The following are some definitions and Theorems that you can use for the homework and to understand the discussion of cardinal numbers.
Definition: Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two functions such that for all $x \in X, g(f(x))=x$. Then we say that f is an injection (one-to-one) and g is an surjection (onto). If, in addition, f is a surjection, we say it is a bijection.
Definition: Two sets X and Y are said to have the same cardinality if there is a bijection $f: X \rightarrow Y$.
Definition: Let the cardinality of a set X be a and the cardinality of the set Y be b. We say $a \leq b$ if there is an injection $f: X \rightarrow Y$. We say $a<b$ if, in addition, there is no bijection between X and Y.
Definition: A set X is countable if there is a bijection $f: \mathbb{N} \rightarrow X$, where $\mathbb{N}=\{1,2, \ldots\}$ is the set of positive integers. The set is X is also said to have cardinality \aleph_{0}.
Definition: A set X is said to have cardinality c if there is a bijection $f: 2^{\mathbb{N}} \rightarrow X$, where $2^{\mathbb{N}}$ is the set of subsets of \mathbb{N}.

Theorem 0.1 A countable union of countable sets is countable.
Theorem 0.2 An infinite subset of a countable set is countable.
Theorem 0.3 The set of all integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is countable.
Theorem 0.4 The set of rational numbers $\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}-\{0\}\}$ is countable.
Theorem 0.5 The real numbers \mathbb{R} have cardinality c.
Theorem 0.6 The irrational numbers $\mathbb{R}-\mathbb{Q}$ have cardinality c.
Theorem 0.7 (Schröder-Bernstein) If a and b are two cardinal numbers, $a \leq b$ and $b \leq a$, then $a=b$.

