Problem 1. Problems 1 to 10 on page 20 in Lewin.
Problem 2. Prove that the number of polynomials with rational coefficients is countable.
Problem 3. A real number is called algebraic if it is the root of a polynomial with rational coefficients. Prove that $\sqrt{2}$ is an algebraic number.

Problem 4. Prove that there are a countable number of algebraic numbers.
Problem 5. A line given by the equation $a x+b y=c$, where not both a and b are 0 , is called a rational line if a, b, c are all rational. Show that a line is rational if and only if it has, at least, two distinct rational points on it.

Problem 6. Prove that there are only a countable number of rational lines in the plane.
Problem 7. State the precise definition of what it means for a real valued function to be continuous at a point x_{0}.

Problem 8. State the precise definition of what it means for a real valued function not to be continuous at a point x_{0}.

Problem 9. Prove that the floor function $f(x)=\lfloor x\rfloor$ is not continuous at $x=0$.
Problem 10. Prove that $f(x)=x\lfloor x\rfloor$ is continuous at $x=0$.
Problem 11. Show that the function $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}$ defined by $f(x)=(x-2) /(x-1)$ is injective. Is f surjective? If not, find a point not in the image of f.

Problem 12. Prove that the sum of the cubes of three consecutive integers is divisible by 3 . Do this with induction and without induction.

Problem 13. Consider the statements. If they are true, prove it. If false give a counterexample.
(a) The sum of two prime numbers is never a prime number.
(b) The reciprocal of a nonzero number of the kind $z=a+b \sqrt{5}$, with a and b rational numbers, is a number of the same kind.

Problem 14. Construct the truth table for $\neg(A \Rightarrow B)$ and compare with $\neg A \Rightarrow \neg B$.

