculate  $f^{-1}(\mathbb{R} - \{0\})$ .

Problem 3. Prove that the set  $[0,1] \cap (\mathbb{R} - \{x \in \mathbb{R} \mid x = 1/n, n \geq 1, n \in \mathbb{Z}\} \cup \{0\})$  is relatively open in in the interval [0,1]. (Hint: You can use that the function in Problem 2 is continuous, if you like.)

Problem for the Quiz on Tuesday, April 22 (To be written in class): Describe all the relatively open subsets of the set  $\{x \in \mathbb{R} \mid x = 1/n, n \geq 1, n \in \mathbb{Z}\} \cup \{0\}$ .