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Abstract. We prove that, in the choiceless Solovay model, every set of
reals isH-Ramsey for every happy familyH that also belongs to the Solovay
model. This gives a new proof of Törnquist's recent theorem that there
are no in�nite mad families in the Solovay model. We also investigate
happy families and mad families under determinacy, applying a generic
absoluteness result to prove that there are no in�nite mad families under
AD+.

1. Introduction

This paper joins a long line of research inspired by Mathias's celebrated 1977
paper Happy Families [14]. We focus on the existence of de�nable mad fam-
ilies, in which there has recently been a surge of interest. Mathias showed
that there are no mad families in the Solovay-type model obtained by col-
lapsing a Mahlo cardinal, and he asked whether there are mad families in the
traditional Solovay model, obtained from only an inaccessible cardinal. That
question remained open until Asger Törnquist answered it positively in 2015.
Törnquist's proof is entirely combinatorial and makes no mention of the happy
families Mathias used in his original argument. One purpose of this paper is
to prove a strengthening of Törnquist's theorem (Theorem 16) that applies to
Mathias's happy families. In contrast to Törnquist's proof, our proof is very
similar to arguments in Mathias's original paper [14].
One of set theory's major projects is to show, often using strong assump-

tions, that pathological sets of reals cannot be easily de�ned. Theorems in
this vein might assert that a speci�c type of pathological set cannot be Borel,
or cannot be projective or ordinal-de�nable from reals in the presence of large
cardinals, or cannot exist under AD. Some theorems of this sort have been
established for in�nite mad families; Törnquist asked whether AD implies that
there is no in�nite mad family. Mathias argues for a strong connection be-
tween the Ramsey property and the existence of mad families, so Törnquist's
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question seems closely related to the longstanding open question whether ev-
ery set of reals must have the Ramsey property under AD. In Section 6 we
give a partial answer (Theorem 28), con�rming that there are no mad families
under AD+, a well-studied strengthening of AD. It is unknown whether AD
and AD+ are equivalent. In L(R), AD implies AD+.

2. Preliminaries

De�nition 1. Two sets are almost disjoint if their intersection is �nite. An
almost-disjoint family is a family A ⊆ [ω]ω such that any two di�erent
members of A are almost disjoint. A mad family is an almost disjoint family
that is maximal under inclusion. Equivalently, an almost-disjoint family A is
maximal if and only if every x ∈ [ω]ω has in�nite intersection with at least one
member of A.

Remarks.

• According to our de�nition, any partition of ω into �nitely many pieces
is a mad family, but we will be interested in in�nite mad families.
• Zorn's lemma implies that every almost-disjoint family extends to a
mad family. By applying this fact to an in�nite partition of ω, one
obtains an in�nite mad family. The use of AC in this argument is
unavoidable, by Theorem 7 (Mathias).
• A straightforward diagonalization argument shows that no in�nite mad
family can be countable.

Crucial to the study of mad families has been Mathias's connection between
mad families and the Ramsey property. In its classical form, Ramsey's theorem
states that every coloring χ : [ω]2 → 2 has an in�nite monochromatic set, a set
z ∈ [ω]ω such that χ is constant on [z]2. It's natural to seek mild conditions on
a family H ⊆ [ω]ω su�cient to guarantee that the monochromatic set z could
always be chosen to belong to H. The problem certainly isn't made easier by
requiring H to be upward-closed under ⊆, and a short exercise shows that the
complement of H must be closed under �nite unions. Re�ecting on the proof
of Ramsey's theorem reveals that one more condition on H would be enough
for H to have at least one monochromatic set for every 2-dimensional coloring.

De�nition 2. If y0 ⊇ y1 ⊇ y2 ⊇ · · · is a decreasing sequence of subsets of ω,
then we call a set y∞ ∈ [ω]ω a diagonalization of the sequence 〈yn : n < ω〉 i�
f(n+1) ∈ yf(n) for every n < ω, where f : ω → ω is the increasing enumeration
of y∞.
A set H ⊆ [ω]ω is called a happy family if it contains every co�nite set

and satis�es the following three conditions:

(i) (upward-closure) If x ∈ H and y ⊇ x, then y ∈ H too.
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(ii) (pigeonhole) If x0 ∪ x1 ∪ · · · ∪ xn ∈ H, then xk ∈ H for some k.
(iii) (selectivity) Every decreasing sequence y0 ⊇ y1 ⊇ · · · of members of H

has a diagonalization y∞ in H.

Remarks.

• A brief meditation on this de�nition reveals that if y∞ diagonalizes #—y ,
then so does every in�nite subset of y∞.
• Clauses (i) & (ii) simply assert that the complement of H, together
with all �nite subsets of ω, forms an ideal on ω, so a family satisfying
(i) & (ii) is called a coideal. Accordingly, happy families are often
called selective coideals.

Noting that happy families have monochromatic sets for all two-dimensional
colorings, Mathias began to investigate when they have monochromatic sets
for in�nite-dimensional colorings.

De�nition 3. If H is a coideal (typically a happy family) and X ⊆ [ω]ω is a
set of reals, then we say X is H-Ramsey if there is in H a monochromatic set
for the coloring associated to X, that is, if there isM ∈ H such that [M ]ω ⊆ X
or [M ]ω ⊆ Xc.

The following fact explains the connection and the terminology.

Proposition 4 (Mathias [14]). If A ⊆ [ω]ω is an in�nite almost-disjoint family
and I(A) is the ideal generated by A, then [ω]ω r I(A) is a happy family.

If A is an in�nite mad family, then a set belongs to [ω]ω r I(A) if and only
if it has in�nite intersection with in�nitely many members of A.
Mathias provides two other prototypes of happy families.

• [ω]ω is a happy family.
• Every Ramsey ultra�lter is a happy family.

Notice that a set X ⊆ [ω]ω has the classical Ramsey property if and only if
X is [ω]ω-Ramsey, in our terminology.
This observation follows immediately from the de�nitions, but it deserves

special emphasis.

Lemma 5. An in�nite almost-disjoint family A is a mad family if and only if
I(A)c is not I(A)c-Ramsey.

Mathias used this observation to prove several results about the non-existence
of de�nable mad families. His strategy, which we will emulate, is �rst to prove
that de�nable (suitably understood) sets are H-Ramsey for every happy fam-
ily H. Then, if a mad family A were de�nable, its corresponding happy family
I(A) would be too. These two facts are incompatible, by Lemma 5.
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In his study of happy families in the Solovay model, Mathias established
two theorems to support his conjecture that the Solovay model has no in�nite
mad families.

Theorem 6 (Mathias [14]). In the Solovay model, every set x ∈ [ω]ω has the
Ramsey property, i.e., is [ω]ω-Ramsey.

Theorem 7 (Mathias [14]). Suppose that G is generic over V for the Levy
collapse of a Mahlo cardinal. In V [G], every set x ⊆ [ω]ω that belongs to L(R)
is H-Ramsey for every happy family H ∈ V [G]. Consequently, there are no
in�nite mad families in L(R)V [G].

To prove that there are no in�nite mad families in the Solovay model (ob-
tained by collapsing an inaccessible cardinal), one might hope to imitate Math-
ias's proof of Theorem 7, but Eisworth showed that the conclusion of Theo-
rem 7 is too strong for only an inaccessible.

Theorem 8 (Eisworth [6]). Suppose that CH holds and that every set x ∈ [ω]ω

that belongs to L(R) isH-Ramsey for every happy familyH. Then ℵ1 is Mahlo
in L.

Eisworth's theorem doesn't seem to leave any room for proving a version of
Theorem 7 that uses only an inaccessible, and Törnquist's purely combinatorial
proof seems to con�rm this suspicion. But a closer examination of Eisworth's
proof suggests an alternative approach. Assuming that ℵ1 is not Mahlo in L,
Eisworth builds Ramsey ultra�lters U such that not every set in L(R) can be
U -Ramsey. These ultra�lters certainly aren't de�nable, in the sense that they
won't belong to L(R). Our chief innovation on this question is to consider
only de�nable happy families.
In Section 4 we will prove:

Theorem. If G is generic over V for the Levy collapse of an inaccessible
cardinal, then in V [G] every set X ⊆ [ω]ω that belongs to L(R) is H-Ramsey
for every happy family H ∈ L(R).

Using Lemma 5, we obtain as a corollary Törnquist's theorem [25] that there
are no in�nite mad families in L(R)V [G], the Solovay model. Törnquist was the
�rst to show that the nonexistence of in�nite mad families is consistent relative
to an inaccessible cardinal. Recently, Horowitz and Shelah [10] have shown
that the theory ZF+ �there is no in�nite mad family� is in fact equiconsistent
with ZFC.
The main di�culty in adapting Mathias's arguments to our needs is that,

while a coideal H may be a happy family in V [G], its intersection with an
intermediate extension V [G � α] ⊆ V [G] is unlikely to be closed under diag-
onalizations. For this reason, there may not be (in V [G � α]) any Ramsey
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ultra�lters U ⊆ H to guide Mathias forcing over M . Mathias forcing guided
by an ultra�lter U ⊆ H is the primary tool Mathias uses to prove that a set
is H-Ramsey, but it has the Mathias and Prikry properties if and only if U
is Ramsey.1 Consequently, we will need a di�erent poset to serve the same
purpose in the absence of Ramsey ultra�lters.

3. Diagonalization forcing

We use standard notation for sequences, so, for instance, lh(s) denotes the
length of s (which, for us, will always be the same as its domain). It will be
convenient to refer to the last term of s by last(s), i.e., last(s) = s(lh(s)− 1).
A set y∞ almost diagonalizes a ⊆-decreasing sequence #—y = 〈y0, y1, . . . 〉

if there is some n < ω such that y∞ r n diagonalizes #—y . Just as Math-
ias forcing guided by an ultra�lter generically adds a set almost-included in
every measure-one set, we need a poset that generically adds a set almost-
diagonalizing every decreasing sequence of measure-one sets.
Fix a nonprincipal ultra�lter U on ω. (Crucially, we do not assume that U

is a Ramsey ultra�lter.)

De�nition 9. Conditions in PU are pairs 〈s, #—y 〉 such that

(i) s ∈ ω<ω is a �nite, strictly increasing sequence,
(ii) #—y = (y0, y1, . . . ) is an ⊆-decreasing sequence of sets, each in U .

Say 〈t, #—z 〉 ≤ 〈s, #—y 〉 i�
(iii) s is an initial segment of t,
(iv) zn ⊆ yn for every n ≥ last(t), and
(v) t(n+ 1) ∈ yt(n) for every n ∈ [lh(s), lh(t)− 1).

If p = 〈s, #—y 〉, then we will often write stem(p) = s. Following convention,
we write q ≤0 p to mean that q ≤ p and stem(q) = stem(p). It will also be
convenient to write #—z ≤ #—y to mean that zn ⊆ yn for every n < ω.
A generic �lter G ⊆ PU gives rise in a natural way to a generic real g,

the range of the union of all the stems of conditions in G. Clause (v) of the
de�nition ensures that a condition 〈s, #—y 〉 forces the generic real to almost-
diagonalize #—y .
There is a natural Ellentuck-type neighborhood associated to a condition
〈s, #—y 〉. Let's �rst de�ne a version for �nite sequences:

Js, #—y K := {t ∈ ω<ω : t ⊆ s, or s ⊆ t and

t(n+ 1) ∈ yt(n) for every n ≥ lh(s)}.

1This follows from [7, Theorems 2.4, 4.1]. See [14, Theorem 2.10] for the Mathias property,
and for a related result see [11, Theorem 1.20].
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Informally, Js, #—y K comprises all end-extensions of s that diagonalize #—y beyond
s. Now de�ne [s, #—y ] to be the set of x ∈ [ω]ω such that s enumerates an initial
segment of x and every initial segment of x belongs to Js, #—y K.

Remarks.

• Js, #—y K is a subtree of ω<ω, and [s, #—y ] is the set of its branches.
• [∅, #—y ] is exactly the set of diagonalizations of #—y .
• If p = 〈s, #—y 〉 is a condition and t ∈ Js, #—y K, then Jt, #—y K is a condition
that extends p.

We have described a natural identi�cation of conditions 〈s, #—y 〉 with subtrees
Js, #—y K of ω<ω. A fusion argument (see the proof of Lemma 10) shows that these
trees form a dense subposet of Laver forcing guided by U , for which many of the
results in this section were proved by Judah and Shelah [11]. Nonetheless, our
presentation of the poset allows us to characterize PU -genericity by a proof
very similar to Mathias's original characterization of genericity for Mathias
forcing. We will therefore reprove some of the results of [11] and translate
them into our language.

Lemma 10. Let O ⊆ [ω]ω be an open set. There is a condition 〈∅, #—y 〉 ∈ PU
such that either [∅, #—y ] ⊆ O or [∅, #—y ] ⊆ Oc.

Proof. Consider the following game. Players I & II play to create a sequence
〈y0, k0, y1, k1, . . . 〉

I y0 ⊇ y1 ⊇ y2 ⊇ · · ·
II k0 ∈ y0 k1 ∈ y1 k2 ∈ y2 · · ·

such that, for every n < ω,

• yn ∈ U ,
• yn+1 ⊆ yn,
• kn ∈ yn, and
• kn < kn+1.

At the end of the game, Player I wins i� {k0, k1, . . . } ∈ O. By the determinacy
of open games, one of the two players has a winning strategy σ.
Suppose �rst that σ is a winning strategy for Player I. De�ne

yn =
⋂
{σ(t) : t a sequence of II's moves consistent with σ, last(t) ≤ n} .

Any diagonalization x of the sequence #—y is a sequence of II's moves in a
complete run of the game consistent with σ, and thus x ∈ O. That is, [∅, #—y ] ⊆
O.
Suppose that, on the other hand, σ is a winning strategy for Player II.
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Claim. The set z∅ of k < ω for which there is wk ∈ U satisfying k = σ(〈wk〉)
belongs to U .

Proof of Claim. Suppose not, so that v := {k : (∀w ∈ U) k 6= σ(〈w〉)} ∈ U .
But this means that v is a valid �rst move for Player I, and then σ(v) ∈ v.
This is impossible.

We can repeat the argument of the Claim to obtain a tree T ⊆ ω<ω and,
for each t ∈ T , sets wt, zt ∈ U satisfying

(i) every t ∈ T has succT (t) ∈ U ;
(ii) wt ⊆ ws whenever s ⊆ t;
(iii) zt =

{
k < ω : k = σ(

〈
w∅, . . . , wt, wt̂〈k〉〉)}.

Put y0 = z∅ and inductively de�ne yn = yn−1 ∩
⋂
{zt : last(t) = n, t ∈ T}

Clause (iii) and the choice of yn imply that every x ∈ [∅, #—y ] is a sequence of
II's plays consistent with the strategy σ. We conclude that [∅, #—y ] ⊆ Oc, as
desired.

De�nition 11. Say that a condition 〈s, #—y 〉 captures a dense set D ⊆ PU if
every x ∈ [s, #—y ] has an initial segment whose enumeration t ∈ Js, #—y K satis�es
〈t, #—y 〉 ∈ D.

Compare with [14, De�nition 2.2]. Informally, a condition captures D if
to get into D one need only extend the stem of the condition, and the set
of extensions that work is very rich, containing an initial segment of every
diagonalization of #—y .
If 〈s, #—y 〉 captures D, then 〈s, #—y 〉 still captures D in any outer model. To

see this, observe that

{x ∈ [ω]ω : (∃t, an initial segment of x) 〈t, #—y 〉 ∈ D}
is open in the product topology (since D is open in the forcing topology) and
apply Π1

1-absoluteness. We will use this fact in the proof of Lemma 14.

Lemma 12. Let p ∈ PU be a condition.

(a) For every dense open set D ⊆ PU , there is a condition q ≤0 p that
captures D.

(b) For every countable family {Dn : n < ω} of dense open subsets of PU ,
there is a condition q ≤0 p that captures all of the Dn.

Proof. (a) Assume for convenience that p is the empty condition; the proof of
the more general result is similar. For every increasing sequence t ∈ ω<ω choose
(if possible) a sequence #—y t ∈ Uω such that 〈t, #—y t〉 ∈ D. (If no such sequence
exists, just put #—y t = 〈ω, ω, . . . 〉.) Construct a sequence #—y∞ by de�ning

y∞n =
⋂

last(t)≤n

ytn.
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By the choice of #—y t, if there is any #—z ∈ Uω such that 〈t, #—z 〉 ∈ D, then
〈t, #—y∞〉 ∈ D. (This uses that D is open.) Consider

O = {x ∈ [ω]ω : (∃t, an initial segment of x) 〈t, #—y∞〉 ∈ D} ,

an open subset of [ω]ω. By Lemma 10, there is a #—y ∗ (which can be taken to
satisfy #—y ∗ ≤ #—y∞) in Uω such that either [∅, #—y ∗] ⊆ O or [∅, #—y ∗] ⊆ Oc.
If [∅, #—y ∗] ⊆ O, then 〈∅, #—y ∗〉 captures D, and we're done.
Suppose that [∅, #—y ∗] ⊆ Oc. Since D is dense, there is a condition 〈s, #—z 〉 ∈ D

satisfying 〈s, #—z 〉 ≤ 〈∅, #—y ∗〉. By choice of #—y∞, 〈s, #—y∞〉 ∈ D, so 〈s, #—y ∗〉 ∈ D
since D is open. But now [s, #—y ∗] ⊆ O, and [s, #—y ∗] is nonempty, a contradiction.
Part (b) can be proved similarly to part (a), with an added fusion argument.

Again assume for convenience that p is the empty condition. De�ne #—y t so
that for any i ≤ last(t), if there is #—z with 〈t, #—z 〉 ∈ Di, then 〈t, #—y t〉 ∈ Di. Set
y∞n =

⋂
last(t)≤n y

t
n.

Part (a) shows that there exists 〈∅, #—y ∗n〉 ≤ 〈∅, #—y∞〉 that captures Dn. In-
deed for any �xed z0, . . . , zn−1 ∈ U one can �nd such #—y ∗n with y∗ni = zi for
i < n. To see this, for any r of length ≤ n with r(i + 1) ∈ zr(i) run the
construction of #—y ∗ in part (a) below 〈r, #—y∞〉. The option [r, #—y ∗] ⊆ Oc is still
impossible, because of the current de�nition of #—y∞. So the construction pro-
duces #—y ∗r with [r, #—y ∗r] ⊆ O. Set y∗ni for i ≥ n to be

⋂
last(r)≤i y

∗r
i , and y

∗n
i = zi

for i < n. Then for any x ∈ [∅, #—y ∗n], setting r to be the �rst initial segment
of x with last(r) ≥ n we have x ∈ [r, #—y ∗r] ⊆ O.

In particular we can obtain #—y ∗n so that for all i < n, y∗ni = y
∗(n−1)
i . Set

y∗n =
⋂
m≤n y

∗m
n . Then 〈∅, #—y ∗〉 captures all Dn.

Lemma 13 (Prikry property). If p = 〈s, #—y 〉 ∈ PU is a condition and σ is a
sentence in the forcing language, then there is a condition p∗ ≤0 p that either
forces σ or forces ¬σ.

Proof. Assume for convenience that s = ∅; the proof of the general case is
similar. We can again assume, by shrinking the yns if necessary, that every
sequence in J∅, #—y K is strictly increasing. Let D be the (dense, open) set of
conditions that decide σ:

D = {q ∈ PU : q  σ or q  ¬σ} .

By Lemma 12 there is a condition 〈∅, #—y ∗〉 ≤ 〈∅, #—y 〉 that captures D. Now
de�ne

B = {x ∈ [ω]ω : 〈t, #—y ∗〉  σ for some initial segment t of x}

and

C = {x ∈ [ω]ω : 〈t, #—y ∗〉  ¬σ for some initial segment t of x} .
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Notice that both B and C are open subsets of [ω]ω and that [∅, #—y ∗] ⊆ B ∪ C.
Apply Lemma 10 to get a condition 〈∅, #—y ∗∗〉 ≤ 〈∅, #—y ∗〉 such that [∅, #—y ∗∗] ⊆ B
or [∅, #—y ∗∗] ⊆ C.
We will show that 〈∅, #—y ∗∗〉  σ in the case when [∅, #—y ∗∗] ⊆ B. (The other

case is similar.) Suppose for a contradiction that we can �nd a condition
〈s, #—z 〉 ≤ 〈∅, #—y ∗∗〉 that forces ¬σ. Choose any x ∈ [s, #—z ] ⊆ [∅, #—y ∗∗] ⊆ B and
let t be an initial segment of x such that 〈t, #—y 〉  σ. This fact contradicts
our assumption that 〈s, #—z 〉  ¬σ; indeed, 〈t, #—y 〉 and 〈s, #—z 〉 are compatible
conditions, since one of s and t is an initial segment of the other.

Lemma 14 (Characterization of PU -genericity, Judah�Shelah). Let V ⊆ W
be models of set theory, let U ∈ V be an ultra�lter in V , and let PU ∈ V be
the associated diagonalization forcing. For a real g ∈ [ω]ω ∩W , the following
are equivalent.

(a) g is a PU -generic real over V ;
(b) for every decreasing sequence #—y ∈ V of sets yn ∈ U , g almost-diagonalizes

#—y .

Proof. First, we assume that g is a PU -generic real over V , by which we mean
that the set

G = {〈s, #—y 〉 ∈ PU : g ∈ [s, #—y ]}
is a generic �lter. Fix a sequence #—y of sets yn ∈ U that belongs to the ground
model V . The set D of conditions 〈t, #—z 〉 such that #—z ≤ #—y is a dense set in V ,
so genericity provides a condition 〈t, #—z 〉 ∈ G ∩D. There is n < ω such that t
is the enumeration of g ∩n. It follows that grn diagonalizes #—z and therefore
also #—y .
For the converse, suppose that (b) holds of g and let D ∈ V be a dense

subset of PU . We'll need a way to relate a condition p to a similar condi-
tion with a di�erent stem. For any condition p = 〈s, #—y 〉 and any increasing
sequence a ∈ ω<ω, de�ne copya(p) to be the condition 〈â s, #—y 〉. Likewise,
de�ne copya(D) = {〈t, #—z 〉 : copya(〈t, #—z 〉) ∈ D}. Observe that copya(D) is a
dense open subset of PU .
Apply Lemma 12 to the empty condition to get p = 〈∅, #—y 〉 that captures the

dense open set copya(D) for every increasing a ∈ ω<ω. By assumption, there
is n < ω such that grn diagonalizes #—y . The fact that p captures copyg∩n(D)
means that there is k ≥ n such that 〈g ∩ [n, k), #—y 〉 ∈ copyg∩n(D). (Here we
are using the absoluteness of capturing from V to W ; g r n does not belong
to V .) In other words, 〈g ∩ k, #—y 〉 ∈ D. And g ∈ [g ∩ k, #—y ], so we have shown
the �lter determined by g to be generic, as desired.

The argument at the end of the proof of Lemma 14 patches a small error in
the proof of [11], Lemma 1.12.
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Corollary 15 (Mathias property). If g is PU -generic over a model M and
g′ ⊆ g, then g′ is PU -generic over M too.

4. The Solovay model

Let κ be an inaccessible cardinal, and let G be generic over V for the Levy
collapse Coll(ω,<κ). For our purposes, the Solovay model is L(R) of the
generic extension V [G]. In this section we will prove the following theorem.

Theorem 16. If X ∈ L(R)V [G] is a subset of [ω]ω and H ∈ L(R)V [G] is a
happy family, then X is H-Ramsey.

Remarks.

(i) When we say that �H is a happy family� and �X is H-Ramsey,� we
mean that these statements are true in V [G], though they are certainly
absolute between L(R)V [G] and V [G].

(ii) Contrast this theorem with Mathias's theorem 7: Using a Mahlo cardi-
nal, Mathias constructs a model in which all sets in L(R) areH-Ramsey
for every happy family H, whereas using only an inaccessible cardinal
we get this strong Ramsey property for only the happy families that
belong to L(R).

We'll need the following lemma, an essential ingredient in Solovay's proof
(see [20]) that all sets in the Solovay model are Lebesgue-measurable.

Lemma 17 (Factor Lemma, Solovay). Suppose that κ is an inaccessible car-
dinal and that P is a poset of size < κ. Let G be generic over V for the Levy
collapse Coll(ω,<κ). If in V [G] there is a �lter h ⊆ P that is P-generic over
V , then there is G∗ ∈ V [G] that is Coll(ω,<κ)-generic over V [h] and such
that V [h][G∗] = V [G].

V [G]

V [h]

V

Coll(ω,<κ)

Coll(ω,<κ)

P

Proof of Theorem 16. Let H ∈ L(R)V [G] be a happy family, and let X ⊆
[ω]ω be a set of reals that belongs to L(R)V [G]. Every set in L(R) is ordinal-
de�nable from a real, so there are a formula φ = φ(x, y, w), a real r ∈ V [G],
and a sequence α of ordinals such that

x ∈ X i� V [G] |= φ[x, r, α].
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Recall that κ is inaccessible and G is generic over V for the Levy collapse
Coll(ω,<κ). It follows from the chain-condition of the Levy collapse that
there is an ordinal β < κ such that the real parameter r belongs to V [G � β].
Let φ∗ = φ∗(x, y, w) be the natural formula satisfying the equivalence

φ∗(x, y, w) ⇐⇒ ∅ Coll(ω,<κ) φ(x, y̌, w̌).

And let
X = {x ∈ [ω]ω ∩ V [G � β] : V [G � β] |= φ∗[x, r, α]} .

Notice that X belongs to V [G � β]; in fact, by the symmetry of the collapse,
it is equal to X ∩ V [G � β]. Indeed, for x ∈ [ω]ω ∩ V [G � β],

x ∈ X ⇐⇒ V [G] |= φ[x, r, α]

⇐⇒ ∅ Coll(ω,<κ) φ[x, r, α]

⇐⇒ x ∈ X.

By similar arguments, H := H ∩ V [G � β] belongs to V [G � β]. Certainly H
need not be closed under diagonalizations in V [G � β], so we cannot expect
to �nd in V [G � β] a Ramsey ultra�lter U ⊆ H to guide Mathias forcing. It
is for this reason that we will use the diagonalization forcing, since�unlike
Mathias forcing� it has the Mathias and Prikry properties even when guided
by a non-Ramsey ultra�lter.
Because H is a coideal in V [G], its intersection H with V [G � β] must be a

coideal in V [G � β]. Working in V [G � β], we can extend the �lter dual to the
ideal H

c
to obtain an ultra�lter U ⊆ H.

Claim 1. Let g ∈ V [G] be a real that is generic over V [G � β] for a poset
P ∈ V [G � β]. Then g ∈ X i� V [G � β][g] |= φ∗[g, r, α].

Proof of Claim 1. This is just an application of the Factor Lemma 17. Work
in V [G]. Because Coll(ω,<β)∗ Ṗ is a poset in V of size < κ, we can apply the
Factor Lemma to �nd a �lter G∗ that is Coll(ω,<κ)-generic over V [G � β][g]
and such that

V [G] = V [G � β][g][G∗].

Suppose �rst that g ∈ X, so V [G] |= φ[g, r, α]. The symmetry of the Levy
collapse guarantees that in V [G � β][g] the empty condition forces φ(ġ, ř, α̌).
That is,

V [G � β][g] |= φ∗[g, r, α].

For the converse, suppose that V [G � β][g] |= φ∗[g, r, α]. Now V [G] = V [G �
β][g][G∗] must satisfy φ[g, r, α], since the empty condition in Coll(ω,<κ) forces
it and G∗ is Coll(ω,<κ)-generic over V [G � β]. That is, g ∈ X.

Claim 2. In V [G], for every 〈∅, #—y 〉 ∈ PU there is a real g ∈ H that is PU -
generic below 〈∅, #—y 〉 over V [G � β].
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Proof of Claim 2. Work in V [G]. By the characterization of PU -genericity
(Lemma 14), we need only ensure that g almost-diagonalizes every⊆-decreasing
sequence of sets in U that belongs to V [G � β]. But [ω]ω∩V [G � β] is countable,
so we can �nd a single sequence #—z = 〈zn : n < ω〉 of subsets of U such that
any real that almost-diagonalizes #—z also almost-diagonalizes every sequence
in Uω ∩ V [G � β]. Moreover, we can arrange that #—z ≤ #—y .
It remains to show that there is a real g ∈ H that diagonalizes the sequence

#—z , but this follows immediately from the de�nition of happy family, since each
zn belongs to H.

Using the Prikry property of PU , �nd a condition 〈∅, #—y 〉 ∈ V [G � β] that
forces either φ∗(ġ, ř, α̌) or its negation. (Here ġ is the natural name for the
generic real g.) Now the real g ∈ [∅, #—y ] ∩H provided by Claim 2 will witness
that X is H-Ramsey. The argument is symmetric in X and Xc, so we may
assume without loss of generality that g ∈ X. It follows by Claim 1 that 〈∅, #—y 〉
forces φ∗(ġ, ř, α̌), not its negation. Working in V [G], consider any real g′ ∈ [g]ω.
Since PU has the Mathias property, g′ is also PU -generic over V [G � β]. And
g diagonalizes #—y , so g′ does also. That is, 〈∅, #—y 〉 belongs to the PU -generic
associated to g′. It follows that

V [G � β][g′] |= φ∗[g′, r, α],

since 〈∅, #—y 〉 forces it. Now apply Claim 1 to conclude that g′ ∈ X. This
completes the proof that X is H-Ramsey.

By taking X = H in Theorem 16 and applying Lemma 5, we obtain the
following corollary.

Corollary 18. If A ∈ V [G] is an in�nite mad family, then A does not belong
to the Solovay model L(R)V [G], and neither does the ideal that it generates.

5. Meager filters

To answer Törnquist's question, whether AD implies that there are no in�nite
mad families, one might hope to show that the ideal generated by an in�nite
mad family fails to have a regularity property that all sets enjoy under AD.
Unfortunately, the Baire property is inadequate for this approach. It can be
seen directly from the de�nition that the ideal generated by an in�nite mad
family has the Baire property; in this section we give a game-theoretic proof
that all ideals are meager under AD.
Notice �rst that an ideal on ω has the Baire property if and only if it is

meager; this is a well known application of 0�1 laws. See Oxtoby [17, Thm.
21.4]. (Likewise, an ideal is measurable if and only if it has measure zero.)
The reader is directed to Bartoszy«ski and Scheepers [1] for another char-

acterization of meager �lters using a integer game and for some applications.
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For a real x ∈ [ω]ω, write ex for the unique increasing function ω → ω that
enumerates x. We say a �lter F on ω is bounded if the family {ex : x ∈ F} is
bounded in the eventual-domination ordering on ωω.
Recall Talagrand's characterization of �lters on ω with the Baire property.

Theorem (Talagrand [23]). A �lter on ω is meager i� it is bounded.

The proof of Talagrand's theorem is very nearly contained in Blass [2]; for
the reader's convenience, we give the rest of the details here.

Claim. Let F be a �lter on ω containing every co�nite set. The following are
equivalent.

(i) F is meager.
(ii) There is an interval partition (I0, I1, . . . ) of ω such that every set in F

meets all but �nitely many of the pieces In.
(iii) There is an increasing function f ∈ ωω such that every set in F meets

the interval [n, f(n)) for all but �nitely many n.
(iv) F is bounded.

Proof of claim. The equivalence of (i) and (ii) is established in Proposition 9.4
of [2], so it su�ces to prove the implications (ii) ↔ (iii), (ii) → (iv), and (iv)
→ (i).
(ii) → (iii). De�ne f(n) to be max(Ik+1) + 1 for the unique k such that

n ∈ Ik. Now let x ∈ F and let n be large enough that x ∩ Ik+1 6= ∅, where
n ∈ Ik. Notice that Ik+1 ⊆ [n, f(n)), so x meets [n, f(n)).
(iii) → (ii). Put In = [fn(0), fn+1(0)). Then every x ∈ F meets In for

su�ciently large n.
(ii) → (iv). De�ne f(n) = max I2n. Let x ∈ F and choose k large enough

that x meets Im for all m ≥ k. In particular, x meets each of the intervals
Ik, Ik+1, . . . , I2k, so |x ∩max I2k| ≥ k. This implies that ex(k) ≤ max I2k =
f(k), from which we conclude that ex ≤∗ f .
(iv) → (i). Suppose that f ∈ ωω dominates the enumerating function of

every member of F . This means that F is included in the set

{x ∈ 2ω : ∀∞k |x ∩ f(k)| ≥ k} =
⋃
m

{x ∈ 2ω : ∀k ≥ m |x ∩ f(k)| ≥ k} .

It's easy to see that for each m the set {x ∈ 2ω : ∀k ≥ m |x ∩ f(k)| ≥ k} is a
nowhere-dense subset of 2ω, so we conclude that F is meager.

The game we study here is already well known. It provides a convenient
proof, apparently part of the folklore, that there are no nonprincipal ultra�lters
under AD.
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Players I & II alternate playing nonempty intervals Ik ∈ [ω]<ω

I I0 I2 I4 · · ·
II I1 I3 I5 · · ·

subject to the following rules.

(i) Each play Ik is a nonempty �nite interval, and
(ii) min(Ik+1) = max(Ik) + 1.

So the game board looks like this:

I [0, n0] [n1 + 1, n2] · · ·
II [n0 + 1, n1] [n2 + 1, n3] · · ·

We call an interval partition (I0, I1, . . . ) a run of the game, and an interval
partition of some initial segment [0, n] of ω is a partial run of the game. If,
in a run of the game, n ∈ I2k, then we say Player I claims n, and similarly
Player II claims every member of each interval I2k+1.
To determine the winner of a run of the game, we require a �lter F on ω.

Player I wins the game i�
⋃
n∈ω I2n ∈ F . That is, Player I wins i� he claims a

measure-one set of integers.
It's clear that Player I has a winning strategy if F is a principal ultra�l-

ter. Conversely, if Player I has a winning strategy, then a strategy-stealing
argument shows that the �lter is principal. A strategy-stealing argument also
shows that Player II cannot have a winning strategy if F is an ultra�lter and
{0} 6∈ F . (If {0} ∈ F , then Player II still does not have a winning strategy
since Player I does.) This gives an easy proof that there are no nonprincipal
ultra�lters on ω under AD.

Proposition 19. A �lter F on ω is meager i� Player II has a winning strategy
for the partition game for F .

Proof. This can be proved directly, but it will be easier to go through Ta-
lagrand's characterization of meager �lters. Suppose �rst that F is meager,
hence bounded. Let g ∈ ωω be a function that dominates ex for every x ∈ F ;
we can assume without loss that g is increasing. We describe a strategy σ for
Player II. Suppose it is Player II's turn and that Player I has claimed exactly
k integers so far. Player II simply plays the shortest nonempty interval I such
that max(I) ≥ g(k+1). (Notice that g(k+1) may already have been claimed.)
Explicitly,

σ(I0, . . . , I2n) = I2n+1 :=

{
[max(I2n) + 1, g(k + 1)] if g(k + 1) ≥ max(I2n) + 1

{max(I2n) + 1} if g(k + 1) ≤ max(I2n)
.
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Now consider a run (I0, I1, I2, . . . ) of the game according to σ, and put
x = I0∪I2∪· · · , the set of integers claimed by Player I. If Player I has claimed
exactly k integers before at the beginning of II's turn 2n+ 1, then we have

g(k + 1) ≤ max I2n+1 < min I2n+2 = ex(k + 1).

We have found in�nitely many k for which g(k + 1) < ex(k + 1); this means
that g does not dominate ex. (Our in�nitely k are those of the form k =
|I0| + |I2| + · · · + |I2n|.) Because g dominates the enumerating function of
every member of F , x cannot belong to F . So Player I loses, and σ is a
winning strategy for Player II.
For the converse, suppose that F is unbounded, and we'll show that Player

I can defeat any strategy σ for Player II. For a �xed n, there are only �nitely
many partial runs (I0, . . . , Ik) of the game such that both

• I0 ∪ I1 ∪ · · · ∪ Ik = [0, n], and
• k is even, so it is Player II's turn to play after the partial run.

Therefore, there are only �nitely many intervals Player II might play im-
mediately after such a partial run, if Player II plays according to σ. With
this in mind, let f(n) be the largest m contained in any such interval. This
de�nition guarantees that in any run (In)n∈ω of the game according to σ,
max(I2n+1) ≤ f(max(I2n)) for every n.
Since F is unbounded, there is some set x ∈ F whose enumerating function

ex is not dominated by the function n 7→ f 2n(0). (The exponent here indicates
how many times f should be iterated.) That is, there are in�nitely many n ∈ ω
such that |f 2n(0) ∩ x| < n. For such n, the set x meets fewer than n of the
2n intervals (fk(0), fk+1(0)], 0 ≤ k < 2n. It follows that there are in�nitely
many k for which

x ∩ (fk(0), fk+1(0)] = ∅. (∗)
On his turn, Player I should claim all integers up to fk(0) for some k satisfying
(∗). Player II, if using her strategy σ, must respond by playing an interval
I ⊆ (fk(0), f(fk(0))]. Therefore Player II never claims any members of x, so
Player I claims all members of x. Player I claims a set in F and wins, so σ is
not a winning strategy for Player II.

6. AD+
and large cardinals

This section includes a proof of our partial answer to Törnquist's question.
We begin by clarifying some relevant parts of the literature.
In [7] Farah isolates the weakest analogue of happy family for which the key

facts of Mathias's original paper [14] remain true.

De�nition 20. Let H be a coideal on ω. If 〈Dn〉n<ω is a sequence of dense
subsets of the poset 〈H,⊆〉, then a set x ∈ [ω]ω is a diagonalization of
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〈Dn〉n<ω if there exists a sequence of sets dn ∈ Dn so that x is a diagonalization
of 〈dn : n < ω〉, meaning that f(n+ 1) ∈ df(n) for every n < ω, where f : ω →
ω is the increasing enumeration of x. We say that H is semiselective if for
every sequence 〈Dn〉n<ω of dense subsets and every y ∈ H, there is x ∈ H∩[y]ω

that diagonalizes the sequence 〈Dn〉n<ω.
When guided by a happy family, Mathias forcing is σ-closed ∗ ccc, whereas

when guided by a semiselective coideal it is σ-distributive ∗ ccc.
In [7, �4] Farah presents a theorem of Todorcevic, that, in the presence of a

supercompact cardinal, every set in L(R) is H-Ramsey for every semiselective
coideal H. Lemma 4.3 in that paper is not true as stated, but it is also not
used in Todorcevic's argument; rather Todorcevic used a connection between
the Ramsey property and the Ellentuck topology (see also Todorcevic [24, Ch.
7]) and the conclusion of Lemma 4.4 of the paper, which is true assuming
the existence of a supercompact cardinal, by Theorem 4.1 of Feng�Magidor�
Woodin [8].
We prove Todorcevic's theorem by di�erent methods, from weaker large

cardinals, in the region of Woodin cardinals. Our large cardinal assumptions
are weak enough to follow from determinacy assumptions. This allows us to
then prove a version of the theorem under determinacy. Our methods also
give a correct version of Lemma 4.3 of [7]. The restriction of the lemma to
proper posets, or more generally to the class of reasonable posets of Foreman
and Magidor [9], is true and follows from Theorem 22 below.
Theorem 22 is a triangular version of the following Embedding Theorem of

Neeman�Zapletal [15] and [16].

Theorem 21 (Neeman�Zapletal [16]). (Large cardinals) Suppose that P is
a proper (or reasonable) poset and that G is P-generic over V . There is an
elementary embedding j : L(R)V → L(R)V [G] that �xes every ordinal.

Theorem 22. (Large cardinals, see remarks following Corollary 24 for the
exact assumptions) Suppose M is a countable transitive model that embeds
into a su�ciently large rank-initial segment of V , say by π : M ∼−→ Vθ. If G
is P-generic over M for some proper (or reasonable) poset P in M , then there
is an embedding π̂ : L(R)M [G] → L(R)Vθ that agrees with π on ordinals and
reals, and completes a commuting system of elementary embeddings:

L(R)Vθ

L(R)M L(R)M [G]

π π̂

Using Theorem 22, we prove Todorcevic's theorem by imitating Mathias's
proof [14, paragraph after 2.9] that there are no analytic in�nite mad families.
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We will use MH to denote Mathias forcing guided by H.

Theorem 23. In the presence of large cardinals (speci�cally |R|+ + 1-iterable
model with the sharp of ω Woodin cardinals), every set X ⊆ [ω]ω that belongs
to L(R) is H-Ramsey for every happy family H.

Proof. Let X ∈ L(R) be a subset of [ω]ω and let H be any happy family. Find
a formula φ, a real parameter u, and a sequence α of ordinal parameters such
that

x ∈ X ⇐⇒ L(R) |= φ[x, α, z].

Let Z be a countable elementary submodel of a su�ciently large rank-initial
segment of V containing z, α, and H, and letM be the transitive collapse of Z.
Let π : M → Z be the anti-collapse map. Put H = π−1(H), and α = π−1(α).
Notice that H = H ∩ Z, and H is a happy family in M . It follows that
Mathias forcing MM

H
has the Prikry and Mathias properties in M . (For these

properties of Mathias forcing guided by a happy family, see [14, Theorems
2.9, 4.11, & 4.12].) So there is a condition 〈0, x〉 ∈ M that either forces (over
M) φL(R)(ġ, α, z) or forces ¬φL(R)(ġ, α, z). (Here ġ is the usual name for the
generic real.) For any real g that is MM

H
-generic over M below 〈0, x〉, we have

the following equivalence.

g ∈ X ⇐⇒ L(R) |= φ[g, α, z]

⇐⇒ M [g] |= φL(R)[g, α, z]

⇐⇒ 〈0, x〉 MM
H
φL(R)[ġ, α, z]. (∗)

The second equivalence is a consequence of Theorem 22.
Since H is countable, there is a real g ∈ H that is MM

H
-generic over M

below 〈0, x〉. (To see this, argue exactly as we did in the proof of Claim 2
while proving Theorem 16.) Since MM

H
has the Mathias property in M , every

subset g′ ⊆ g is generic too. Suppose without loss of generality that g ∈ X.
Then the =⇒ direction of (∗) implies that 〈0, x〉  φL(R)[ġ, α, z] over M , and
the ⇐= direction of (∗) implies that g′ ∈ X for every g′ ⊆ g.

We apply Lemma 5 to obtain

Corollary 24. In the presence of large cardinals (speci�cally |R|+ +1-iterable
model with the sharp of ωWoodin cardinals), there are no in�nite mad families
in L(R).

Remarks.

(1) The large cardinal assumption we use to prove Theorem 22 is the ex-
istence of M ]

ω, the minimal iterable model for the sharp of ω Woodin
cardinals, and its |π(P)|+ + 1-iterability.
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(2) Theorem 21 applies not only to proper posets, but to the larger class of
so-called reasonable posets (introduced by Foreman and Magidor [9]),
which includes posets of the form σ-distributive ∗ ccc. Our triangular
version, Theorem 22, also applies to this broader class. We therefore
obtain Todorcevic's theorem for semiselective coideals, not just happy
families.

(3) Schindler [19] has computed the consistency strength of Theorem 21
for proper posets to be exactly the existence of a remarkable cardinal,
which is stronger than an ine�able cardinal but weaker than the ex-
istence of 0]. The consistency strength of the version for reasonable
posets remains open.

We proceed now to results under determinacy. We assume ZF throughout;
theorems listed below under AD+ are theorems of ZF + AD+. For the precise
de�nition of AD+ and a thorough discussion of it, the reader is encouraged
to consult [3, ��1�3]. AD+ implies AD, and it is open whether the two are
equivalent.
A version of Theorem 23 holds under AD+, and implies a version of Corollary

24 under AD+. These are proved using an AD+ version of the triangular
embedding theorem. The theorem applies to posets in the following class:

De�nition 25. Call poset P ⊆ R absolutely proper (respectively abso-

lutely reasonable) if there exists a club C ⊆ P<ω1(R) and A ⊆ R so that for
every U ∈ C and every transitive countable model N of a large enough frag-
ment of ZFC with RN = U and P∩U,A∩U ∈ N , P∩U is proper (respectively
reasonable) in N .

Note that absolute properness (reasonableness) is a Σ1 property in {R}
over N ∪ R ∪ P(R), with predicates for membership and coding �nite and
countable sequences of reals by reals, in other words it is a Σ2

1 statement. In
particular it re�ects up from transitive models containing {R}. It is phrased
without reference to countable elementary substructures of initial segments of
the universe, which need not exist in contexts where DC fails. Posets which
are provably proper (reasonable) under AC by su�ciently absolute arguments
are often absolutely proper (reasonable). For example:

Lemma 26. Let H be a happy family. Then Mathias's forcing MH (with
conditions coded as reals in a natural way) is absolutely proper.

Proof. Let C be the club of countable U ⊆ R which are elementary under the
coding predicates for countable sequences and for conditions in MH , and so
that U ∩H satis�es the requirements in the de�nition of a happy family with
upward closure restricted to y ∈ U and selectivity restricted to descending
sequences that are coded by a real in U . Then for any N as in De�nition 25,
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U ∩ H is a happy family in N . Hence in particular MN
U∩H is proper in N .

Using elementarity under coding, MN
U∩H = MH ∩ U .

Theorem 27. (AD+) For every α < Θ, for every A ⊆ R, and for stationarily
many countable Z � Lα(R, A), if M is the transitive collapse of Z, π : M ∼−→
Lα(R, A) is the anti-collapse embedding, α = M ∩ On, A = π−1(A), and
P is absolutely proper (or absolutely reasonable) in M , then there exists a
countable transitive model N of ZFC with RN = R ∩M and α,A ∈ N , and
there exists a P-name Ȧ∗ ∈ N , so that for every G which is P-generic over N ,
there is an embedding π̂ : Lα(RN [G], Ȧ∗[G])→ Lα(R, A) that agrees with π on
ordinals and reals, maps Ȧ∗[G] to A, and completes a commuting system of
elementary embeddings:

Lα(R, A)

M Lα(RN [G], Ȧ∗[G])

π π̂

Theorem 28. (AD+) Every set X ⊆ [ω]ω is H-Ramsey for every happy family
H. Consequently, there are no in�nite mad families.

Proof. Let A ⊆ R code X and H. Fix a countable Z elementary in Lω(R, A)
for which Theorem 27 holds, with X,H,A ∈ Z. Let M and π be as in the
theorem. By Lemma 26, MM

H is absolutely proper in M . Now proceed as in
the proof of Theorem 23, but using Theorem 27 over N instead of Theorem

22, and forcing a truth value to φLω(R,Ȧ
∗)(ġ, Ȧ∗), where φ is a formula so that

φ(x,A) holds in Lω(R, A) i� x ∈ X.

Remarks. (1) Since Theorem 27 applies to absolutely reasonable posets,
the last theorem can be strengthened to cover absolutely semiselective
coideals, where absoluteness is meant in the manner of De�nition 25,
replacing proper there with semiselective throughout.

(2) Some contexts where semiselectivity is absolute were obtained by Lar-
son and Raghavan [12]. For example the notion asserting that player
II wins the strategic selectivity game there is clearly absolute, and is
equivalent under ADR to semiselectivity that persists to some outer
model of choice with the same reals, by [12, Proposition 1.4].

(3) Versions of Theorem 27 that provide less elementarity can be proved
with less than full determinacy. For example, the restriction of the the-
orem to projective sets A, where we weaken stationarity to existence,
weaken elementarity throughout to just Σ1 elementarity in the struc-
ture (R, A), and remove the club in the de�nition of absolute properness
requiring the conditions of the de�nition for all Σ1 elementary count-
able substructures in (R, A), is provable under projective determinacy.
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The argument is less involved than the proof of the full theorem, simply
using the facts that projective truth is absolute to iterable models with
a large enough �nite number of Woodin cardinals, the ability to iterate
to make any real generic for the collapse of the �rst Woodin cardinal,
and the existence of these models under projective determinacy.

(4) This projective version of Theorem 27 is enough to run the proof of
Theorem 28 for projective sets H and X. In particular projective
determinacy implies that there are no projective in�nite mad families.
This was proved independently by Karen Haga.

The AD+ triangular embedding theorem has additional applications. For
example it can be used to obtain results similar to these obtained under ADR+
DC for proper ideals in Chan�Magidor [4], working instead under the more
general AD+, but restricting to absolutely proper ideals:

Theorem 29. (AD+) Let I be a σ-ideal on ωω, so that PI is absolutely proper.
Let Γ be a pointclass closed under Borel substitutions, with a universal set. Let
E be an equivalence relation whose equivalence classes are all in Γ (respectively
in both Γ and Γ̌). Then there exist densely many Borel sets C in I+ so that
E � C is in Γ (respectively in both Γ and Γ̌).

Recall that PI , studied in Zapletal [26], is the poset of Borel sets in I+,
ordered by reverse inclusion mod I. Zapletal presented many of the standard
cardinal invariants forcing notions in this form. For many of the ideals he
considered the posets PI are provably proper, and by methods similar to the
proof of Lemma 26 one can show these speci�c posets are also absolutely
proper. In the context of absolute properness we assume some coding of Borel
sets to view conditions in PI as reals.

Proof of Theorem 29. We prove that there exists C as in the theorem. Working
throughout below an arbitrary B ∈ I+ the same argument would show there
exist densely many such C. We prove only the case of membership in Γ. The
proof handling both Γ and Γ̌ simultaneously is similar.
Let U ⊆ R × R be universal for Γ. Let A ⊆ R code I, U , E, and a club

witnessing that PI is absolutely proper, so that the poset is absolutely proper
in Lω(R, A). Note that PI is also proper in Lω(R, A). Otherwise there is a
stationary set of substructures without master conditions. But this can be
re�ected into a model N as in De�nition 25, contradicting properness in N .
Fix a countable Z elementary in Lω(R, A) for which Theorem 27 holds,

with I, U,E,A ∈ Z. Since PI is proper we can pick Z for which there are
master conditions in PI . Let M and π be as in the theorem. Let A = π−1(A),
I = π−1(I), U = π−1(U), E = π−1(E). Let N and Ȧ∗ be as in Theorem 27
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for the forcing PM
I
. Let U̇∗ name the set coded by Ȧ∗ in the way U is coded

by A, and similarly with Ė∗.
Recall from [26, Proposition 2.1.2] that if G is PM

I
generic over N then

⋂
G

is a singleton real. Let ẋ name this real. The E-equivalence class of ẋ[G] is
in Γ. By universality it is equal to the section Uy for some real y. Using the
elementarity given by Theorem 27 it follows that there is a name ẏ ∈ N so
that over N the Ė∗-equivalence class of ẋ is forced to be equal to the section
U̇∗ẏ . Again by the theorem, for any generic G, the E-equivalence class of ẋ[G]
is then equal to Uẏ[G].
Let C = {ẋ[G] : G is PM

I
-generic over N}. Since N is countable, C is non-

empty. In fact since there is a master condition for Z in PI , C ∈ I+, see
the proof of [26, Proposition 2.2.2]. Each x ∈ C uniquely determines the
generic which induces it, denoted Gx, through the condition that B ∈ Gx i�
B ∈ PM

I
∧ x ∈ B.

We claim that E � C is in Γ. To see this, note simply that for any x1, x2 ∈ C,
x1 E x2 i� x2 ∈ Uẏ[Gx1 ] i� 〈ẏ[Gx1 ], x2〉 ∈ U . The condition on the right is in Γ
using closure under Borel substitutions since N is countable.

The rest of the section is dedicated to the proof of the triangular embedding
theorems. We derive both versions from the same lemma.
Call 〈Q,Σ, δ〉 a germ which captures F ⊆ R just in case that:

(1) Q is a model of a large enough fragment of ZFC with in�nitely many
Woodin cardinals, whose supremum is δ.

(2) Σ is an ω1 + 1 iteration strategy for Q.
(3) (Condensation) If T is an iteration tree by Σ, and π : N → N∗ is an

elementary embedding, with N,N∗ transitive models of enough of ZFC
and T ∈ range(π), then π−1(T ) is according to Σ.

(4) (Capturing) For every iteration map j : Q → Q∗ by Σ, there is a
Coll(ω, j(δ))-name Ḟ ∗ ∈ Q∗, so that for every genericH for Coll(ω, j(δ))
over Q∗, every η < j(δ), and every x ∈ Q∗[H � η], x ∈ Ḟ ∗[H] i� x ∈ F .

Condition (3) typically holds for uniquely iterable �ne structural models. In
particular it holds for Q = M ]

ω, the minimal model for the sharp of ω Woodin
cardinals, and its unique iteration strategy.
Let j : Q → Q∗ be according to Σ. Let H be generic over Q∗ for Coll(ω,<

j(δ)). The derived model of Q∗ using H is Lα(R∗, F ∗) where α = Q∗ ∩On,
R∗ consists of the reals in the extensions of Q∗ by strict initial segments of H,
and F ∗ = F ∩ R∗. We refer to R∗ as the derived reals. By the capturing
condition, F ∗ belongs to Q∗[H], and in fact there is a name in Q∗ which
produces the right F ∗ independently of H.
By a composed Σ-iteration of Q with direct limit j : Q → Q∗ we

mean a sequence of embeddings jn : Qn → Qn+1 so that Q0 = Q, each jn is
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the embedding of a countable iteration tree Tn on Qn with �nal model Qn+1,
for each n the composition of the trees T0, . . . , Tn is according to Σ, Q∗ is the
direct limit of the models Qn, and j is the direct limit embedding. We write
jn,m : Qn → Qm for the composed embeddings, and jn,∞ : Qn → Q∗ for the
direct limit embedding from Qn.
If the sequence of trees belongs to V then the composition of all ω trees is

by Σ, and hence j : Q→ Q∗ is itself an iteration embedding by Σ. But we will
use the de�nition in models which do not know enough of Σ to recognize the
entire sequence as an iteration by Σ.

Lemma 30 (by Neeman�Zapletal [16]). Let N be a countable transitive model
of a large enough fragment of ZFC. Let P be a proper (or reasonable) poset
in N . Let 〈Q,Σ, δ〉 be a germ. Suppose that Q ∈ N and that the restriction
of Σ to trees of length ≤ |P|+ in N belongs to N . Let G be P-generic over N .
Then there exists a composed Σ-iteration 〈jn : n < ω〉 of Q with direct limit
j : Q → Q∗ so that both RN and RN [G] can be realized as the derived reals
of derived models of Q∗. Moreover such 〈jn : n < ω〉 can be found inside any
forcing extension ofN [G] by Coll(ω,RN)×Coll(ω,RN [G]), the �nite restrictions
of the sequence belong to N , and the sequence of critical points of the maps
jn,∞ is increasing and co�nal in j(δ).

Proof. This follows by the construction in Section 2 of Neeman�Zapletal [16],
building iterates of the model Q of the current lemma using the iteration
strategy Σ, and working over the model N of the current lemma rather than
V . We only note that the use of unique iterability in Lemma 3 of [16] is
replaced here by a use of the condensation assumption on Σ, which implies
condensation in N for the restriction of Σ to trees in N .

Proof of Theorem 22. Fix the relevant objects. It is enough to prove for every
β ∈ M ∩On, every #—γ ∈ β<ω, every #—y ∈ (M [G] ∩ R)<ω, and every formula φ,
that Lβ(RM [G]) |= φ( #—γ , #—y ) i� Lπ(β)(R) |= φ(π( #—γ ), #—y ). Since every element of
L(R) is de�nable from ordinals and reals, one can then set π̂ to map elements
de�nable from #—γ , #—y in Lβ(R)M [G] to elements de�nable in the same way from
π( #—γ ), #—y in Lπ(β)(R), de�ne the horizontal embedding k : L(R)M → L(R)M [G]

to map elements de�nable from #—γ , #—y in Lβ(R)M to elements de�nable in the
same way from #—γ , #—y in Lβ(R)M [G], and verify that the two embeddings, which
obviously commute with π, are elementary.
Fix β, #—γ , #—y , and φ. Suppose that Lβ(RM [G]) |= φ( #—γ , #—y ). We prove that

Lπ(β)(R) |= φ(π( #—γ ), #—y ).
The large cardinal assumption we use is the existence ofM ]

ω, and its |π(P)|++
1-iterability. Let Q = M ]

ω, let δ be the supremum of the Woodin cardinals of
Q, and let Σ be the unique iteration strategy for Q. Then 〈Q,Σ, δ〉 is a germ
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(capturing, for example, the empty set). By the elementarity of π, Q belongs
to M , and so does the restriction of Σ to trees of length ≤ |P|+ in M .
Let jn : Qn → Qn+1 and j : Q → Q∗ be given by Lemma 30 applied with

N = M . Let Q∗∗ be obtained by iterating the sharp of Q∗ past β. Q∗ does not
belong to M , but it belongs to M [G][h] for some generic h for Coll(ω,RM)×
Coll(ω,RM [G]) over M [G]. Q∗∗ then also belongs to M [G][h]. Let j̇n,m, Q̇n,

Q̇∗, Q̇∗∗, and j̇n,∞ in M name the corresponding objects in M [G][h].
Fix H witnessing that RM [G] can be realized as the derived reals of Q∗∗. Let

η < j0,∞(δ) be large enough that #—y belongs to Q∗∗[H � η]. Fix a name u̇ ∈ Q∗∗
so that u̇[H � η] = #—y . Using the symmetry of the collapse we can assume that

it is outright forced in Coll(ω, j0,∞(δ)) over Q∗∗ that Lβ(Ṙ) |= φ( #—γ , u̇), where

Ṙ names the derived reals.
Let m be large enough that the critical point of jm,∞ is above (2η)Q

∗∗
. The

statements above all hold inM [G][h], and Qm, j0,m belong toM . Let q ∈ G∗h
force these statements, and force the values of Q̇m and j0,m.
We now apply π to shift the statements from M to Vθ. Let G′ ∗ h′ be

generic for π(P) ∗ (Coll(ω,R) × Coll(ω,RV [Ġ])) over V , below π(q). Let Q′ =
π(Q̇∗∗)[G′][h′], Q′n = π(Q̇n)[G′][h′], j′0,n = π(j̇0,n)[G′][h′], j′n,∞ = π(j̇n,∞)[G′][h′].

Note that Q′m = Qm, j
′
0,m = j0,m, and the critical point of j′m,∞ is above (2η)Q

′
,

because G′ ∗h′ is below q. In particular H � η is generic for Coll(ω, η) over Q′.
Using the elementarity of π, and since RM can be realized as the derived

reals of Q∗∗, R = RVθ can be realized as the derived reals of Q′. Let E be
generic witnessing this. Since H � η can be coded by an element of RV , it
belongs to the derived model of Q′ using E. By standard arguments E can
then be rearranged to get E � η = H � η without changing the derived reals.
Then u̇[E] = #—y . By the elementarity of π, it is forced in Coll(ω, j′0,∞(δ))

over Q′ that Lπ(β)(Ṙ) |= φ(π( #—γ ), u̇). Interpreting this using E it follows that
Lπ(β)(R) |= φ(π( #—γ ), #—y ).

To prove Theorem 27 we need the following fact from inner model theory.

Fact. (AD+) Every true Σ2
1 statement has a witness F which is captured by

a germ.

Proof sketch. Let φ have only bounded quanti�ers, and suppose that (∃F ⊆
R)φ(F,R,N) is true. By Woodin's basis theorem for Σ2

1, see Steel [21, Theorem
9.10], there is then a witness F which belongs to ∆0 = Γ0∩Γ̌0, for a pointclass
Γ0 which is good in the sense of Steel [22, De�nition 3.1]. Among other things
this means that there is a universal set U for Γ0, and a Γ0 scale on this set.
Since U is universal, there is a real z so that F = Uz.
These facts themselves can be witnessed using Γ0 and U which belong to

∆1 = Γ1 ∩ Γ̌1 for a good Γ1, so that Γ0 ⊆ ∆1, and similarly we can further
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arrange to have a good Γ2 so that Γ1 ⊆ ∆2 = Γ2 ∩ Γ̌2. By [22, Lemma
3.13] there is then a coarse Γ0-Woodin mouse P , with z ∈ P , and an iteration
strategy ΣP for P so that all iterates P ∗ of P by ΣP are themselves Γ0-
Woodin structures. This means that the ordinal height of P ∗ is a Woodin
cardinal in L(P ∗ ∪ {T, P ∗}), where T is the tree of a Γ0 scale on U , see
[22, De�nition 3.11, Theorem 3.4]. Moreover the proof is such that P is not
Γ1-Woodin, and ΣP is the unique strategy which correctly moves witnesses for
this. This in particular gives branch condensation for ΣP , a property similar
to our condensation condition above but holding for more general hulls.
Now by an argument similar to the proof of Sargsyan-Steel [18, Lemma 2.5],

there exists a (P,ΣP ) mouse Q satisfying an arbitrarily large �nite fragment of
ZFC, with ω Woodin cardinals. In particular this means that a real coding P
belongs toQ, Q is closed under ΣP and has a predicate for ΣP , andQ is iterable
by a strategy Σ which moves ΣP correctly. This last property determines Σ
uniquely, and implies that Σ has our condensation property. The argument
for obtaining Q and Σ is similar to the construction of �ne structure uniquely
iterable models with in�nitely many Woodin cardinals under AD, but replacing
closure under ordinary constructibility with closure under constructibility and

ΣP . The branch condensation properties of ΣP are used to see this hierarchy
has condensation properties similar to the hierarchy of constructibility.
Let δ be the supremum of the Woodin cardinals of Q. It remains to prove

that 〈Q,Σ, δ〉 captures F . Fix an iteration map j : Q → Q∗ by Σ. Recall
that P ∈ Q∗ is Γ0-Woodin, U is a universal set for Γ0, z is a real so that
F = Uz, and T is a Γ0 scale on U . The iteration strategy ΣP is moved
correctly by j, and in particular Q∗ is closed under ΣP and has a predicate for
ΣP . Working in Q∗, let σ : P → P ∗ be an iteration of P by ΣP to reach a model
L(P ∗ ∪ {P ∗, T}) so that every real generic for Coll(ω, η) over Q∗ for η < j(δ)
is generic for Woodin's extender algebra at P ∗ ∩ On over L(P ∗ ∪ {P ∗, T}).
This is a variant of Woodin's second genericity iteration used in [16, �2], but
working with many names for reals simultaneously. The named reals can be
made generic for Woodin's extender algebra because (for any iterate P ∗), the
ordinal height of P ∗ is Woodin in L(P ∗ ∪ {P ∗, T}).
Let A be a maximal antichain of conditions in Woodin's extender algebra

in L(P ∗ ∪ {P ∗, T}) which force the generic real to belong to p[T ]z. Note
A ∈ L(P ∗ ∪ {P ∗, T}). Using the P ∗ ∩ On-chain condition for the extender
algebra, A is bounded in P ∗ ∩ On. In particular A ∈ P ∗, and hence A ∈ Q∗.
Recall that conditions in A are identities in an in�nitary language, and if
x is generic for the extender algebra then the generic induced by x, call it
Wx, consists of the identities satis�ed by x. Now for any real x in a generic
extension of Q∗ by Coll(ω, η) for η < j(δ) we have x ∈ F i� x ∈ p[T ]z i�
(∃a ∈ A)a ∈ Wx i� x satis�es an identity a ∈ A. Letting Ḟ ∗ ∈ Q∗ be a
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Coll(ω, j(δ))-name for the set of reals in small extensions of Q∗ which satisfy
an identity in A, it follows that 〈Q,Σ, δ〉 captures F .

Proof of Theorem 27. Given A ⊆ R and a prewellorder � on R of ordertype
α, let ψA,� : R → Lα(R, A) be a standard surjection de�ned uniformly in A
and �. This can be done since every element of Lα(R, A) is de�nable in the
structure from reals and ordinals below α. Let TA,� be the truth predicate for
Lα(R, A) in the codes, meaning that 〈n, x0, . . . , xi〉 ∈ TA,� i� the nth formula
in a standard enumeration holds of ψA,�(x0), . . . , ψA,�(xi) in Lα(R, A). Given
a function e : Lα(R, A)<ω → Lα(R, A) let eA,� = {〈x0, . . . , xi, y〉 : ψA,�(y) =
e(ψA,�(x0), . . . , ψA,�(xi))}.
If Theorem 27 fails then there exists α < Θ, A ⊆ R, and a function

e : Lα(R, A)<ω → Lα(R, A), so that the conclusion of the theorem fails for every
Z which is closed under e, and every such Z is elementary in Lα(R, A). Using
the coding in the previous paragraph this can be expressed as a Σ2

1 statement,
quantifying over � and eA,� instead of α and e. By Woodin's Σ2

1 basis theorem,
if the theorem fails then there are witnesses A, �, eA,� as above in a good point-
class, and in particular in a pointclass satisfying uniformization. So there exists
êA,� : R<ω → R uniformizing eA,� in its last coordinate. For x0, . . . , xi ∈ R
then êA,�(x0, . . . , xi) is an element of R, and we view it as a function from ω
to ω. Let êrA,� be the relation {〈x0, . . . , xi, n, k〉 : êA,�(x0, . . . , xi)(n) = k}.
Suppose for contradiction that Theorem 27 fails. By the previous fact from

inner model theory, we can �nd a germ 〈Q,Σ, δ〉 capturing a set F that codes
A, �, and êrA,� witnessing the failure in the sense of the previous paragraph,
and codes the truth predicate TA,�.
Let N = Lθ(u)[Σ] where u is a real coding Q and θ is least so that N |= ZFC.

By Lθ(u)[Σ] we mean the model obtained by constructing over u relative to
the predicate {〈T , ξ〉 : T is by Σ and ξ belongs to co�nal branch through T
given by Σ}. Note θ < ω1 since ω1 is measurable under AD. N is a model of
choice, closed under Σ, and the restrictions of Σ to strict initial segments of
N are in N .
Let α be the ordertype of �, and let e : Lα(R, A)<ω → Lα(R, A) be the

function coded by êrA,�. Let Z = ψ′′A,�R ∩ N . We will prove that Z is closed
under e and that the conclusion of Theorem 27 holds for Z, contradicting the
fact that A, �, and êrA,� form a counterexample to the theorem.
We will make several uses of Lemma 30. First, we use it to see that F ∩N

belongs to N . By the lemma, with the trivial poset P, inside every extension
N [h] of N by Coll(ω,R)N there is an iteration map j : Q → Q∗ by Σ so that
RN can be realized as the derived reals of Q∗. Since 〈Q,Σ, δ〉 captures F it
follows using the capturing condition that F ∩ RN belongs to N [h]. This is
true for all h, so F ∩ RN ∈ N .
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It follows that � ∩N , A∩N , êrA,�∩N , and TA,�∩N all belong to N . From

the membership of êrA,�∩N in N it follows that RN is closed under êA,�. This
in turn implies that Z is closed under e. LetM be the transitive collapse of Z.
M can be determined from TA,�∩N , and therefore belongs to N . In particular
R ∩ Z = R ∩M ⊆ RN . Without loss of generality we can assume the coding
ψA,� is such that for every real x, ψA,�(0_x) is a code for x. Then since RN

is closed under prepending 0, it follows that RN ⊆ R ∩M . So RN = R ∩M .
Let π : M → Lα(R, A) be the anticollapse embedding, A = π−1(A), and

α = M ∩ On. π is elementary since Z = range(π) is closed under e. Let P
be absolutely proper in M . Then π(P) is absolutely proper in Lα(R, A), and
moreover a club witnessing this belongs to Z, hence in particularM∩R = N∩R
belongs to this club. By de�nition it follows that P = π(P)∩ (R∩M) is proper
in N . Similarly if P is absolutely reasonable in M then it is reasonable in N .
Let G be P-generic over N . By Lemma 30, inside every extension of N [G] by

Coll(ω,RN)× Coll(ω,RN [G]), an iteration map j : Q→ Q∗ by Σ so that both
RN and RN [G] can be realized as the derived reals of Q∗. Arguing as above
but over N [G] instead of N it follows that F ∩ RN [G] belongs to N [G]. This
in turn implies, again arguing as above, that RN [G] is closed under êA,�, that
Z∗ := ψ′′A,�R∩N [G] is elementary in Lα(R, A), and that Z∗ ∩R = RN [G]. Let
M∗ be the transitive collapse of Z∗, and let π̂ be the anticollapse embedding.
By elementarity M∗ has the form Lν(RN [G], A ∩ RN [G]).
Note that Z∗ ⊇ Z so we can de�ne an elementary embedding k = π̂−1 ◦

π : M → Lν(RN [G], A ∩ RN [G]). We claim that ν = α and k is the identity on
ordinals. For both statements it is enough to show that Z∗ ∩ On ⊆ Z ∩ On.
Without loss of generality, through an appropriate choice of ψA,�, we can
assume that Z ∩ On = ϕ′′RN and Z∗ ∩ On = ϕ′′RN [G] where ϕ is the norm
associated to �. It is then enough to show that every real in N [G] has a
�-equivalent real in N .
Fix H and H∗ witnessing that RN and RN [G] respectively can be realized

as the derived reals of Q∗. Using the capturing condition, and since F codes
�, we have a name ṙ ∈ Q∗ so that ṙ[E] is equal to the intersection of � with
the derived reals of Q∗ using E, for every generic E for Coll(ω, δ) over Q∗.
Let ϕ̇ name the norm associated to ṙ. Fix x ∈ N [G] and let µ = ϕ̇[H∗](x).
Fix η < j(δ) so that x ∈ Q∗[H∗ � η], and a Coll(ω, η)-name u̇ ∈ Q∗ so that
u̇[H∗ � η] = x. Using the symmetry of the collapse we can assume it is outright
forced in Coll(ω, j(δ)) that ϕ̇(u̇) = µ. Let y = u̇[H] ∈ N . Since H � η can be
coded by a real in N ⊆ N [G], it belongs to the derived model of Q∗ by H∗.
Using standard arguments one can then rearrange H∗ to a generic E∗ which
produces the same derived reals as H∗, but with E∗ � η = H � η. The former
fact implies that ṙ[E∗] = ṙ[H∗] and hence ϕ̇[E∗](x) = ϕ̇[H∗](x) = µ, while
the latter implies that ϕ̇[E∗](y) = µ. Putting the two together it follows that
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x and y belong to the same ṙ[E∗]-equivalence class, and hence to the same
�-equivalence class.
We now have the elementarity and agreement requirements of Theorem 27.

It remains to �nd Ȧ∗ ∈ N so that for every P-generic G, Ȧ∗[G] = A ∩ RN [G].
Let δ0 be the �rst Woodin cardinal of Q. Working in N �nd an iteration

σ : Q → Q′ of Q so that every real in any generic extension of N by P is
generic over Q′ for Woodin's extender algebra at σ(δ0). This is a variant of
Woodin's second genericity iteration used in [16, �2], but working with all
names for reals simultaneously. In N , the iteration terminates at some length
< |P× U |+ where U is the set of canonical P-names for reals.
Using the capturing condition, and since F codes A, there is a name Ȧ′ ∈ Q′

so that for every generic E for Coll(ω, σ(δ)), and any x added by a strict
initial segment of E, x ∈ A i� x ∈ Ȧ′[E]. Woodin's extender algebra at σ(δ0)
is subsumed by Coll(ω, σ(δ)). From this using the symmetry of the collapse
it follows that there is an extender algebra name Ȧ′′ ∈ Q′ so that for every
generic g for the extender algebra, Ȧ′′[g] = A ∩Q′[g]. From every real generic
for the extender algebra one can de�nably construct a generic �lter gx for the
algebra so that x ∈ Q′[gx]. Now, working in N , let Ȧ∗ be a P-name for the set
of reals x (in the extension by P) so that x ∈ Ȧ′′[gx]. Then for every x in an
extension N [G] of N by P, x ∈ Ȧ∗[G] i� x ∈ Ȧ′′[gx] i� x ∈ A, with the last
equivalence using the fact that by construction x is generic for the extender
algebra over Q′.

7. Open questions

Much remains open about how the existence of in�nite mad families relates to
the existence of other pathological sets of reals. Mathias's original conjecture
is probably the most well known example.

Question 1 (Mathias [14]). (In ZF+DC) If every set has the Ramsey property,
does it follow that there are no in�nite mad families?

Theorem (Mathias [13]). If every set has the Ramsey property, then every
�lter is meager.

Question 2. If there are no in�nite mad families, does it follow that every
�lter is meager?

Question 3 (Törnquist [25]). Does AD imply that there are no in�nite mad
families?

To establish Theorem 16 we needed PU , a poset that has the Mathias prop-
erty even when there are no Ramsey ultra�lters.
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Question 4. Is there a nontrivial de�nable (e.g. analytic) ccc forcing with the
Mathias property?

Question 5. Is it consistent relative to ZFC alone that every set of reals in
L(R) is H-Ramsey for every H ∈ L(R)?

A positive answer to Question 5 would also answer the longstanding open
question whether �every set has the Ramsey property� is consistent relative to
ZFC alone. A negative answer might indicate something special about [ω]ω,
even among de�nable happy families.
There has been some further study of semiselective coideals since Farah's

original paper.

Theorem (Di Prisco�Mijares�Uzcátegui [5]). Suppose that G is generic over
V for the Levy collapse of a weakly compact cardinal. Then, in V [G], every
set X ⊆ [ω]ω that belongs to L(R) is H-Ramsey for every semiselective coideal
H.

Question 6 (Di Prisco�Mijares�Uzcátegui). Is the weakly compact in the
theorem necessary?

Many questions remain open about how the existence of in�nite mad families
relates to other weak choice principles. Here are two examples.

Question 7. Is it consistent with ZF+DC that there are in�nite mad families
but there is an almost-disjoint family that doesn't extend to a mad family?

Call a family A ⊆ [ω]ω nearly mad if any two members of A are either
almost equal (their symmetric di�erence is �nite) or almost disjoint.

Question 8. Is it consistent with ZF + DC that in�nite nearly mad families
exist but in�nite mad families do not?
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