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Abstract. We prove that Einstein four-manifolds with three-nonnegative curva-
ture operator are either flat, isometric to (S4, g0), (CP 2, gFS), (S2 × S2, g0 ⊕ g0),
or their quotients by finite groups of fixed point free isometries, up to rescaling. We
also prove that Einstein four-manifolds with four-nonnegative curvature operator
and positive intersection form are isometric to (CP 2, gFS) up to rescaling.

1. Introduction

A Riemannian manifold (Mn, g) is Einstein if its Ricci curvature is a multiple of
the metric, i.e.,

Ricg = λg,

for some constant λ. The study of Einstein manifolds are important in both differ-
ential geometry and (mathematical) physics. In dimensions two and three, Einstein
manifolds have been completely classified, they are all space forms. However, it be-
comes much more complicated in dimension four and higher.

On one hand, several topological obstructions have been discovered for Einstein
four-manifolds of positive or nonnegative sectional curvature. It was proved by M.
Berger [2] that the Euler characteristic χ of Einstein four-manifolds with nonnegative
sectional curvature and positive scalar curvature are bounded by 1 ≤ χ(M) ≤ 9; N.
Hitchin [11] proved that χ and the signature τ must satisfy |τ(M)| ≤ (2

3
)3/2χ(M); M.

Gursky and C. LeBrun [10] further improved Hitchin’s result to |τ(M)| ≤ 4
15
χ(M),

provided that (M, g) is not half conformally flat.

On the other hand, there have also been several classification results. Hitchin’s
classical theorem (see [3, Theorem 13.30]) states that half conformally-flat Einstein
four-manifolds with positive scalar curvature are isometric to either (S4, g0) or
(CP 2, gFS) up to rescaling; Gursky and LeBrun [10] proved that compact Einstein
four-manifolds of nonnegative sectional curvature and positive intersection form are
isometric to (CP 2, gFS) up to rescaling; D. Yang [16] proved that oriented Einstein
four-manifolds with Ric = g and sectional curvature K ≥ (

√
1249− 23)/120 are iso-

metric to (S4, g0) or (CP 2, gFS) up to rescaling; É. Costa [8] later relaxed Yang’s
condition to K ≥ (2 −

√
2)/6. Moreover, S. Tachibana [14] proved that Einstein
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manifolds with positive curvature operator are isometric to space forms; S. Brendle
[6] recently proved that Einstein manifolds with positive isotropic curvature are iso-
metric to space forms, and with nonnegative isotropic curvature are locally symmetric.

Inspired by the celebrated work [4] of C. Böhm and B. Wilking on the classification
of Riemannian manifolds with 2-positive curvature operator, in his Ph. D. thesis
[15], the second author studied the relations between k-positive curvature operators,
positive isotropic curvature, and sectional curvature on Einstein four-manifolds using
Berger curvature decomposition [1]. Here by k-positive (k-nonnegative), we mean
that the sum of the lowest k eigenvalues of the curvature operator is positive (non-
negative). More precisely, assuming Ric = g, it was shown that 2-positive curvature
operator is equivalent to positive isotropic curvature; sectional curvature K > 1

12

implies 3-positive curvature operator; 3-positive curvature operator implies K > 1
30

;
and 4-positive curvature operator is equivalent to sectional curvature bounded above
by 1. Similar results hold for 3-nonnegative, 4-nonnegative curvature operators, as
well as nonnegative isotropic curvature, see Proposition 2.4 for details.

In this paper, we classify Einstein four-manifolds with 3-nonnegative curvature
operator, which improves the rigidity results of Yang [16], Costa [8], and Brendle [6]
in dimension 4. This also answers a question in [15].

Theorem 1.1. Let (M, g) be an Einstein four-manifold with 3-nonnegative curvature
operator, then it is either flat, isometric to (S4, g0), (CP 2, gFS), (S2 × S2, g0 ⊕ g0),
or their quotients by finite groups of fixed point free isometries, up to rescaling.

For Einstein four-manifolds with 4-nonnegative curvature operator, we obtain a
generalization of [10, Theorem A] by Gursky and LeBrun.

Theorem 1.2. Let (M, g) be an Einstein four-manifold with 4-nonnegative curvature
operator and positive intersection form, then it is isometric to (CP 2, gFS) up to
rescaling.

The proof of Theorem 1.1 is an improvement of Yang’s method in [16] plus more
delicate analysis on W±, where W± are self-dual and anti-self-dual part of Weyl ten-
sor. The proof of Theorem 1.2 follows from Gursky and LeBrun’s argument [10] and
a point-wise estimate for |W+|2 + |W−|2.

The rest of this paper is organized as follows. In Section 2, we describe two cur-
vature decompositions for Einstein four-manifolds, the duality decomposition and
Berger’s decomposition, and the relation between 3-positive, 4-positive curvature op-
erators, positive isotropic curvature, and sectional curvature. In Section 3, we prove
Theorems 1.1 and 1.2.
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2. Curvature decomposition for Einstein four-manifolds

The Hodge star operator ? : ∧∗TM → ∧∗TM induces a natural decomposition of
the vector bundle of 2-forms ∧2TM on an oriented four-manifold (M, g),

∧2TM = ∧+M ⊕ ∧−M,

where ∧±M are the eigenspaces of ±1 respectively. Sections of ∧+M and ∧−M are
called self-dual and anti-self-dual 2-forms respectively. It further induces a decompo-
sition for the curvature operator R : ∧2TM → ∧2TM :

R =

(
s
12
g +W+ Ric− s

4
g

Ric− s
4
g s

12
g +W−

)
,

where s denotes the scalar curvature. If (M4, g) is Einstein, then we get

(2.1) R =

(
R+ 0
0 R−

)
=

(
s
12
g +W+ 0

0 s
12
g +W−

)
.

The duality decomposition for Einstein four-manifold implies that R, R±, W, W±

are all harmonic. Using the harmonicity ofW±, A. Derdziński [9] derived the following
Weitzenböck formula (also see A. Besse [3, Prop. 16.73]),

Proposition 2.1. Let (M, g) be an Einstein four-manifold, then

(2.2) ∆|W±|2 = 2|∇W±|2 + s|W±|2 − 36 detW±.

Later, Gursky and LeBrun [10] and Yang [16] further proved the following refined
Kato inequality, which was proven to be optimal by T. Branson [5] and by D. Calder-
bank, P. Gauduchon and M. Herzlich [7],

Proposition 2.2. Let (M, g) be an Einstein four-manifold, then

(2.3) |∇W±|2 ≥ 5

3
|∇|W±||2.

On the other hand, Berger [1] has another beautiful curvature tensor decomposition
for Einstein four-manifolds (see also [13]),

Proposition 2.3. Let (M, g) be an Einstein four-manifold with Ric = λg. For any
p ∈ M , there exists an orthonormal basis {ei}1≤i≤4 of TpM , such that relative to the
corresponding basis {ei ∧ ej}1≤i<j≤4 of ∧2TpM , R takes the form

(2.4) R =

(
A B
B A

)
,

where A = diag{a1, a2, a3}, B = diag{b1, b2, b3}. Moreover, we have the following
properties,
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(1) a1 = K(e1, e2) = K(e3, e4) = min{K(σ) : σ ∈ ∧2TpM, ||σ|| = 1},
a3 = K(e1, e4) = K(e2, e3) = max{K(σ) : σ ∈ ∧2TpM, ||σ|| = 1},
a2 = K(e1, e3) = K(e2, e4), and a1 + a2 + a3 = λ;

(2) b1 = R1234, b2 = R1342, b3 = R1423;
(3) |b2 − b1| ≤ a2 − a1, |b3 − b1| ≤ a3 − a1, |b3 − b2| ≤ a3 − a2.

By diagonalizing the matrix in Berger’s decomposition, we obtain eigenvalues of
the curvature operator in order (see [15]),

(2.5)

{
a1 + b1 ≤ a2 + b2 ≤ a3 + b3,

a1 − b1 ≤ a2 − b2 ≤ a3 − b3.

Therefore, 2-positive curvature operator is equivalent to (a1 + a2) ± (b1 + b2) > 0
and a1 > 0; positive isotropic curvature implies (a1 + a2) ± (b1 + b2) > 0; 3-positive
curvature operator is equivalent to 2a1+a2±b2 > 0; and 4-positive curvature operator
is equivalent to a1 + a2 > 0 and 1 + (a1 ± b1) > 0.

It coincides that, for Einstein four-manifolds, diagonalization of (2.4) becomes (2.1),
as eigenvectors of ai + bi (1 ≤ i ≤ 3) are self-dual 2-forms, and eigenvectors of
ai − bi (1 ≤ i ≤ 3) are anti-self-dual 2-forms. Combining the duality decomposition
with Berger’s decomposition, we get explicit expression for both self-dual and anti-
self-dual Weyl tensors, {

W+(ω+
i , ω

+
j ) = [(ai + bi)− s

12
]δij,

W−(ω−i , ω
−
j ) = [(ai − bi)− s

12
]δij,

where {ω+
i }1≤i≤3 and {ω−i }1≤i≤3 are the corresponding orthonormal bases of ∧+M

and ∧−M in Berger’s decomposition.

We have the following interesting relations between k-positive (k-nonnegative) cur-
vature operators, positive isotropic curvature, and sectional curvature.

Proposition 2.4. Let (M, g) be an Einstein four-manifold with Ric = g.

(1) R is 2-positive (2-nonnegative) if and only if the isotropic curvature is positive
(nonnegative).

(2) If R is 3-positive, then K > 1
30

; if R is 3-nonnegative, then either minK = 0

or K ≥ 1
30

. On the other hand, if K > (≥) 1
12

, then R is 3-positive (3-
nonnegative).

(3) R is 4-positive (4-nonnegative) if and only if a1 + a2 > (≥) 0, or K < (≤) 1.
Moreover, this implies K > (≥) 1

28
(7−

√
105).

Proof. We follow the argument in [15]. We prove 3-positive and 4-positive cases,
and the nonnegative cases are similar. We start with some easy observations. It is
well known that 2-positive curvature operator implies positive isotropic curvature. If
K > 1

12
, then by Berger’s decomposition, 2a1 + a2 − |b2| ≥ 2a1 + a2 − 1

3
(a3 − a1) ≥

4a1 − 1
3
> 0. If R is 4-positive, it is obvious that a1 + a2 > 0, hence a3 < 1.
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Recall that for Einstein manifolds (see [6]),

(2.6) ∆R(ei, ej, ek, el) + 2(Bijkl −Bijlk +Bikjl −Biljk) = 2Rijkl,

where Bijkl = gmngpqRimjpRknlq. Applying Berger’s curvature decomposition, we get
explicitly that

∆R(e1, e2, e1, e2) + 2(a21 + b21 + 2a2a3 + 2b2b3) = 2a1.

Suppose that the minimum of the sectional curvature of (M4, g) is attained at p by
the tangent plane spanned by {e1, e2}. For any v ∈ TpM and the geodesic γ(t) with
γ(0) = p, γ′(0) = v, let {e1, e2, e3, e4} be a parallel orthornormal frame along γ(t),
then we have

(D2
v,vR)(e1, e2, e1, e2)(p) = D2

v,v(R(e1, e2, e1, e2))(p) ≥ 0.

Hence it follows that (∆R)(e1, e2, e1, e2)(p) ≥ 0, therefore at p, we get

a21 + b21 + 2(a2a3 + b2b3) ≤ a1.(2.7)

First we prove that 2-positive curvature operator is equivalent to positive isotropic
curvature. It suffices to show that (a1 + a2)± (b1 + b2) > 0 implies a1 > 0. In fact if
(a1 + a2)± (b1 + b2) > 0, then {

a2 ± b2 > 0,

a3 ± b3 > 0.

Therefore by (2.7), we have

a1(p) ≥ a21 + b21 + 2(a2a3 + b2b3) > a21 + b21 ≥ 0.

Next we prove that 3-positive curvature operator implies positive sectional curva-
ture. If R is 3-positive, then {

a2 ± b2 > −2a1,

a3 ± b3 > −2a1.

Assuming that a1(p) ≤ 0, then a2 ± b2 > 0 and a3 ± b3 > 0, hence we have again

a1(p) ≥ a21 + b21 + 2(a2a3 + b2b3) > a21 + b21 ≥ 0,

which contradicts to (2.7). Therefore a1(p) > 0, i.e., (M, g) has positive sectional
curvature.

Now we derive a lower bound for a1 when R is 3-positive. Let a2(p) = ka1(p), k ≥ 1.

(1) If b2b3 ≥ 0, then it follows from (2.7) that

a1 ≥ a21 + 2a2a3 ≥ a21 + 2a1(1− 2a1) = 2a1 − 3a21,

this implies that a1 ≥ 1/3.
(2) If b2b3 < 0, without loss of generality, we assume that b2 < 0, b3 > 0. We can

derive two estimates for a1.
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(a) First, by 3-positivity of the curvature operator, |b2| < a2 + 2a1, therefore

b21 + 2b2b3 = b22 + b23 + 4b2b3 = (b3 + 2b2)
2 − 3b22 ≥ −3b22 > −3(k + 2)2a21.

Plugging this into the inequality (2.7), we have

a1 ≥ a21 + b21 + 2(a2a3 + b2b3)

> a21 + 2ka1[1− (k + 1)a1]− 3(k + 2)2a21

= 2ka1 − (5k2 + 14k + 11)a21,

this leads to

a1 >
2k − 1

5k2 + 14k + 11
.(2.8)

(b) Second, it follows from Berger’s curvature decomposition that, b3 − b2 =
b3 + |b2| ≤ a3 − a2 = 1− (2k + 1)a1, then

b21 + 2b2b3 = b22 + b23 + 4b2b3 ≥ −
1

2
(b3 − b2)2 ≥ −

1

2
[1− (2k + 1)a1]

2,

therefore,

a1 ≥ a21 + b21 + 2(a2a3 + b2b3)

≥ a21 + 2ka1[1− (k + 1)a1]−
1

2
[1− (2k + 1)a1]

2

= −(4k2 + 4k − 1

2
)a21 + (4k + 1)a1 −

1

2
,

this leads to

a1 ≤
4k −

√
8k2 − 8k + 1

8k2 + 8k − 1
or a1 ≥

4k +
√

8k2 − 8k + 1

8k2 + 8k − 1
.(2.9)

Suppose that a1 ≥ 4k+
√
8k2−8k+1

8k2+8k−1 , then a1 = 1
3

if k = 1; it follows from a
direct computation that if k > 1,

a2 − a3 = (2k + 1)a1 − 1 ≥ (2k + 1)
4k +

√
8k2 − 8k + 1

8k2 + 8k − 1
− 1 > 0,

which contradicts the facts that a2 ≤ a3. Hence it is clear from (2.8) and (2.9)
that either a1 = 1

3
, or

2k − 1

5k2 + 14k + 11
< a1 ≤

4k −
√

8k2 − 8k + 1

8k2 + 8k − 1
.

The above inequality holds only if 1 ≤ k ≤ 4, so we arrive at

a1 > min
1≤k≤4

2k − 1

5k2 + 14k + 11
=

1

30
.

This completes the proof that if R is 3-positive, then K > 1
30

.
Similarly if R is 3-nonnegative, then a1 ≥ 0, hence either minK = 0 or if a1 > 0

then K ≥ 1
30

.
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Finally we prove that a1 + a2 > 0 implies R is 4-positive. It suffices to prove that
a1 +a2 > 0 implies 1 + (a1± b1) > 0. Since |b1| ≤ 1

3
−a1, so 1 + (a1± b1) > 0 provided

a1 > −1
3
. We will now show that if a1 + a2 > 0 then a1 >

1
4
(1−

√
15
7

).

Assuming a1(p) = min a1 < 0 (otherwise there is nothing to prove), set P =
1
2
(a3 − a2) ≥ 0, since a1 + a2 > 0, we have

P =
1

2
(1− 2a2 − a1) <

1

2
(1 + a1).

Rewrite a3 = 1
2
(1− a1) + P, a2 = 1

2
(1− a1)− P , then 2a2a3 = 1

2
(1− a1)2 − 2P 2.

Let Q = |b2 + 1
2
b1| = |b3 + 1

2
b1| ≥ 0, then 2b2b3 = 2(− b1

2
± Q)(− b1

2
∓ Q) =

1
2
b21 − 2Q2. Without loss of generality, we may assume b1 ≥ 0, by Berger’s curvature

decomposition, |bi − bj| ≤ ai − aj, for 1 ≤ j ≤ i ≤ 3, so we have

Q ≤ min{3

2
b1 + (a2 − a1),−

3

2
b1 + (a3 − a1),

1

2
(a3 − a2)}

= min{1

2
(1− 3a1 + 3b1)− P,

1

2
(1− 3a1 − 3b1) + P, P}

= min{1

2
(1− 3a1 + 3b1)− P, P},

here we use the fact that a1 + b1 is the lowest eigenvalue of W+, hence less than or
equal to 1

3
. Plugging P and Q into (2.7) we get

a1 ≥ a21 + b21 + 2(a2a3 + b2b3)

= a21 +
1

2
(1− a1)2 +

3

2
b21 − 2P 2 − 2Q2.

We divide the rest proof into two cases:

(1) If 1
2
(1− 3a1 + 3b1)− P ≤ P , i.e.,

1

4
(1− 3a1 + 3b1) ≤ P <

1

2
(1 + a1),

then b1 <
1
3
(1 + 5a1) and Q ≤ 1

2
(1− 3a1 + 3b1)− P . So we have

a1 ≥ a21 +
(1− a1)2

2
+

3

2
b21 − 2P 2 − 2(

1

2
(1− 3a1 + 3b1)− P )2

> a21 +
(1− a1)2

2
+

3

2
b21 −

1

2
(1 + a1)

2 − 1

2
(−4a1 + 3b1)

2

= −7a21 − 2a1 − 3b21 + 12a1b1

> −7a21 − 2a1 −
1

3
(1 + 5a1)

2 + 4a1(1 + 5a1),

this leads to a1 >
1
4
(1−

√
15
7

).

(2) If P < 1
2
(1− 3a1 + 3b1)− P , then Q ≤ P and

P < min{1

2
(1 + a1),

1

4
(1− 3a1 + 3b1)},
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so we have

a1 ≥ a21 +
1

2
(1− a1)2 +

3

2
b21 − 4P 2.

(a) If 1
2
(1+a1) >

1
4
(1−3a1+3b1), similar to Case (1), we get a1 >

1
4
(1−

√
15
7

).

(b) If 1
2
(1 + a1) ≤ 1

4
(1− 3a1 + 3b1), or b1 ≥ 1

3
(1 + 5a1), in this case we get

a1 > a21 +
1

2
(1− a1)2 +

3

2
b21 − (1 + a1)

2

≥ a21 +
1

2
(1− a1)2 +

1

6
(1 + 5a1)

2 − (1 + a1)
2,

which leads to a1 >
1
28

(17−
√

345).

Hence if a1+a2 > 0 then a1 >
1
4
(1−

√
15
7

). This completes the proof that a1+a2 > 0

implies 4-positive curvature operator. �

3. Proof of Main Theorems

In this section, we shall prove Theorems 1.1 and 1.2. Notice that in Theorem
1.1, if the scalar curvature s = 0, then (M, g) is flat; while in Theorem 1.2, the
case that scalar curvature s = 0 can not happen, since (M, g) is flat implies that
|W+| = |W−| ≡ 1

3
, then the signature

τ(M) = b+(M)− b−(M) =
1

12π2

∫
M

[|W+|2 − |W−|2]dvg = 0,

which contradicts to the assumption that M has positive intersection form. In the
rest of this section, without loss of generality, we may assume that Ric = g, hence
s = 4. By Hitchin’s theorem [11], we can further assume that (M, g) is not half
conformally flat.

We first prove Theorem 1.1. For some α > 0 to be determined later, and any ε > 0,
there exists t = t(α, ε) ∈ R+, such that∫

M

(|W+|2 + ε)
α
2 − t(|W−|2 + ε)

α
2 dv = 0,

Applying Weitzenböck formula (2.2) and refined Kato inequality (2.3) onto |W±|,
we conclude that

∆[(|W+|2 + ε)α + t2(|W−|2 + ε)α]

=α(|W+|2 + ε)α−2[(|W+|2 + ε)(2|∇W+|2 + s|W+|2 − 36 detW+) + (α− 1)|∇|W+|2|2]
+t2α(|W−|2 + ε)α−2[(|W−|2 + ε)(2|∇W−|2 + s|W−|2 − 36 detW−) + (α− 1)|∇|W−|2|2]

≥[(4− 2

3α
)|∇(|W+|2 + ε)

α
2 |2 + α(|W+|2 + ε)α−1(s|W+|2 − 36 detW+)]

+t2[(4− 2

3α
)|∇(|W−|2 + ε)

α
2 |2 + α(|W−|2 + ε)α−1(s|W−|2 − 36 detW−)].

(3.10)
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Using the Poincaré inequality, we have

(4− 2

3α
)

∫
M

(|∇(|W+|2 + ε)
α
2 |2 + t2|∇(|W−|2 + ε)

α
2 |2)dv

≥ (2− 1

3α
)

∫
M

|∇[(|W+|2 + ε)
α
2 − t(|W−|2 + ε)

α
2 ]|2dv

≥ (2− 1

3α
)λ1

∫
M

[(|W+|2 + ε)
α
2 − t(|W−|2 + ε)

α
2 ]2dv,

where λ1 is the lowest positive eigenvalue of the Laplace operator. In our case that
Ric = g, we have λ1 ≥ 4

3
(see, for example, [12]).

Picking α = 1
3
, which maximizes the value of 1

α
(2− 1

3α
), and integrating the above

inequality (3.10), we arrive at

0 ≥ 1

3

∫
M

4[(|W+|2 + ε)
α
2 − t(|W−|2 + ε)

α
2 ]2 + t2(|W−|2 + ε)α−1(s|W−|2 − 36 detW−)

+ (|W+|2 + ε)α−1(s|W+|2 − 36 detW+).

Now let ε→ 0, we get

0 ≥
∫
M

t2|W−|2α−2(s|W−|2 − 36 detW−) + 4(|W+|α − t|W−|α)2

+ |W+|2α−2(s|W+|2 − 36 detW+).

(3.11)

The integrand is a quadratic function of t, with positive leading coefficient and dis-
criminant

D = 64|W+|2α−2|W−|2α−2[|W+|2|W−|2 − (2|W+|2 − 9 detW+)(2|W−|2 − 9 detW−)].

We need the following technical lemma,

Lemma 3.1. If R is 3-nonnegative, then D ≤ 0. Furthermore, the equality holds if
and only if W+ = 0, W− = 0, or W+ and W− have the same eigenvalues {−1

3
,−1

3
, 2
3
}.

Proof. To show D ≤ 0, it is equivalent to show

D′ = |W+|2|W−|2 − 6|W+|2 detW− − 6|W−|2 detW+ + 27 detW+ detW− ≥ 0.

Denote that a ≤ b ≤ c to be eigenvalues of W+, x ≤ y ≤ z to be eigenvalues of
W−, then a ≤ 0, x ≤ 0, c ≥ 0, z ≥ 0, b = −a− c, y = −x− z; we also have

|W+|2 = a2 + b2 + c2 = 2(a2 + ac+ c2),

|W−|2 = x2 + y2 + z2 = 2(x2 + xz + z2),

detW+ = abc = −ac(a+ c),

detW− = xyz = −xz(x+ z).
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The condition of 3-nonnegative curvature operator implies that c−x ≤ 1, z−a ≤ 1,
a+ x ≥ −2

3
, and c+ z ≤ 4

3
. Denote D′ as a function of a, c, x, z, i.e.,

D′ = f(a, c, x, z) =4(a2 + ac+ c2)(x2 + xz + z2) + 12(a2 + ac+ c2)(x2z + xz2)

+ 12(a2c+ ac2)(x2 + xz + z2) + 27(a2c+ ac2)(x2z + xz2).

(3.12)

We shall show that f ≥ 0 in the region

Ω = {(a, c, x, z) : a ≤ 0, x ≤ 0, c ≥ 0, z ≥ 0, −2c ≤ a ≤ − c
2
, −2z ≤ x ≤ −z

2
,

c ≤ x+ 1, z ≤ a+ 1, a+ x ≥ −2

3
, c+ z ≤ 4

3
}.

Notice that in particular we have c ≤ 1, z ≤ 1 in Ω.
Taking the first derivatives of f , we have

fa = (2a+ c)[(4 + 12c)(x2 + xz + z2) + (12 + 27c)(x2z + xz2)],

fx = (2x+ z)[(4 + 12z)(a2 + ac+ c2) + (12 + 27z)(a2c+ ac2)].

Observe that gc,z(x) = (4 + 12c)(x2 + xz + z2) + (12 + 27c)(x2z + xz2) is a quadratic
function of x with positive leading coefficient and discriminant

z2[(12 + 27c)z − (12 + 36c)][(12 + 27c)z + (4 + 12c)],

which is nonpositive since z ≤ 1. Therefore gc,z(x) ≥ 0 in Ω, hence fa ≤ 0. Similarly
gc,z(a) = (4 + 12z)(a2 + ac+ c2) + (12 + 27z)(a2c+ ac2) ≥ 0, and fx ≤ 0.

Therefore the minimum of f is attained at a = − c
2

and x = − z
2
. Plugging this into

(3.12) we get

f =
9

4
c2z2(1− c− z +

3

4
cz),

where

(c, z) ∈ Ω′ = {(c, z) : 0 ≤ c ≤ 1, 0 ≤ z ≤ 1, c+ 2z ≤ 2, 2c+ z ≤ 2},

with boundary components:

(1) c = 0 and 0 ≤ z ≤ 1,
(2) z = 0 and 0 ≤ c ≤ 1,
(3) c+ 2z = 2 and 2

3
≤ z ≤ 1,

(4) 2c+ z = 2 and 2
3
≤ c ≤ 1.

The only critical point of f in Ω′ is c = z = 2
9
(5−

√
7), where f = 16

19683
(1022

√
7−

2671) > 0. On the boundary components:

(1) If c = 0 or z = 0, then f = 0.
(2) If 2c + z = 2 and 2

3
≤ c ≤ 1, then f = 9

2
c2(1− c)3(3c− 2) ≥ 0, with equality

holds if and only if c = 1 and z = 0, or c = z = 2
3
.

(3) If c+ 2z = 2 and 2
3
≤ z ≤ 1, we get a similar conclusion.
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Therefore f = D′ ≥ 0 in Ω, with equality holds if and only if |W+||W−| = 0 or
(a, c, x, z) = (−1

3
, 2
3
,−1

3
, 2
3
).

�
We can now finish the proof of Theorem 1.1. Since both |W+|2 and |W−|2 are real

analytic, then either the discriminant D < 0 in an open dense set, this contradicts
(3.11) because of the integrand is strictly positive; or if D ≡ 0, we have W+ ≡ 0,
W− ≡ 0, or W+ and W− have the same eigenvalues {−1

3
,−1

3
, 2
3
} at every point.

The first two cases contradict our assumption that (M, g) is not half conformally
flat. For the third case, using Weitzenböck formula (2.2), it leads to ∇W± ≡ 0, so
(M, g) is locally symmetric, whose curvature operator has eigenvalues {0, 0, 1, 0, 0, 1}.
Therefore, by Cartan’s classification of symmetric spaces, (M, g) is isometric to (S2×
S2, g0 ⊕ g0) or its quotient.

�

Next we prove Theorem 1.2. The proof basically follows from Gursky and LeBrun
[10] plus the following point-wise estimate:

Lemma 3.2. Let (M, g) be an Einstein four-manifold with 4-nonnegative curvature
operator, then

|W+|2 + |W−|2 < 25

9
.(3.13)

Proof. We use a similar argument as in Lemma 3.1. Notice that 4-nonnegative

curvature operator implies that a+x ≥ 1
2
(1−

√
15
7

)− 2
3
> − 9

10
and c+ z ≤ 4

3
. Denote

that

f(a, c, x, z) = |W+|2 + |W−|2 = 2(a2 + ac+ c2 + x2 + xz + z2).(3.14)

We shall prove that f ≤ 1249
450

in the region

Ω = {(a, c, x, z) : a ≤ 0, x ≤ 0, c ≥ 0, z ≥ 0, −2c ≤ a ≤ − c
2
,

− 2z ≤ x ≤ −z
2
, a+ x ≥ − 9

10
, c+ z ≤ 4

3
}.

Computing the first derivatives of f :

fa = 2(2a+ c), fc = 2(2c+ a), fx = 2(2x+ z), fz = 2(2z + x),

we have fa ≤ 0 and fx ≤ 0, fc ≥ 0 and fz ≥ 0, therefore the maximum of f is attained
at a+ x = − 9

10
and c+ z = 4

3
. Plugging into (3.14) we get

f(a, c) = 2[a2 + ac+ c2 + (
9

10
+ a)2 − (

9

10
+ a)(

4

3
− c) + (

4

3
− c)2]

= 4a2 + 4ac+ 4c2 +
14

15
a− 53

15
c+

1249

450
,

(3.15)

where (a, c) lies in

Ω′ = {(a, c) : − 9

10
≤ a ≤ 0, 0 ≤ c ≤ 4

3
, −2c ≤ a ≤ − c

2
, 2a+c ≥ − 7

15
, a+2c ≤ 53

30
},
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with boundary components:

(1) a = −2c and 0 ≤ c ≤ 7
45

,

(2) c = −2a and −53
90
≤ a ≤ 0,

(3) a+ 2c = 53
30

and 53
45
≤ c ≤ 4

3
,

(4) 2a+ c = − 7
15

and − 9
10
≤ a ≤ −14

45
.

The only critical point of f in Ω′ is at a = − 9
20
, c = 2

3
, where f = 1249

900
. For boundary

components, we can compute case by case and conclude that f ≤ 1249
450

, with equality

holds if and only if a = c = 0, or a = − 9
10

and c = 4
3
. Therefore f ≤ 1249

450
in Ω, with

equality holds if and only if (a, c, x, z) = (− 9
10
, 4
3
, 0, 0), or (a, c, x, z) = (0, 0,− 9

10
, 4
3
).
�

Proof of Theorem 1.2. Applying Lemma 4.1 to Gauss-Bonnet formula, we derive
that

χ(M) =
1

8π2

∫
M

(
|W+|2 + |W−|2 +

s2

24

)
dv <

31

6× 8π2

∫
M

s2

24
dv.(3.16)

By Meyer’s theorem and Bishop’s volume comparison theorem, we have

χ(M) <
31

6× 8π2

∫
M

s2

24
dv ≤ 31

6× 8π2

∫
S4

s2

24
dv

=
31

6
χ(S4) =

31

3
.

Since χ(M) ∈ Z, we get an upper bound for the Euler characteristic,

Lemma 3.3. Let (M, g) be an Einstein four-manifold with 4-nonnegative curvature
operator, then χ(M) ≤ 10.

Combining (3.16) with the following gap theorem of Gursky and LeBrun for Ein-
stein four-manifolds which are not half conformally flat,

2χ(M)− 3τ(M) ≥ 3

4π2

∫
M

s2

24
dµ,(3.17)

we can conclude that 2χ(M)− 3τ(M) > 36
31
χ(M), which implies

Lemma 3.4. Let (M, g) be an Einstein four-manifold with 4-nonnegative curvature
operator which is not half conformally flat, then

93

26
|τ | < χ ≤ 10.(3.18)

For Ric = g, notice that τ(M) = b+(M) − b−(M), χ(M) = 2 + b+(M) + b−(M).
Moreover, if (M, g) has positive intersection form, then b+(M) > 0, b−(M) = 0, and

93

26
τ(M) =

93

26
b+ ≥

67

26
+ b+ > 2 + b+ = χ,(3.19)

this contradicts to (3.18), so (M, g) must be half conformally flat, hence |W−| ≡ 0
and |W+| 6≡ 0, since b+(M) > 0. Therefore by Hitchin’s theorem, (M, g) is isometric
to (CP 2, gFS), up to scaling, this completes our proof of Theorem 1.2.

�
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